奥林匹克竞赛题

时间:2019-05-15 00:30:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《奥林匹克竞赛题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《奥林匹克竞赛题》。

第一篇:奥林匹克竞赛题

奥林匹克知识竞赛题

一、奥林匹克知识 1.奥林匹克格言是______。

A.自由平等博爱

B.参与比取胜更重要

C.更快更高更强

2.现代奥林匹克运动创始人是_______。A.萨马兰奇

B.顾拜旦

C.阿尔维尔 3._______年4月6日,第一届现代奥运会在希腊雅典开幕。

A.1896

B.1892 C.1900 4.在第一届现代奥运会上,冠军除了获得奖牌外,还被授予_______。

A.月桂花冠

B.橄榄枝环

C.谷穗 5.国际奥委会的英文名称缩写为_______。A.IOC B.NOC C.FIFA 6.近年来,奥林匹克运动把体育、文化和______看做奥林匹克精神的三大支柱。A.环境

B.和平

C.友谊 7.雕塑《掷铁饼者》的作者是___。A.米伦

B.罗丹

C.米开朗其罗 8.奥林匹克日是_______。

A.6月23日

B.7月23日

C.8月23日 9.奥林匹克会歌歌名是______。

A.《奥林匹克之歌》 B.《奥林匹克颂歌》 C.《奥林匹克圣火》

10.奥林匹克五环标志由蓝、黄、黑、绿、______五种颜色组成。A.紫

B.红

C.白

二、2008年北京奥运会

1.北京申办2008年奥运会的申办口号为“________”。

A.新北京,新奥运B.申奥有我C.以发展助奥运,以奥运促发展

2.2001年_______,北京获得2008年奥运会举办权。

A.6月15日

B.7月13日

C.8月19日 3.第29届奥林匹克运动会会徽又名_______。

A.“中国结·飘舞的艺术”B.“搏动的行星”

C.“中国印·舞动的北京”

4.北京奥运会火炬使用燃料为_,这是一种价格低廉的常用燃料。A.甲烷

B.酒精

C.丙烷

5.北京奥运会的吉祥物中福娃______的造型创意来自北京传统的沙燕风筝,她代表的颜色是_____色。

A.晶晶 黑

B.迎迎 红

C.妮妮 绿

6.北京奥运会、残奥会的主题口号是_____。A.同一个世界 同一个梦想 B.北京欢迎您 C.更快更高更强

7.2008年北京奥运会的理念是_______。A.绿色奥运 微笑奥运 科技奥运 B.绿色奥运 科技奥运 人文奥运 C.人文奥运 文明奥运 绿色奥运 8.“鸟巢”的场馆名称是_______。A.国家体育场

B.国家体育馆

C.奥运主场馆

9.北京奥运会将成为有特色、高水平的运动会。其中有特色指的是中国风格、人文风采、时代风貌、________。

A.全民参与

B.全体参与

C.大众参与

10.我国办奥运坚持开放办奥运、创新办奥运、________、廉洁办奥运、全民办奥运的方针。

A.高效办奥运

B.节俭办奥运

C.安全办奥运

第二篇:三年级数学奥林匹克竞赛题

三年级数学奥林匹克竞赛题

同学们对于数学的学习是否有困难呢?小编在这里为大家总结了部分知识点,希望能够帮助大家!三年级数学奥林匹克竞赛题

一、填空。(共20分,每小题2分)1.一个两位数,它的数字之和

同学们对于数学的学习是否有困难呢?小编在这里为大家总结了部分知识点,希望能够帮助大家!

三年级数学奥林匹克竞赛题

一、填空。(共20分,每小题2分)

1.一个两位数,它的数字之和正好是9,而个位数字是十位数字的8倍,这个两位数是()。

2.一幢七层楼,每层楼梯有16级,小丁从1楼到7楼,共走()级。

3.两个数的和是91,小玲在抄题时,将其中一个加数个位上的“0”丢掉了,结果算出的和是37,这两个数分别是()和()。

4.找规律填数。

2,8,5,20,7,28,11,44,()12。

6.沿图2中所示的方向,从M到N共有()种不同的走法。

7.图3中有()个正方形。

8.将1~7七个数字,分别填入下面空格内,使等式成立。(每个数字只能用一次)

□×□=□÷□=□ □-□

9.一个长方形牧场的三面用篱笆围成,第四条边靠着一面长100米的墙,包括与墙交界处每隔12米有一根木桩,那么一个长60米宽36米的长方形牧场最少需要木桩()根。

10.于老师上班时坐车,回家时步行,在路上一共花90分钟;往返都坐车,只需30分钟。如果往返都步行,需要()分钟。

二、判断。(对的在括号里画“√”,错的画“×”。共10分,每小题2分)

11.两个长方形的面积相等,它们的周长也相等。()

12.一个数的11倍加上115,等于这个数的16倍,这个数是32。()

13.在一条长200米的小路一旁植树101棵,不管怎样总有两棵树的距离不超过2米。()

14.有两根长都是100厘米的木条,钉成一根长180厘米的木条,中间钉在一起的重叠部分长是20厘米。()

15.一块豆腐切3刀,最多能切成 6小块。()

三、选择。(把正确答案的序号填在括号里。共10分,每小题2分)

16.体育课上同学们站成一排,老师让他们按1、2、3、4、5循环报数,最后一个报的数是2,这一排同学有()人。

A.26 B.27 C.28

17.500张白纸的厚度为50毫米,那么()张白纸的厚度是 750毫米。

A.250 B.1250 C.7500

19.6个男生的平均体重是40千克,4个女生的平均体重是 30千克,这10个同学的平均体重是()千克。

A.35 B.38 C.36

20.百乐自选商场的一种矿泉水,进货4瓶5元钱,售出3瓶5元钱,要获利100元需要售出()瓶。

A.100 B.240 C.260

四、简算与计算。(21~24题要写出简算过程,共25分,每小题5分)

21.609-708 306-108 202-198 497-100

22.14 15 16 ?? 45 46

23.9999 9998 9997 9996

24.99999×26 33333×22

五、解决问题。(共35分,每小题7分)

26.一个奶牛场有25头奶牛和15头小牛,每头奶牛每天吃草12千克,每头小牛每天吃草6千克。现有草7020千克,可供它们吃多少天?

27.一箱鱼片24袋,其中6大袋,每袋9元;余下的是小袋,每小袋5元。如果1大袋相当于2小袋,那么这箱鱼片的价格比全按小袋包装便宜多少元?

28.陈叔叔从家到单位去上班,如果每分钟走60米,就要迟到2分钟;如果每分钟走80米,就可以早到3分钟。如果骑自行车每分钟行150米,从家到单位需要多少分钟?

29.一条大街上原有路灯201盏,相邻两盏路灯相距50米;现在换新路灯增加了50盏,相邻两盏路灯的距离是多少米?

30.甲、乙两个油罐,如果每分钟放油5千克,甲罐52分钟把油放尽,乙罐36分钟把油放完。如果从甲罐向乙罐注油,需要过多少分钟两罐油相等?

参考答案

一、填空。(共20分,每小题2分)

1.18 2.96 3.60,31 4.3 5.8 6.6

7.23 8.1,2,6,3,4,5,7或者2,3,6,1,4,7,5 9.12 10.150

二、判断。(共10分,每小题2分)

11.× 12.× 13.√ 14.√ 15.×

三、选择。(共10分,每小题2分)

16.B 17.C 18.A 19.C 20.B

四、简算与计算。(共25分,每小题5分)

21.609-708 306-108 202-198 497-100

=600-700 300-100 200-200 500-100 9-8 6-8 2 2-3

=500

22.14 15 16 ?? 45 46

=(14 46)(15 45)??(29 31)30

=30×33

=990

23.9999 9998 9997 9996

=(10000-1)(1000-2)(10000-3)(10000-4)

=40000-(1 2 3 4)

=39990

24.99999×26 33333×22

=33333×(3 ×26 22)

=33333 ×100

=3333300

25.(4×3 2×2)×(4×3 2×2)-4×4×9

=16×16-16× 9

=16×(16-9)

=112(平方厘米)

五、解决问题。(共25分,每小题7分。)

26.7020÷(12×25 6×15)=7020÷390=18(天)答:(略)

27.5×(24 6)-[9×6 5×(24-6)]=150-144=6元)答:(略)或:(5×2-9)×6=1×6=6(元)

28.(60×2 80×3)÷(80-60)=18(分)

(60×18 60×2)÷150= 8(分)

答:(略)

29.50 ×(201-1)÷(201 50-1)=10000÷250=40(米)答:(略)

30.甲罐有油:5×52=260(千克)

乙罐有油:5×36=180(千克)

甲乙两罐平均有油:(260 180)÷2=220(千克)

甲罐向乙罐注油:260-220=40(千克)

注油所需时间: 40÷5=8(分)

答:(略)

以上就是小编为大家整理的知识点,更多精彩内容请关注学而思网校!三年级数学知识竞赛题 同学们对于数学的学习是否有困难呢?小编在这里为大家总结了部分知识点,希望能够帮助大家!三年级数学知识竞赛题一

一、填空题。(每小题5分,共50分)(1)40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到()个。(2.)7 年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年()岁。(3.)同学们进行广播操比赛,全班正好排成相等的6行。小红排在第二行,从头...Array三年级数学奥林匹克竞赛题 同学们对于数学的学习是否有困难呢?小编在这里为大家总结了部分知识点,希望能够帮助大家!三年级数学奥林匹克竞赛题

一、填空。(共20分,每小题2分)1.一个两位数,它的数字之和正好是9,而个位数字是十位数字的8倍,这个两位数是()。2.一幢七层楼,每层楼梯有16级,小丁从1楼到7楼,共走()级。3.两个数的和是91,小玲在抄题时,将其中一个加数个位上的0丢掉了,结果算...Array三年级数学竞赛题目 同学们对于数学的学习是否有困难呢?小编在这里为大家总结了部分知识点,希望能够帮助大家!三年级数学竞赛题目

一、填空。(共20分,每小题2分)1.一个两位数,它的数字之和正好是9,而个位数字是十位数字的8倍,这个两位数是()。2.一幢七层楼,每层楼梯有16级,小丁从1楼到7楼,共走()级。3.两个数的和是91,小玲在抄题时,将其中一个加数个位上的0丢掉了,结果算出的和...Array三年级数学口算竞赛题 同学们对于数学的学习是否有困难呢?小编在这里为大家总结了部分知识点,希望能够帮助大家!三年级数学口算竞赛题 102= 72-47= 205= 27+15= 202= 633= 275= 5103= 409= 2330= 844= 153= 124= 5139= 4815= 999= 755= 2055= 4610= 2420= 872-124= 27+127= 7005= 350+70= 5913= 8122= 1782= 3080= 8008= 265+85= 11035= 9013= 0245= 0245= 0+245= 2455= 3000-300= 6055= 5050= 3063= 702-199= 4803= 12080= 278= 6215= 8604= 195= 4020= 520-430= 5117= 1561= 87...Array

第三篇:三年级奥林匹克趣味语文竞赛题

趣味语文试题

班级__________________ 姓名__________________ 得分____________

1、给下面是按字母表顺序的组合打“√”(4分)①A B C D E F()

②K L I J K L M()

2、拼一拼,连一连(5分)

san

shan

shang

chang

qiang

fen

feng

fan

yin

yan

3、照样子,给字加一画或减一画,成为另一个字。(4分)

(加一画)()

(加一画)(例:亚

(减一画)()

(减一画)((加一画)()

(减一画)()

4、选择题 ①根据下列题意,选填词语(5分)

苦哭

暗笑

假笑

哈哈大笑

捧腹大笑

(只能用一次)A、开怀纵情的笑()B、藏在心里不公开笑()C、捂住肚子开心地笑()D、不愉快而勉强的笑()E、故意做出的,不真实的笑()

②与“喜欢”意思相反的是()(3分)A、喜爱

B、讨厌

C、憎恨

③看到这风景如画的田野,我的心情非常()(3分)

A、兴奋

B、愉快

C、快乐

④猜字谜()(3分)

一点一横长,竖撇像堵墙,里面有个人,只有一寸长。

A、磨

B、床

C、府))

⑤比喻粗心大意的人是()(3分)

A、马大哈

B、不倒翁

C、糊涂虫 ⑥遥知不是雪,为有暗香来。这句诗是()写的。(3分)

A、李白

B、王安石

C、孟浩然 ⑦面对面的走过来,()这种表达好。(3分)

A、从对面走过来

B、迎面而来

C、对着面走来 ⑧小文抿着克嘴,弓着腰,蹑手蹑脚地,一步一步慢慢地靠近它,走近了,靠近了!只见她()将右手伸向蝴蝶……(3分)

A、悄悄地

B、慢慢地

C、稳稳地

⑨霞光中,山溪叮咚,鸟雀鸣叫,鱼群戏水;霞光中,露珠儿滴翠,花苞儿含笑;霞光中,鸡鸭扑翅,牛羊撒欢,炊烟袅袅……(3分)

这段话写了()种景物。

⑩用数字“一、二、三、四、五、六、七、八、”把下列成语补充完整。(需要时,可重复出现)

()鸣惊人

()神无主

()湖()海 低()下()

()上()下

()心()意

5、按要求填空 ①在短语的括号中填上表示“看”的词。(4分)

()五星红旗

()牡丹花 去医院()病人

抬头()星空

②在括号里填上表示“站”意思的词语。(8分)a.笔直地站着,可以说()

b.恭恭敬敬地站着,可以说()c.高高的,直直的站着,可以说()d.长时间,可以说()

③给下雨要带上雨具,选用关联词。只有()组不能用。(4分)

A、如果……就……

B、既然……就…… C、只要……就……

D、因为……所以…… E、只有……才……

F、即使……也…… ④选择动物名,填空,使前后成两条成语。(8分)兔

胆小如()目寸光

呆若木()犬不宁 守株待()死狐悲

千军万()到成功 生龙活()口余生

打草惊()尾虎头 关门打()仗人势

叶公好()腾虎跃

6、读诗句,想想诗句描写的什么季节。(8分)①万条垂下绿丝涤()

②霜叶红于二月花()

③接天莲叶无穷碧()

④独钓寒江雪

()

7、下面是山水名称的解释,请选择恰当的字填入括号中。(6分)峰

渊 ①连绵不断的山叫()

②高耸巍峨的山叫()③山顶圆平的山叫()④水很深叫()⑤水流急叫()⑥两山相夹之水叫()

8、阅读短文,完成练习。

星期天,我们全家到公园里观赏荷花。走进大门,我一眼看见满池的荷花已经盛开了,散发了阵阵清香。朵朵荷花在阳光下张开笑脸迎接我们。碧绿的荷叶像一把把撑在水面上的伞,布满了晶莹的水珠。

我们手扶着池边栏杆,欣赏着美丽的荷花。这时,爸爸说:“大家很喜欢荷花,谁能说出荷花的好处?”

弟弟抢着说:“荷花香,莲子可以吃。”我说:“荷花很美,它的地下茎——莲藕也可以吃。荷叶还可以入药呢!”

爸爸说:“荷花的好处的确很多,但有一样最可贵:“荷花虽然生长在污泥里,可是开出的花是那样清爽干净。它不怕污泥,而在泥中倔强地长着。

妈妈说:“出污泥而不杂不就是荷花最可贵的品格吗?”

对,爸爸接着说:“做人就要像荷花那样无论在多么恶劣的条件下,多么复杂的环境中,都在坚持正义,保持高尚的品格。

我们一边谈论,一边思索,那朵朵荷花似乎更美了。①这篇短文共有()个自然段。(2分)②读短文,填合适词语。(4分)

()的荷花

()的荷叶

()的水珠

()的品格 ③写出文中比喻句。(3分)

____________________________________________________________

这句话把()比作()④把问句改为陈述句。(2分)

出污泥而不染不就是荷花最高贵的品格吗?

_____________________________________________________________ ⑤下面是对“出污泥而不染”的三种理解,你认为哪种理解是最确切,请在括号内打“√”(3分)A、赞美荷花本领大,从污泥中长出,而没有染上污泥。()B、赞美荷花在环境复杂、恶劣的情况下倔强生长,始终保持高尚的品格。()C、赞美荷花美丽、没沾一点污泥。()

第四篇:初一数学奥林匹克竞赛题(含答案)

培智教育

初一数学奥林匹克竞赛题(含答案)

初一奥数题一

甲多开支100元,三年后负债600元.求每人每年收入多少?

S的末四位数字的和是多少?

4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

5.求和:

6.证明:质数p除以30所得的余数一定不是合数.

8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除. 9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半. 解答:

所以

x=5000(元).

培智教育

所以S的末四位数字的和为1+9+9+5=24.

3.因为

a-b≥0,即a≥b.即当b

≥a>0或b≤a<0时,等式成立.

4.设上坡路程为x千米,下坡路程为y千米.依题意则

由②有2x+y=20,③

由①有y=12-x.将之代入③得 2x+12-x=20.

所以

x=8(千米),于是y=4(千米).

5.第n项为

所以

培智教育

6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.

7.设

由①式得(2p-1)(2q-1)=mpq,即

(4-m)pq+1=2(p+q).

可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.

(1)若m=1时,有

解得p=1,q=1,与已知不符,舍去.

(2)若m=2时,有

因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.

(3)若m=3时,有

培智教育

解之得

p+q=8.

8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.

9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以

上述两式相加

另一方面,S△PCD=S△CND+S△CNP+S△DNP.

因此只需证明

S△AND=S△CNP+S△DNP.

由于M,N分别为AC,BD的中点,所以

S△CNP=S△CPM-S△CMN

=S△APM-S△AMN

=S△ANP.

又S△DNP=S△BNP,所以

培智教育

S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.

培智教育 初一奥数题二

1.已知3x2-x=1,求6x3+7x2-5x+2000的值.

2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?

3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.

4.已知方程组

的解应为

一个学生解题时把c抄错了,因此得到的解为 求a2+b2+c2的值.

5.求方程|xy|-|2x|+|y|=4的整数解.

6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)

7.对k,m的哪些值,方程组 至少有一组解?

8.求不定方程3x+4y+13z=57的整数解.

9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望? 解答:

培智教育

1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003. 2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则

y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+

400=-10(x-3)2+490.

所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元. 3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以

∠ADC+∠BCD=180°,所以

AD∥BC.①

又因为 AB⊥BC,②

由①,② AB⊥AD.

4.依题意有

所以 a2+b2+c2=34.

5.|x||y|-2|x|+|y|=4,即 |x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.

因为|x|+1>0,且x,y都是整数,所以

所以有

6.设王平买三年期和五年期国库券分别为x元和y元,则

因为 y=35000-x,培智教育

所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元). 7.因为(k-1)x=m-4,①

m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解. 当k=1,m≠4时,①无解.

所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.

8.由题设方程得

z=3m-y.

x=19-y-4(3m-y)-m =19+3y-13m.

原方程的通解为

其中n,m取任意整数值.

9.设苹果、梨子、杏子分别买了x,y,z个,则

消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.

代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.

x=20,y=8,z=12.

因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+

培智教育

5+6=21>20个.

培智教育 初一奥数题三

1.解关于x的方程

2.解方程

其中a+b+c≠0.

3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.

4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.

5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.

6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.

7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.

8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2? 9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且

求证:n是4的倍数. 解答:

1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为

培智教育

由此可解得x=a+b+c.

3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.

依题意得

去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].

由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.

又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.

6.如图1-105所示.在△PBC中有BC<PB+PC,①

延长BP交AC于D.易证PB+PC<AB+AC. ②

由①,② BC<PB+PC<AB+AC,③

同理 AC<PA+PC<AC+BC,④

AB<PA+PB<AC+AB. ⑤

③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).

所以

7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千

培智教育

米.依题意得

由①得16y2=9x2,③

由②得16y=24+9x,将之代入③得

即(24+9x)2=(12x)2.解之得

于是

所以两站距离为9×8+16×6=168(千米).

8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

又因为

所以,k是偶数,从而n是4的倍数.

培智教育 初一奥数题四

1.已知a,b,c,d都是正数,并且a+d<a,c+d<b. 求证:ac+bd<ab.

2.已知甲种商品的原价是乙种商品原价的1.5倍.因市场变化,乙种商品提价的百分数是甲种商品降价的百分数的2倍.调价后,甲乙两种商品单价之和比原单价之和提高了2%,求乙种商品提价的百分数.

3.在锐角三角形ABC中,三个内角都是质数.求三角形的三个内角.

4.某工厂三年计划中,每年产量递增相同,若第三年比原计划多生产1000台,那么每年比上一年增长的百分数就相同,而且第三年的产量恰为原计划三年总产量的一半,求原计划每年各生产多少台?

z=|x+y|+|y+1|+|x-2y+4|,求z的最大值与最小值.

8.从1到500的自然数中,有多少个数出现1或5?

9.从19,20,21,…,98这80个数中,选取两个不同的数,使它们的和为偶数的选法有多少种? 解答:

1.由对称性,不妨设b≤a,则ac+bd≤ac+ad=a(c+d)<ab.

2.设乙种商品原单价为x元,则甲种商品的原单价为1.5x元.设甲商品降价y%,则乙商品提价2y%.依题意有1.5x(1-y%)+x(1+2y%)=(1.5x+x)(1+2%),化简得1.5-1.5y+1+2y=2.5×1.02.

所以y=0.1=10%,所以甲种商品降价10%,乙种商品提价20%.

3.因为∠A+∠B+∠C=180°,所以∠A,∠B,∠C中必有偶数.唯一的偶质数为2,所以∠C=2°.所以∠A+∠B=178°.由于需∠A,∠B为奇质数,这样的解不唯一,如

培智教育

4.设每年增产d千台,则这三年的每一年计划的千台数分别为a-d,a,a+d依题意有

解之得

所以三年产量分别是4千台、6千台、8千台.

不等式组:

所以 x>2;

无解.

培智教育

6.设原式为S,则

所以

<0.112-0.001=0.111.

因为

所以 =0.105.

7.由|x|≤1,|y|≤1得-1≤x≤1,-1≤y≤1.

所以y+1≥0,x-2y+4≥-1-2×1+4=1>0.

所以z=|x+y|+(y+1)+(x-2y+4)=|x+y|+x-y+5.

(1)当x+y+≤0时,z=-(x+y)+x-y+5=5-2y.

培智教育

由-1≤y≤1可推得3≤5-2y≤7,所以这时,z的最小值为

3、最大值为7.

(2)当x+y>0时,z=(x+y)+(x-y+5)=2x+5.

由-1≤x≤1及可推得3≤2x+5≤7,所以这时z的最小值为

3、最大值为7.

由(1),(2)知,z的最小值为3,最大值为7.

8.百位上数字只是1的数有100,101,…,199共100个数;十位上数字是1或5的(其百位上不为1)有2×3×10=60(个).个位上出现1或5的(其百位和十位上都不是1或5)有2×3×8=48(个).再加上500这个数,所以,满足题意的数共有

100+60+48+1=209(个).

9.从19到98共计80个不同的整数,其中有40个奇数,40个偶数.第一个数可以任选,有80种选法.第一个数如果是偶数,第二个数只能在其他的39个偶数中选取,有39种选法.同理,第一个数如果是奇数,第二个数也有39种选法,但第一个数为a,第二个为b与第一个为b,第二个为a是同一种选法,所以总的选法应该折半,即共有

种选法.

培智教育 初一奥数题五

1.一项任务,若每天超额2件,可提前计划3天完工,若每天超额4件,可提前5天完工,试求工作的件数和原计划完工所用的时间.

2.已知两列数

2,5,8,11,14,17,…,2+(200-1)×3,5,9,13,17,21,25,…,5+(200-1)×4,它们都有200项,问这两列数中相同的项数有多少项?

3.求x3-3px+2q能被x2+2ax+a2整除的条件.

4.证明不等式

5.若两个三角形有一个角对应相等.求证:这两个三角形的面积之比等于夹此角的两边乘积之比.

6.已知(x-1)2除多项式x4+ax3-3x2+bx+3所得的余式是x+1,试求a,b的值.

7.今有长度分别为1,2,3,…,9的线段各一条,可用多少种不同方法,从中选用若干条,使它们能围成一个正方形?

8.平面上有10条直线,其中4条是互相平行的.问:这10条直线最多能把平面分成多少部分?

9.边长为整数,周长为15的三角形有多少个? 解答:

1.设每天计划完成x件,计划完工用的时间为y天,则总件数为xy件.依题意得

解之得

总件数xy=8×15=120(件),即计划用15天完工,工作的件数为120件.

培智教育

2.第一列数中第n项表示为2+(n-1)×3,第二列数中第m项表示为5+(m-1)×4.要使2+(n-1)×3=5+(m-1)×4.

所以

因为1≤n≤200,所以

所以

m=1,4,7,10,…,148共50项.

3.x3-3px+2q被x2+2ax+a2除的余式为3(a2-p)x+2(q+a3),所以所求的条件应为

4.令

因为

所以

培智教育

5.如图1-106(a),(b)所示.△ABC与△FDE中,∠A=∠D.现将△DEF移至△ABC中,使∠A与∠D重合,DE=AE',DF=AF',连结F'B.此时,△AE'F'的面积等于三角形DEF的面积.

①×②得

6.不妨设商式为x2+α·x+β.由已知有

x4+ax3-3x2+bx+3

=(x-1)2(x2+α·x+β)+(x+1)

=(x2-2x+1)(x2+α· x+β)+x+1

=x4+(α-2)x3+(1-2α+β)x2+(1+α-2β)x+β+1.

比较等号两端同次项的系数,应该有

培智教育

只须解出

所以a=1,b=0即为所求.

7.因为

所以正方形的边长≤11.

下面按正方形边的长度分类枚举:

(1)边长为11:9+2=8+3=7+4=6+5,可得1种选法.

(2)边长为10:9+1=8+2=7+3=6+4,可得1种选法.

(3)边长为9:9=8+1=7+2=6+3=5+4,可得5种选法.

(4)边长为8:8=7+1=6+2=5+3,可得1种选法.

(5)边长为7:7=6+1=5+2=4+3,可得1种选法.

(6)边长≤6时,无法选择.

综上所述,共有1+1+5+1+1=9

种选法组成正方形.

8.先看6条不平行的直线,它们最多将平面分成

2+2+3+4+5+6=22个部分.

现在加入平行线.加入第1条平行线,它与前面的6条直线最多有6个交点,它被分成7段,每一段将原来的部分一分为二,故增加了7个部分.加入第2,第3和第4条平行线也是如此,即每加入一条平行线,最多增加7个部分.因此,培智教育

这些直最多将平面分成

22+7×4=50

个部分.

9.不妨设三角形的三边长a,b,c满足a≥b≥c.由b+c>a,a+b+c=15,a≥b≥c可得,15=a+(b+c)>2a,所以a≤7.又15=a+b+c≤3a,故a≥5.于是a=5,6,7.当a=5时,b+c=10,故b=c=5;当a=b时,b+c=9.于是b=6,c=3,或b=5,c=4;当a=7时,b+c=8,于是b=7,c=1,或b=6,c=2,或b=5,c=3,或b=4,c=4.

所以,满足题意的三角形共有7个.

第五篇:小学六年级数学奥林匹克竞赛题(含答案)

小学六年级数学奥林匹克竞赛题(含答案)

某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?

解:

设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392

电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?

解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做

(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入

(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)} 如此计算后得到总收入,使方程左右相等

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款

答案

取40%后,存款有

9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)

由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?

答案

加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍 奶糖=30/1.5=20颗

巧克力=1.5*20=30颗 奶糖=20-10=10颗

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?

答案

小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份

4*1/6=2/3(小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)

小亮现有:3+2/3=3又2/3(份)

这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)

小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时

解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4

三人共同搬完,需要

× 2÷(6+ 5+ 4)= 8(小时)

甲需丙帮助搬运

(60-6× 8)÷ 4= 3(小时)

乙需丙帮助搬运

(60-5× 8)÷4= 5(小时)

一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天, 完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天? 答案

甲乙丙3人8天完成 :5/6-1/3=1/2 甲乙丙3人每天完成 :1/2÷8=1/16,甲乙丙3人4天完成 :1/16×4=1/4 则甲做一天后乙做2天要做 :1/3-1/4=1/12 那么乙一天做 :[1/12-1/72×3]/2=1/48 则丙一天做 :1/16-1/72-1/48=1/36 则余下的由丙做要 :[1-5/6]÷1/36=6天 答:还需要6天

股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?

答案

10.65*1%=0.1065(元)10.65*2%=0.213(元)10.1065+0.213=0.3195(元)0.3195+10.65=10.9695(元)13.86*1%=0.1386(元)13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少

答案

(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助

一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人 解: 设需要增加x人(40+x)(15-3)=40*15 x=10 所以需要增加10人

仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?

解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。答:原仓库有360吨货物。

育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?

答案

原来达标人数占总人数的 3÷(3+5)=3/8 现在达标人数占总人数的 9/11÷(1+9/11)=9/20 育才小学共有学生

60÷(9/20-3/8)=800人

小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道? 答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c c-a=72 解得a=24 b=36 c=96

甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个 6X=5(242-X)X=110 242-110=132(个)

答:甲做了110个,乙做了132个

某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比

答案

设男会员是3N,则女会员是2N,总人是:5N 甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N 丙级有:5N*7/25=7/5N 丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N 那么丙组中男女之比是:N/2:9/10N=5:9 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案

根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份 每份需要的人数:(60+40)÷20=5人

甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人 乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人 丙村需要的人数:5×5=25人 或 20+5=25人 每人应得的钱数:1350÷25=54元 甲村应得的工钱:54×20=1080元 乙村应得的工钱: 54×5=270元

p166 19题

李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?

答案

设以前卖出X 降价a 那么0.2X *(1+0.5)=(0.2-a)* 2x 则0.1X=2aX a=0.05

.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?

解:设哈利波特答对2X题,答错X题 20×2X-6X=68 40X-6X=68 34X=68 X=2 答对:2×2=4题 共有:4+2=6题

爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这 7 些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案

设可免费携带的重量为x kg,则:

(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同; 解方程:x=30

一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?

答案 解法一:

设船数为X,则(15X+9)/18=X-1 15X+9=18X-18 27=3X X=9 答:有9只船。

解法二:

(15+9)÷(18-15)=8只船--每船坐18人时坐了8只船 8+1=9只船

建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨? 答案

设2堆为X吨,则一堆为X+85吨 X+85-30=2(X-30)x=115(2堆)x+85=115+85=200(1堆)

自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几

答案

六个数分别是46 47 48 96 97 98

甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米? 答案

两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8 有x÷120=1 所以x=120

一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人? 设有x个人

x+x/2+x/3=55 x=30

学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?

设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本 x+2x+3x-120=840 6x-120=840 6x=840+120 6x=960 x=960/6 x=160 高年级段为:160*2=320(本)中年级段为:160*3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人? 解 设 原来田径队男女生一共x人 1/3x+6= 4/9(x+6)x=30 1/3x+6=30*1/3+6=16 女生16人

小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?

解:设小华的有x本书

4(x+2)=6x+2 4x+8=6x+2 x=3 6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?

答案 1 设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁

x+x+27+4x+54+4x+16=147,x=5 所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。爷爷+爸爸+(妈妈+小春)

=爷爷+(爷爷-38)+(爷爷/2)=147 爷爷=74岁 爸爸=36岁

妈妈+小春=小春+27+小春=74/2=37 小春=5岁 妈妈=5+27=32岁

小春一家四口人的年龄各是74,36,32,5岁(147+38)÷(2×2+1)=37(岁)36×2=74(岁)爷爷的年龄 74-38=36(岁)爸爸的年龄

11(37+27)÷2=32(岁)妈妈的年龄 32-27=5(岁)小华的年龄

甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?

解:设甲校有x人参加,则乙校有(22-x)人参加。0.2 x=(22-x)×0.25-1 0.2x=5.5-0.25x-1 0.45x=4.5 x=10 22-10=12(人)答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%? 答案1 解

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45 答案2 设原有溶液为x千克,加入y千克盐后,浓度变为50% 由题意,得溶质为40%x,则有 40%x/(x+5)=30% 12 解之得 x=15千克

则溶质有15*40%=6千克 由题意,得

(6+y)/(15+5+y)=50% 解之得 y=8千克

故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?

答案

红笔买了x支。

(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8 x=36.甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?

答案

乙的话表明:甲钱5倍与乙钱2/3一样多 所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,而乙多于甲的6倍,所以,乙多于60 13

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15 设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?

答案

设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。列式:x*0.12+(30-x)*0.14=4 化简:4.2-0.02x=4 0.02x=0.2 解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?

答案1 根据题意,甲种超过了100本,乙种不到100 本 甲乙花的总钱数比为2:1 那么甲打折以前,和乙的总钱数比为:(2÷0.9):1=20:9 甲乙册数比为5:3 甲乙单价比为(20÷5):(9÷3)=4:3 14 优惠前,甲种每本:1.5×4/3=2元

答案2 答案

设甲买了x本,则乙为3/5x,x>100 买乙共付了:3/5x*1.5=0.9x元 则甲共付了:0.9x*2=1.8x元 所以甲优惠后每本为:1.8x/x=1.8元 则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?

答案

两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的 A蜡烛,两小时烧完,那么每小时燃烧1/2 B蜡烛,三小时烧完,那么每小时燃烧1/3 设过了x小时以后,B蜡烛剩余的部分是A的两倍 2(1—x/2)=1—x/3 解得x=1.5 由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路

答案1 设走的平路是X公里 山路是Y公里

因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时 Y/3-Y/6=1小时 Y=6公里

去时共用3.5小时 则X/4+Y/3=3.5 X=6 所以总路程为2(6+6)=24km 答案2 解:春游共用时:7:00-1:00=6(小时)上山用时:6-2.5=3.5(小时)上山多用:3.5-2.5=1(小时)山路:(6-3)×1÷(3÷6)=6(千米)下山用时:6÷6=1(小时)平路:(2.5-1)×4=6(千米)单程走路:6+6=12(千米)共走路:12×2=24(千米)答:他们共走24千米。

工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:

1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量

35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 解:由题意可知

1/甲+1/乙+1/甲+1/乙+„„+1/甲=1 1/乙+1/甲+1/乙+1/甲+„„+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个

120÷(4/5÷2)=300个

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵

算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水 18 放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。1/2÷18=1/36 表示甲每分钟进水 最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为6天 解:

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知: 乙做3天的工作量=甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份 实际时间的差是3天

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期 方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两 19 支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 答案为40分钟。解:设停电了x分钟 根据题意列方程

1-1/120*x=(1-1/60*x)*2 解得x=40

二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解:

4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么? 4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-62=38表示兔的只数

三.数字数位问题

1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 解:

首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

依次类推:1~1999这些数的个位上的数字之和可以被9整除

10~19,20~29„„90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+„„+90=450 它有能被9整除 同样的道理,100~900 百位上的数字之和为4500 同样被9整除

也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除; 同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005 从1000~1999千位上一共999个“1”的和是999,也能整除; ***320042005的各位数字之和是27,也刚好整除。最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:

(A-B)/(A+B)=(A+B2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。对于 B /(A+B)取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。

(A+B)/B = 1 + A/B,最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B)的最大值是: 98 / 100

3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 答案为6.375或6.4375 21 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。当是102时,102/16=6.375 当是103时,103/16=6.4375

4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476 解:设原数个位为a,则十位为a+1,百位为16-2a 根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=7 16-2a=4 答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24 解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 答案为121 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11 22 因此这个和就是11×11=121 答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)

再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2 解得x=85714 所以原数就是857142 答:原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963 解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 abcd 2376 cdab 根据d+b=12,可知d、b可能是3、9;

4、8;

5、7;

6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;

2、7;

3、6;

4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963 23 再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。

9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以

10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分? 答案是10:20 解:

(28799„„9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20

四.排列组合问题

1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种 B 32种 C 24种 D 2的10次方中 解:

根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种

综合两步,就有24×32=768种。若把英语单词hello的字母写错了,则可能出现的错误共有()A 119种 B 36种 C 59种 D 48种 解:

5全排列5*4*3*2*1=120 有两个l所以120/2=60 原来有一种正确的所以60-1=59

五.容斥原理问题

1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种

2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25„① 由(2)知:a2+a23=(a3+ a23)×2„„② 由(3)知:a12+a13+a123=a1-1„„③ 由(4)知:a1=a2+a3„„④ 再由②得a23=a2-a3×2„„⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2„„⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

故只解出第二题的学生人数a2=6人。

3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)

100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%

六.抽屉原理、奇偶性问题

1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)

答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 答案为21 解:

每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?

解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个)

如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=32

4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。

因为总数为1+9+15+31=56 56/4=14 14是一个偶数

而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。

七.路程问题

1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。

根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。

可以得出马与狗的速度比是21x:20x=21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的 28 份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为两人跑一圈各要6分钟和12分钟。解:

600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 答案为100米

300÷(5-4.4)=500秒,表示追及时间 5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈„„100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。正确的答案是猎犬至少跑60米才能追上。解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离? 解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3=6小时 6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解:

把路程看成1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

下载奥林匹克竞赛题word格式文档
下载奥林匹克竞赛题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学二年级数学奥林匹克竞赛题(附答案)

    小学二年级数学奥林匹克竞赛题(附答案) 1、用0、1、2、3能组成多少个不同的三位数?18个 2、小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答......

    初三数学奥林匹克竞赛题及答案(共5篇)

    初三数学奥林匹克竞赛题及答案 已知3a^2-10ab+8b^2+5a-10b=0,求…… 已知实数a、b满足3a^2-10ab+8b^2+5a-10b=0,求u=9a^2+72b+2的最小值 答案: 分解因式(a-2b)(3a-4b)+5a-10b=......

    奥林匹克口号

    奥林匹克口号 奥林匹克口号1 1、同一个世界,同一个梦想2、绿色奥运、科技奥运、人文奥运3、上联是:申奥运,盼奥运,个个齐心;下联是:迎奥运,看奥运,人人皆喜。横批:申奥成功4、挥豪运......

    奥林匹克口号

    奥林匹克口号 奥林匹克口号1 1、同一个世界,同一个梦想2、绿色奥运、科技奥运、人文奥运3、上联是:申奥运,盼奥运,个个齐心;下联是:迎奥运,看奥运,人人皆喜。横批:申奥成功4、挥豪运......

    奥林匹克文化

    一、圣火重燃 公元前884年,也就是距今2891年前,奥林匹亚所在的埃利斯城邦的国王和强大的斯巴达城邦国王达成了一项协议,每4年在奥林匹亚举行一次竞技大会,为了保证竞技大会顺利......

    奥林匹克精神

    奥林匹克国有梦而国强,而奥林匹克之梦之精神,激励人心。作为奥林匹克学院的一员,我深知奥林匹克精神的重要性。这是一种竞技精神,一种更高更快更强的自我挑战精神。正是这种自我......

    奥林匹克(范文)

    奥林匹克的意义和信念专业:08级运动训练姓名: 王洲缘学号: 2084100062当我们站在新世纪的起点,回首20世纪人类杰出成就的时候,不应该也不可能忘却奥林匹克运动全球性的贡献——曾......

    奥林匹克精神

    奥林匹克精神教学 目标1.理清课文的思路,用体育精神来激发自己学习、生活的激情; 2.用演讲本文的方式加深理解,掌握演讲的技巧。 教学重点 难点 用演讲本文的方式加深理解,掌握演......