无机非金属材料教案[样例5]

时间:2019-05-15 01:11:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《无机非金属材料教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《无机非金属材料教案》。

第一篇:无机非金属材料教案

●教学目标

1.使学生对硅酸盐工业及一些产品和新型无机非金属材料有大致印象。

2.使学生认识到化学在社会、生活、生产、科学技术中的重要作用。用科学的奇妙和威力激发学生学习化学的兴趣。

3.通过介绍我国材料科学发展的成就,对学生进行爱国主义教育。

4.通过社会及科学技术的发展对新型材料的要求,培养学生的社会责任感。●教学重点

水泥、玻璃、陶瓷工业的发展及其在现代国民经济中的主要地位 新型无机非金属材料的特点、用途和发展 ●教学难点

激发学生的求知欲

培养学生热爱科学的情感 ●课时安排 2课时

●教学方法

实物展示、启发诱导、引导归纳、自学、讲述、实验 ●教学用具 录像机、投影仪 普通玻璃片、红色玻璃片、蓝色玻璃片各一块,普通玻璃管、被碰损的搪瓷碗或杯,稀盐酸、酒精喷灯、火柴、图片、高压钠灯、光导纤维玩具。●教学过程 第一课时

[引言]请同学们看以下一些住宅图,并注意它们各自的构成材料。[图片展示]图片1:原始人居住的洞穴 图片2:用茅草搭起来的房屋

图片3:用树枝、泥巴盖起来的房子

图片4:用石头砌起来的石屋,用木棍、木板搭起来的房子 图片5:用砖、水泥等盖的住宅 图片6:高楼大厦

图片7:现代居室(包括电视机、音响、电脑等)[问]大家看了这些图片以后,想到了什么? [生]甲:人类社会是越来越进步的。乙:所用材料越来越高级。丙:人类智慧的力量是无穷的。

丁:人类可以在自然条件材料的基础上进行再加工。

戊:人类加工自然资料的技术越来越高,以至于根本看不出它们的本来面目。„„

[师]大家回答得很好。以上图片说明这样一个事实,即在人类社会发展的过程中,大自然馈赠予人类的材料(如泥土、木材、石头等),已远远不能满足人类社会发展的需求。为了人类自身发展的需要,人们总是在大自然的馈赠之外,用自己的聪明才智和勤劳的双手,不断地研制、创造着各种各样的新材料,以满足人类物质文明和科学技术不断发展的需要。人类使用和制造材料有着悠久的历史,从制造出第一种材料——陶开始,发展到今天,材料的品种越来越多,各种材料组成了一个庞大的材料家族。在材料家族中,有一类非常重要的材料叫无机非金属材料。[板书]第三节 无机非金属材料

[引言]请大家看录像机展示的这些物品。

[录像机展示]水泥、住宅玻璃、汽车、火车的车窗玻璃、挡风玻璃、各种颜色的玻璃、光学仪器玻璃、器皿玻璃、缸、罐、茶具、瓷质餐具、卫生设施、艺术饰品。[板书]

一、硅酸盐材料

[师]首先,我们来了解一下水泥的有关知识。[板书]1.水泥

[师]水泥是一种非常重要的建筑材料。请大家阅读课本有关内容,并填写下表。[投影展示]水泥

主要原料主要设备反应条件普通水泥的主要成分主要性质

[学生阅读完课本后,可由学生回答,教师填写上表] 答案:

[师]由上表可以看出,水泥最主要的性质是水硬性。即跟水混合搅拌并静置后,很容易凝固变硬,由于水泥具有这一优良特性,被用作建筑材料。又由于它在水中也能硬化,因此是水下工程必不可少的材料。

[问]建筑用粘合剂——水泥沙浆的成分是什么? [生]是水泥、沙子和水的混合物。[问]混凝土又是由什么做成的呢? [生]是由水泥、沙子和碎石混合而成。

[师]目前,我国已成为世界上生产和使用水泥制品最多的国家。大家知道吗?解放前我国的水泥曾被称为“洋灰”,就是现在,也仍然还能听到这种叫法。叫“洋灰”的原因是什么呢?

同学们能否从下面的图表得到启示呢? [投影展示]

1949~1998年我国水泥年产量示意图

[学生看图后回答]因为解放前我国的水泥产量小,所使用的水泥主要靠外国进口。[师]很正确。希望同学们现在能好好学习,将来在各个领域有很好的作为,以使这个“洋”字在我国越来越少,最后消失。

[过渡]水泥的知识我们就了解这些。下面我们就来学习在我们工作和生活中随处可见的物质——玻璃。[板书]2.玻璃

[师]请大家阅读课本p150有关玻璃的内容,并填写下表。[投影展示]玻璃

主要用料反应条件玻璃窑中发生的主要反应成分

[学生阅读完课本后,由学生回答,教师填写上表] 纯碱 石灰石 na2sio3 sio2 [师]上表所反映的是制造普通玻璃时所用的原料、主要反应及普通玻璃的主要成分。[问题探究]据强酸制弱酸的规律,上述玻璃窑中发生的反应,能否证明硅酸的酸性比碳酸强呢? [生甲]能

[生乙]不能。强酸制弱酸的规律仅适用于溶液中进行的反应,而且,从碳和硅在周期表中的位置推断,应该是碳酸酸性强于硅酸。

[师]生乙回答的很准确。二氧化硅能与碳酸钙和碳酸钠反应生成二氧化碳,是由于该反应的反应物均为固体,在高温下发生反应时,生成的二氧化碳气体脱离反应体系使反应得以进行,但这不能说明硅酸的酸性比碳酸强,酸性强弱的本质是酸电离出氢离子的难易程度。我们已学的复分解反应的规律,仅是适用于溶液里的反应,不能套用高温条件下物质之间的反应。

[问题探究]有关氢氟酸的反应可否在玻璃容器中进行?

[生]不能。玻璃中含有sio2,sio2 能与氢氟酸反应(4hf+sio2====sif4↑+2h2o),而使玻璃被腐蚀。

[展示一小块普通玻璃] [问]大家看,这是一块普通玻璃,当我们把若干块普通玻璃叠加,或从侧面看这块玻璃时,它都是绿色的。为什么?

[生]因为原料中混有二价铁的缘故。[展示一块红色玻璃,一块蓝色玻璃]

[问]它们和我刚才取的那块普通玻璃的颜色不一样,是什么造成了它们的这种差别呢? [师]很好。也就是说在制造玻璃的过程中,当我们加入某些金属氧化物时(如二氧化锰、二氧化锡等),会使玻璃呈现不同的颜色。

[问]请大家根据生活经验,说一下普通玻璃的优点和缺点是什么? [生甲]玻璃的透光性能好,但易碎,并且易伤人。

[生乙]玻璃的透明度高,比如可以让我们看见试管里或烧瓶里的反应,还可以看见商店橱窗里的东西。

[生丙]用玻璃制成的物品美观,但就是不结实,如窗户上的玻璃,很容易被打破。[生丁]玻璃不耐热,开水都能把它炸裂。„„

[师]大家说得都很好。也正是为了让玻璃“弃恶扬善”,玻璃专家们进行了深入的研究,并不断地制成有各种各样性能的特种玻璃。如石英玻璃、光学玻璃、玻璃纤维、钢化玻璃等。[投影展示]

几种玻璃的特性和用途 种类特性用途

普通玻璃在较高温度下易软化窗玻璃、玻璃瓶、玻璃杯等

石英玻璃膨胀系数小,耐酸碱,强度大,滤光化学仪器;高压水银灯、紫外灯等的灯壳;光导纤维、压电晶体等

光学玻璃透光性能好,有折光和色散性眼镜片;照相机、显微镜、望远镜用凹凸透镜等光学仪器

玻璃纤维耐腐蚀、不怕烧、不导电、不吸水、隔热、吸声、防虫蛀太空飞行员的衣服、玻璃钢等

钢化玻璃耐高温、耐腐蚀、强度大、质轻、抗震裂运动器材;微波通讯器材;汽车、火车窗玻璃等 [师](手取一根玻璃管)大家看,这是由普通玻璃做成的一根玻璃管,现在,我把它放在酒精喷灯上灼烧,请大家看发生的现象。

[演示实验]取一根玻璃管,置于燃着的酒精喷灯上,烧软后把玻璃管拉成两支尖嘴管。[问]大家看到了什么?

[生]玻璃受热、变软,可拉细。

[师]实验室里的胶头滴管就是这样制出来的。这说明普通玻璃在高温时易软化、变形。但如果我们在玻璃容器中进行的是高温下的化学反应,普通的玻璃仪器显然是不能满足要求的,这时我们可以用能承受较高温度的石英玻璃容器。石英玻璃的主要成分是二氧化硅,它的膨胀系数小,不怕温度的骤然变化,而且具有很高的化学稳定性,所以是一种制作高温容器的良好材料。

[讲述]钢化玻璃是将普通玻璃在电炉里加热软化后急速冷却而成的。其成分与普通玻璃一样,但经这样处理后,玻璃的内应力消失,机械强度增大,不易破碎。一旦破碎,碎块也没有尖锐的棱角,不易伤人,是一种安全玻璃。

玻璃纤维是由熔融玻璃拉成或吹成的纤维,是玻璃钢中的增强材料。玻璃钢,是一种复合材料,质轻而坚硬,机械强度可与钢材相比,因此得名。

光学玻璃又称铅玻璃,它与普通玻璃成分不相同,主要由硅酸钾、硅酸铅和石英组成。生产中对原料纯度要求高、不能含有氧化铁等杂质,熔制过程要严格控制工艺,并采取搅拌等措施,排净气泡,保证料液高度均匀,只有这样,才能使制成的玻璃质地均匀,有很好的折光性等光学性能。

有关这几种玻璃的特性和用途,请大家参看上面投影。

[问]看起来晶莹透明的玻璃是不是晶体呢?请大家思考后回答,说出判断的依据。[生甲]是。晶体都能反光,玻璃也能反光,所以是。

[生乙]是。因为玻璃是一个规则的形体,看起来也是亮晶晶的。[生丙]不是。晶体都有规则的几何形状,玻璃没有。[生丁]不是。晶体都有固定的熔点,而玻璃没有。„„

[师]好。看来大家都很爱动脑思考。事实上,玻璃不是晶体。因为晶体的外表特征是有一定的、整齐的、有规则的几何外形(当然,构成晶体的那个最小的单元是我们肉眼看不见的),它有固定的熔点。而玻璃是介于结晶态和无定形态之间的一种物质状态,我们把它叫做玻璃态。

它的结构特点是:它的粒子不像晶体那样有严格的空间排列,但又不像无定形体那样无规则排列,而是“短程有序、远程无序”。即从小范围来看,它有一定的晶型排列;从整体来看,却像无定形的物质那样是无晶形的排列规律。所以玻璃态物质没有一定的熔点,而是在某一温度范围内逐渐软化变为液态。

[过渡]上面我们学了水泥和玻璃。下面我们再来了解一下由粘土(主要成分是硅酸盐)做原料制成的产品——陶瓷。[2板书]3.陶瓷

[师]请同学们阅读教材上“陶瓷”这一部分内容,并了解以下知识。[投影展示]陶瓷

主要原料生产过程反应条件种类性能

[上表可由学生阅读课本后回答,教师填写]

粘土①混合 ②成型 ③干燥 ④烧结 ⑤冷却高温土器、陶器炻器、瓷器抗氧化、抗酸碱腐蚀耐高温、绝缘、易成型

[问]我国最为著名的陶器产地在什么地方?有什么之称? [生]江苏宜兴。有陶都之称。

[师]陶器的产生是人类发展史上的一块里程碑,是人类最早不用大自然的现成材料而制成的器具,制陶技术可以说是最古老的材料技术,是人类材料技术的发端。因此,恩格斯把陶器的出现作为新石器时代开始的标志。

我国是世界上最早生产陶器的国家。有黑陶、白陶、彩陶等多个品种。陕西临潼出土的秦始皇兵马俑,被人们称作“世界奇观”,它们就是在烧成的陶胎上进行彩绘而制成的,称为彩绘陶,其工艺水平令世人叹为观止。

制瓷器的要求比制陶器高,它需要纯净的粘土作原料,烧制温度也相对高一些。因此,瓷器比陶器瓷体白净,质地致密。

[问]我国素有“瓷都”之称的地方在哪里? [生]江西景德镇。

[师]对。景德镇所烧制的薄胎瓷器被誉为:“洁如玉、明如镜、薄如纸、声如磬。”可见有多么的精致了。

[问]对于一般烧制的陶瓷制品,有什么共同的缺陷呢? [生甲]表面比较粗糙,而且有不同程度的渗透性。[生乙]容易碰破而损坏![问]怎样弥补?

[生]烧制前在坯体表面涂上一层釉,使成品光滑,不渗水。[师举起一个搪瓷杯,上有破损]

[师]大家看,这个杯的外壳就是陶瓷,里面是铁,它的陶瓷表面破损后,露出了其庐山真面目——铁(呈褐色)。下面,我往这个杯里加酸,大家看有什么现象。[演示]在搪瓷杯里加稀盐酸,并使酸接触破损处。[请坐在前面的同学说一下观察到的现象]

[生]酸遇搪瓷,无现象;当酸接触破损处时有气泡产生。[问]大家知道这气泡是什么吗?怎么产生的?

[生]气泡是氢气。是酸与铁发生了反应而生成的。[问]这说明陶瓷有什么性质?起什么作用?

[生]说明陶瓷耐腐蚀,不和酸反应,但比较脆,易被碰损。在此起保护和装饰作用。[师]回答得很好。关于陶瓷,科学家们一直在探索着扬长避短的制作技术,并已取得了很大的进展和突破。下节课我们将介绍这方面的知识。

思考:在多年使用的厨房里,久未更换的玻璃往往失去光泽,严重的还会形成白色斑点,这种现象化学上叫做“碱析”,产生碱析的化学方程式为___________________。

[小结]本节课我们以水泥、玻璃、陶瓷为例,简单介绍了硅酸盐材料,它们均是以含硅物质为原料,经过一系列复杂的物理、化学变化而得到的产品。[布置作业]课本习题:

2、3 ●板书设计

第三节 无机非金属材料(第一课时)

一、硅酸盐材料 1.水泥 2.玻璃 3.陶瓷 ●教学说明

本节课在知识的理解上,并无难点。难的是如何真正激发学生的学习兴趣,并让其产生强烈的求知欲。如若单纯地让学生去自学这部分知识,学生很容易读懂,但日后的印象会如过眼烟云;若只是教师讲述,学生会有单调乏味之感。基于以上考虑,采取录像展示(展示的资料很容易得到,且可不拘一格)、实物展示、学生自学、归纳、教师激疑引导、实验问答等教学方法,以激活学生思维。如通过演示酸与搪瓷器具的反应,可让学生对陶瓷具有抗腐蚀性有较深的印象。另外,在课堂上还补充了一些课外知识,以扩大学生的知识面,让他们愉快地接受知识。

建议教师在平时要注意多搜集资料,以使课堂内容更加丰富、生动。

第二篇:无机非金属材料

绪论

1.在晶体结构上,某结合力主要包括离子键,共价键或离子共价键混合离子。由于这些化学键的特点,例如高的键能和强大的键极性等,赋予了这一大类材料以高熔点,高强度,耐磨损,高硬度,耐腐蚀及抗氧化的基本属性和宽广的导电性,导热性,透光性以及良好的铁电性,铁磁性和压电性等特殊性能,高温超导性也是新近在这类材料上发现的。

2.在化学组成上,随着无机新材料的发展,无机非金属材料已不局限于硅酸盐还包括其他含氧酸盐,氧化物,氮化物,碳与碳化物,硼化物,氟化物,硫系化合物,硅,锗,Ⅲ-V族及Ⅱ-VI族化合物等,其形态和形状也趋于多样化,复合材料,薄膜,纤维,单晶和非晶材料占有越来越重要的地位。

第一章 玻璃的结构 和性质 玻璃的结构

晶态:周期性,对称性,几何形态,质点排列,自限性,均一性,异向性,稳定性,远程有序。非晶态:进程有序,远程无序。玻璃的通性

1)各向同性

2)介稳性:

玻璃是由熔体急剧冷却而得,由于在冷却过程中粘度急剧增大,质点来不及形成晶体的有规则排列,系统的内能尚未处于最低值,从而处于介稳态,在一定的外界条件下,它们仍具有 自发转化为内能较低的晶体的趋势。

3)无固定熔点

4)性质变化的连续性和可逆性 无规则网络学说

1)玻璃结构与晶体一样,具有三位方向发展的连续无序网架形式,硅氧四面体为最小结构单位,但不象晶体那样,对称均匀地联结成空间网络(有序),而是相互不规则地联结在一起(无序),配位数小的结构团构成无限伸展的无序空间网络。)玻璃中的质点虽然不具有规则的格子 排列,但在大致固定的平衡位置上震动的玻璃网络中的正常离子数与晶体中的配位数 也应该近似。)网络外体的离子填充在网络结构空隙中,对于整体来说 是统计分布的,为了使网络结构

具有一定的稳定性,这些阳离子必须是半径大而电荷小的。

4)形成氧化物玻璃必须满足的四条规则: A 每个氧离子应该与不超过两个阳离子相联。

B 在中心阳离子周围的氧离子 配位数必须小于或等于4;

C 氧多面体相互共角而不共棱或共面。

D 每个多面体至少有三个顶角是共用的。

形成的氧多面体为三角体或四面体

RO2,R2O2,R2O5类型氧化物能满足这一条件,并以玻璃形式出现

简答题: 石英玻璃-碱硅玻璃-钠钙硅玻璃结构性能发生很大的变化,分析碱金属,碱土金属氧化物在其中的作用:

1)熔融石英玻璃其硅氧比值1:2与SiO2分子式相同,可以把它近似的看成是由硅氧网络形成的独立‘大分子’

2)如果在熔融石英玻璃中形成加入碱金属氧化物(如Na2O).就使原来的大分子发生解聚 作用,由于氧的比值增大,玻璃中每个氧已不可能都为两个硅原子所共用,开始出现非桥氧,使硅氧网络产生断裂,非桥氧的存在,使【SiO4

】四面体失去原有 完整性和对称性,结果使玻璃结构减弱,疏松,并导致一系列物理化学性质的变坏,而且碱金属含量越高,性能变差越 严重,因此,二元碱硅玻璃一般无使用价值

3)当在碱性二元玻璃中加入CaO时,性能变差情况大为改观,使玻璃结构和性能发生明显变化,主要表现 为使结构加强,从而表现为一系列物化性质的加强,从而使钠钙硅玻璃性能优良,CaO的这种作用,是由钙离子和钠离子半径相似,但电荷比钠离子大一倍,因此场强比钠离子大得多,具有强化玻璃结构和限制钠离子活动的作用

补网作用:使中间体氧化物全部或部分由6 配位变成4 配位的作用,主要是铝离子取代硅离子。硼氧反常性:

碱金属或碱土金属氧化物加入B203玻璃中,将产生硼氧四面体[B04],而形成硼酸盐玻璃。在一定范围内,碱金属氧化物提供的氧使硼氧三角体[B03]转变为完全由桥氧组成的硅氧四面体,导致B203玻璃从原来的两度空间的层状结构部分转变为三度空间的架状结构,从而加强了网络,使玻璃的各种物理性质与相同条件下的硅酸盐玻璃相比,相应地向着相反的方向变化。玻璃结构中的阳离子的分类

1)按元素与氧结合的单键能(即化合物分解能与配位数之商)的大小和能否生成玻璃,将氧化物分成:网络生成体氧化物,网络外体氧化物和中间体氧化物。2)网络生成体氧化物应满足以下的条件:

A 每个氧化物应与不超过两个阳离子相连;

B 在中心阳离子周围的 氧离子配位数必须小于或等于4;

C氧多面体相互共角而不共棱或共面;

D 每个多面体至少有三个顶角共用。3)这类氧化物主要有SiO2,B2O3,BO5,GeO2,As2O5等。网络外体或网络修饰体:某些氧化物不能单独生成玻璃,不参加网络而使其阳离子分布在四面体之间的空隙中,以保持网络中局部地区的电中性,因为他们的主要作用是提供额外的氧离子,从而改变网络,故称为网络外体或网络修饰体。如Li2O,Na2O,K2O,CaO,SrO,BaO等。

1)中间体氧化物:比碱金属和碱土金属化合价高而配位数小的阳离子,可以部分地参加网络结构,如BeO,MgO,ZnO, Al2O3等。各种氧化物在玻璃中的作用:

1)碱金属氧化物

A 碱金属氧化物加入到熔融石英玻璃何总,促使硅氧四面体间连接断裂,出现非桥氧,使玻璃结构疏松,导致一系列性能变化,但由于碱金属离子的断网作用使它具有了高温助熔,加速玻璃融化的性能。

B 混合碱效应:在二元碱硅玻璃中,当碱金属氧化物的总量不变,用 一种碱金属 氧化物取代另一种时,玻璃的性质不是呈直线变化的,而出现明显的极值。2)二价金属氧化物:

CaO是网络外体氧化物,Ca2+离子的配位数一般为6,有极化桥氧和减弱硅氧键的作用,CaO的引入可以降低玻璃的高温粘度,玻璃中CaO含量过多,一般会使玻璃的料性变短,脆性增大。

MgO在硅酸盐矿物中存在着两种配位状态(4或6),但多数位于八面体中,属于网络外体,在钠钙硅玻璃中,若以MgO取代CaO,将使玻璃结构疏松,导致玻璃的 密度,硬度下降,但却可以降低玻璃的析晶能力和调节玻璃的料性,含镁玻璃在水和碱液的作用下,易在表面形成硅酸盐薄膜,在一定条件下剥落进入溶液,产生脱片现象。

PbO 铅离子位八个氧离子所包围,其中四个氧离子与铅离子距离较远(0.429nm),另外四个较近(0.23nm).形成不对称配位铅离子外层的 惰性电子对,受较近的四个氧的排斥,推向另外四个氧离子的一边,因此在晶态 PbO中组成一种四方锥体[PbO4]的结构单元,一般 认为,在高铅玻璃中均存在这种四方锥体,它形成一种螺旋形的网络,这种网络使PbO-SiO2系统

具有很大的 玻璃形成区,同时也决定了PbO在硅酸盐熔体中的高度助熔性。2)其他金属氧化物:

玻璃中Al3+离子与在硅酸盐矿物中一样,有两种配位状态,在钠硅酸盐玻璃中,当Na2O/Al2O3大于1 时,Al3+均位于四面体中,小于1时,则作用为网络外体位于八面体中,当Al3+位于铝氧四面体[AlO4]中时,则与硅氧四面体组成了统一的网络,在一般的钠钙硅玻璃中,引入少量的Al2O3,Al3+就可以夺取非桥氧形成铝氧四面体,进入硅氧网络中,把由于Na+的引入而产生的断裂网络通过[AlO4]重新连接起来,使玻璃结 构趋向紧密,并使玻璃的许多性能得以改善,但它对玻璃的电学性能有不良影响,在硅酸样玻璃中,当以Al2O3取代SiO2时,介电损耗和导电率升高,故在真空玻璃中,一般不含或少含Al2O3.B2O3是玻璃形成氧化物,有良好的助熔性,可降低玻璃的高温粘度和提高玻璃的低温粘度,但使用B2O3时要注意硼反常现象。玻璃的生成规律及其相变

简答题: 怎样避免在降温过程中玻璃析晶?

为了避免玻璃析晶,关键是从动力学角度研究以多快速度冷却给定熔体,以避免出现可探测的晶体,卡曼认为:A 晶核生成速率。B 晶体生长速度起主要作用。随着典型玻璃熔体过冷度增加,粘度迅速增大,而成核速率和过冷度关系曲线,晶核生长速率与过冷关系曲线都是具有限量最大值,对典型玻璃熔体,其两个极大值所在的过冷度,分开越大时,越容易冷却成玻璃,因此成速率出现极大值时,熔体在此温度设有适宜的结晶条件,当 两个极大值重合在一个过冷度时,熔体即具有最大的成核速率,又具有最大的生长速率,熔体较易析出晶体而不形成玻璃。影响玻璃生成的因素:

1)热力学条件 2)动力学条件 3)结晶化学条件:

①键强---元素与氧结合的单键强度,负离子团[SiO4] 4-,[Si2O7] 6-

A 网络形成体单键强度大于334.9。

B中间体251.2~334.9。

C 网络外体(修饰体)小于251.2。

②键型---A 离子键化合物----离子,如NaCl.B 金属键物质—电子,正离子状态,无方向性。C 共价键化合物---分子结构---分子间范德华力。

D 离子键金属键---共价键过度时或极性过渡键具有离子共价的双重性质,形成玻璃的概率越大.极性共价键成分促使生成具有固定结构的配位多面体,构成进程有序性而离子成分促使配位多面体不按一定方向连接,造成不对称变形,构成远程无序的网络结构,形成玻璃的倾向大。

③熔体结构----[SiO4] 4-,[Si2O7] 6,[Si6O8]12-,[SiO3]2n-n,[Si4O14]6n-n。O/Si从2到4,聚合程度降低,粘度变小,结晶易,形成玻璃难。O/Si决定着负离子团的大小和聚合度。负离子团结构越大,越易形成玻璃。熔体和玻璃体的成核过程

1)均匀成核

定义:指在宏观均匀的玻璃中,在没有外来物质参与下相界、结构缺陷等无关的成核过程,又称为本征成核或自发成核。

当玻璃熔体处于过冷态时,由于热运动引起组成和结构上的起伏,一部分变成晶相。晶相内质点的有规则排列导致体积自由能减小。然而在新相产生的同时,又将在新生相和液相之间形成新的界面,引起界面自由能的增加,对成核造成势垒。当新相颗粒太小时,界面对体积的比例增大,整个体系自由能增大。当新相达到一定大小(临界值)时,界面对体积的比例就减小,系统的自由能减小,这时新生相就可能稳定成长。这种可能稳定成长的新相区域成为晶核。那些较小的不能稳定成长的新相区域成为晶胚。

2)非均匀成核

定义:依靠相界、晶界或基质的结构缺陷等不均匀部位而成核的过程,又称为非本征成核。晶体生长

晶体的生长速度随着过冷度的增大而增大。

影响结晶的因素主要有:

1)温度

当熔体从Tm冷却时,ΔT增大,成核和晶体生长的驱动力增大;与此同时,粘度上升,成核和晶体生长的阻力也增大。

2)粘度 当温度降低时(远在Tm点以下),粘度对质点扩散的阻碍作用限制着结晶速度,尤其是限制晶核长大的速度。

3)杂质 杂质的引入会促进结晶,杂质起成核作用,同时增加界面处的流动度,使晶核更快的长大。杂志往往富集在分相玻璃的一相中,富集到一定浓度时将促使这些微相由非晶相转变为晶相。4)界面能 固体的界面能越小,核的生长所需的能量越低,结晶速度越大。11 玻璃的分相

定义:玻璃在高温下为均匀的熔体,在冷却过程中或在一定温度下热处理时,由于内部质点迁移,某些组分分别浓集(偏聚),从而形成化学组成不同的两个相,此过程称为分相。玻璃的理论强度和实际强度

1)实际玻璃的抗折强度比理论强度小2~3个数量级,是由于实际玻璃的脆性和玻璃中存在有微裂纹及不均匀区所致。

2)提高玻璃机械强度的方法: 退火,钢化,表面处理与涂层,微晶化与其他材料成复合材料等。

钢化:均热后自然冷却,形成温度梯度内应力由粘滞流动而松弛;冷却到最后,温度梯度消失,松弛的应力保留为永久应力。

表面处理:膨胀系数小的涂层。

微晶化:析出细小晶体,分散应力,阻止裂纹扩散。

第二、三章 玻璃原料及配合料制备

玻璃辅助原料: 澄清剂,着色剂,脱色剂,氧化剂和还原剂,乳浊剂和其他原料。

玻璃熔制的综合结果是使隔着原料的化合物形成透明的玻璃液。玻璃熔制的五个阶段:

硅酸盐形成的阶段:玻璃形成的阶段;玻璃液的澄清阶段; 玻璃液的均化阶段;玻璃液的冷却阶段。硅酸盐形成阶段的七点变化:

多晶转变; 盐类分解; 生成低共融混合物; 形成复盐; 生成硅酸盐; 排出结晶水和吸附水; 固相熔融向液相转变。玻璃的形成

玻璃形成过程的速度实际上取决于石英砂粒的溶解扩散速度。

石英砂的分解扩散过程分为两步,首先是砂粒表面发生溶解,而后溶解的SiO2向外扩散 玻璃液中气体的三种状态:(1)可见气泡,(2)物理溶解的气体,(3)化学结合的气体。5 玻璃液的均化

玻璃液的均化包括对其化学均化和热均化两个方面的要求

1)定义:在玻璃形成阶段结束后,在玻璃液中,仍带有与主体玻璃化学成分不同的不均体,消除这种不均体的过程成为玻璃液的均化。

玻璃液的均化过程:

2)不均体的溶解与扩散的均化过程;玻璃液的对流均化过程;因气泡上升而引起的搅拌均化作用。玻璃液的冷却

产生二次气泡的原因:(1)硫酸盐的热分解;(2)物理溶解的气体析出;(3)玻璃中某些组分易产生二次气泡。玻璃的熔制制度:

温度制度,压力制度和气氛制度 坩埚窑中玻璃熔制的温度制度五个阶段:

加热熔窑;熔化;澄清与均化;冷却;成型 玻璃的浮法成型

定义:指熔窑熔融的玻璃液流入锡槽后在熔融金属锡液的表面上成型平板玻璃的方法。

金属锡液的优缺点: 1)锡中所含各种杂质都是组成玻璃的元素;

2)锡的密度大大高于玻璃的密度,有利于对玻璃托浮;

3)锡熔点远低于玻璃出锡槽口的温度,有利于保持玻璃的抛光面; 4)锡的导热率为玻璃的60~70倍,有利于玻璃版面温度的均匀等; 5)锡液的表面张力高于玻璃的表面张力,有利于玻璃的拉薄;

6)锡液有极低的粘度,这表明有良好的热对流的运动性能,这对均匀浮法表面温度有较大的影响。7)使用锡液作浮抛介质的主要缺点是Sn极易氧化为SnO和SnO2,它不利于玻璃的抛光,同时又是产生虹彩、沾锡、光畸变等玻璃缺陷的主要原因,为此采用保护气体。

第四章 玻璃的退火与淬火

玻璃的应力:

热应力、结构应力和机械应力

1)热应力:玻璃中由于 存在温差而产生的应力。

按其存在特点分为:暂时应力和永久应力。

暂时应力: 在温度低于应变点时,处于弹性变形温度范围内(即脆性状态)的玻璃在经受不均匀的温度变化时所产生的热应力,随着温度梯度的存在而存在,随温度梯度的消失而消失,这种应力成为暂时应力。

永久应力: 当玻璃内外温度 相等所残留的热应力

将一玻璃板加热到高于玻璃应变点以上的某一温度,待均热后板两面均匀自然冷却,经一定时间后玻璃中的温度场呈抛物线分布。玻璃外层为张应力而内层为压应力,由于应变点以上的玻璃具有粘弹性,即此时的玻璃为可塑状态,在受力后会产生位移和变形,使由温度梯度 所产生的内应力消失。这个过程成为应力松弛过程,这时的玻璃内外层虽存在着温度梯度但不存在应力。当玻璃冷却到应变点以下,玻璃已成为弹性体,以后的降温与应力变化与前述的产生暂时应力情况相同,待冷却到室温时,虽然消除了应变点以下产生的应力,但不能消除应变点以上所产生的应力,此时,应力方向恰好相反,即表面为压应力,内部为张应力,这种应力为永久应力。

结构应力:玻璃因化学组成不均导致结构上的不均而产生的应力。

机械应力: 由外力作用在玻璃上引起的应力,当外力除去时应力随之消失,此应力为机械应力。玻璃的退火

定义:为了消除玻璃中的永久应力,必须将玻璃加热到低于玻璃转变温度Tg附近的某一温度进行保温均热,以消除玻璃各部分的温度梯度,使应力松弛。

这个选定的温度成为退火温度。玻璃的淬火

定义:将玻璃制品家人到转变温度Tg以上50~60度,然后在冷却介质中(淬火介质)急速均匀冷却,在这一过程中玻璃的内层和表面将产生很大的温度梯度,由此引起的应力由于玻璃的粘滞流动,所以造成了有温度梯度而无应力的状态。

玻璃淬火后所产生的应力大小与淬火温度,冷却速度,玻璃的化学组成以及厚度等有直接关系。

第五章 玻璃的缺陷

通常所谓玻璃缺陷是指 玻璃体内存在的、引起玻璃体均匀性破坏的各种夹杂物,如 气泡、结石、条纹、节瘤等。

结石:是出现在玻璃中的结晶夹杂物。结石是玻璃制品中最严重的缺陷,它不仅 破坏了玻璃制品的外观和光学均一性,而且降低了制品的使用价值。

玻璃夹杂物(条纹和节瘤):玻璃主体内存在的异类玻璃夹杂物

第六章 建筑玻璃及其深加工

深加工的产品主要有: 钢化玻璃、夹层玻璃、中空玻璃、镀膜玻璃等。

微晶玻璃:把加工晶核剂(或不加晶核剂)的特定组成的玻璃在有控条件下进行晶化处理,使原单一的玻 璃形成了有微晶和玻璃相均匀分布的复合材料,称之为微晶玻璃。

微晶玻璃与传统玻璃不同,它是利用晶核剂或紫外辐射等方法使玻璃内形成晶核,再经过 热处理使晶核长大,成为一种受控结晶过程,形成玻璃与某些晶体共存的材料,能制成零膨胀,高强度及特定的电性质和机械性质的微晶玻璃。

夹层玻璃:是由两片或两片以上的玻璃用合成树脂胶片(是聚乙烯丁醛薄膜)粘结在一起而制成的一种安全玻璃。

为什么又叫安全玻璃? 由于透明树脂胶片的粘结作用使得玻璃保持良好的透明性外,玻璃体的抗冲击能力也得到提高。

第七章 陶瓷原料

陶瓷原料的分类:粘土,石英和长石。

可塑性:指粘土与适量的水混炼以后形成的泥团,可在外力的作用下产生变形但不开裂;并在外力除去后,仍能保持原有形状的性质。

触变性:指粘土泥浆或泥团受到振动或搅拌时,粘度降低而流动性增加,静置后渐恢复原状或泥料在放置一段时间后,在水分不变时泥料变稠和固化的性质。

石英在陶瓷生产中的作用:

1)是瘠性料,可降低可塑性,减少收缩变形,加快干燥;

2)在高温时可部分 溶于长石玻璃中,增加液相粘度,减小高温时的坯体变形; 3)未熔石英与莫来石一起可构成坯体骨架,增加强度;

4)在釉料中增加石英含量可提高釉的熔融温度和粘度,提高釉的耐磨性和抗化学腐蚀性。长石类原料对陶瓷的作用: 1)高温下熔融在乳白色玻璃,溶解石英颗粒和部分高岭土,分解物促进成瓷反应的进行--助熔作用。2)高温形成的玻璃具较大粘度,起到高温热塑作用和高温胶结作用,防止高温变形。

3)高温形成的玻璃在冷却时,不析晶,以透明玻璃体状态存在,增加瓷的透明度,提高光泽度,改善瓷的外观质量和使用性能。

4)极性物料可提高坯的疏水性和干燥速度。硅灰石 Ca[SiO3]或CaO.SiO2 无水

因本身不含有机物和结构水,干燥收缩和烧成收缩都很小,作为陶瓷原料有特殊的优良性能,故用途很广。其热膨胀系数小,适于快速烧成。烧成后,瓷坯中的针状硅灰石晶体交叉排列成网状,使制品的强度提高,并有抗热冲击性能高、介电损失小等优点。

第八章 配料计算及坯料制备

传统陶瓷的坯料组成:瓷器、炻器、精陶

区别: 瓷器有良好的色泽,一定的透明度和热稳定性,机械强度

炻器介于陶器和瓷器之间,于陶的区别是气孔率较低,是致密烧结;于瓷器的区别是坯体带色且无半透明性。如铺地砖,缸器,茶具。多孔性坯体结构,机械强度不高,且有吸湿膨胀性。如建筑釉面瓷砖和卫生器皿

其中瓷器分为三种:长石质瓷、骨灰质瓷、日用滑石质瓷。

第九章 成型

坯料在加入(或含有)液体(一般是水)后,可形成一种特殊状态,具有了锁需要的工艺性能。加入大量的 水(28%~~35%)可使 坯料颗粒形成稠厚的悬浮液、为注浆坯料;少量的水时,则形成能捏成团的粉料,在8%~15%时为水量干压坯料;3%~~7%之间为 干压坯料;水量适中时(18%~~25%)则形成可塑坯料。影响可塑性的因素:

1)液相含量与性质; 2)颗粒尺寸和形状; 3)矿物种类; 4)吸附阳离子 可塑成型工艺:

1)雕塑与拉坯; 2)旋压成型; 3)滚压成型; 4)挤压与车坯成型; 5)塑压成型; 6)注塑成型; 7)轧模成型 注浆成型工艺:

1)空心注浆; 2)实心注浆; 3)真空注浆; 4)离心注浆; 5)压力注浆 压制成型工艺:

1)干压或半干压成型 2)等静压成型

第十章 釉料制备及施釉 釉的分类:习惯以主要溶剂的名称命名如铅釉、石灰釉、长石釉等。

长石釉----釉式中的K2O+Na2O的摩尔数等于或少大于RO的摩尔数,长石釉的高温粘度大,烧成范围宽,硬度较大。各成分在釉料中的作用:

1)玻璃形成剂; 2)助溶剂; 3)乳浊剂; 4)着色剂; 5)其他辅助剂 釉料配方的总原则是--釉料必须适应于坯料。釉料配方的经验规律:

1)(SiO2+B2O3):(R2O+RO)=(1:1)~(3:1),这样不致使熔块温度太高而引起PbO,B22O3和碱性氧化物大量挥发; 2)在熔块中碱性金属氧化物与碱土金属氧化物之比应小于1;

3)含硼熔块中,SiO2/B2O3应在2以上; 4)熔块中Al2O3的摩尔数应小于0.2.4 坯釉中间层的形成与作用

由于坯釉化学组成上的差异,烧釉时釉的某些成分渗透到坯体的表层中,坯体的某些成分也会扩散到釉中,熔解到釉中。通过熔解与扩散的作用,使接触带的化学组成和物理性质介于坯体与釉层之间,结果形成中间层。具体地说,该层吸收了坯体中的Al2O3,SiO2等成分,又吸收了釉料中的碱性氧化物及B2O3等。它对调整坯釉之间的差别、缓和釉层中应力、改善 坯釉的结合性能起一定的作用。釉的熔融温度范围

化学组成对熔制性能的影响主要取决于釉式中的Al2O3, SiO2含量的增加,釉的成熟温度相应提高,而Al2O3的贡献大于SiO2..碱金属和金土金属氧化物作为熔剂 可降低釉的熔融温度。Li2O,Na2O,K2O,PbO和B2O3都是强助溶剂,又称软熔剂,在低温下起助熔作用。而CaO,MgO,ZnO 等,主要在较高温度下发挥熔剂作用而成硬熔剂。坯和釉的适应性

坯釉适应性是指熔融性能良好的釉熔体,冷却后与坯体紧密结合成完美的整体,不开裂,不剥落的能力。

影响坯、釉适应性的因素主要有四个方面: 1)热膨胀系数对坯、釉适应性的影响

因釉和坯是紧密联系着的,对釉的要求是釉熔体在冷却后能与坯体很好的结合,既不开裂也不剥落,为此要求坯和釉的热膨胀性系数相适应。一般要求釉的热膨胀系数略小于坯。2)中间层对坯、釉适应性的影响

中间层可促使坯釉间的热应力均匀。发育良好的中间层可填满坯体表面的隙缝,减弱坯釉间的应力,增大制品的机械强度。

3)釉的弹性、抗张强度对坯、釉适应性的影响

具有较高弹性(即弹性模量较小)的釉能补偿坯、釉接触层中形变差所产生的应力和机械作用所产生的应 变,即使坯、釉热膨胀系数相差较大,釉层也不一定开裂、剥落。釉的抗张强度高,抗釉裂的能力就强,坯釉适应性就好。化学组成与热膨胀系数、弹性模量、抗张强度三者间的关系较复杂,难以同时满足这三方面的要求,应在考虑热膨胀系数的前提下使釉的抗张强度较高,弹性较好为佳。4)釉层厚度对坯、釉适应性的影响

薄釉层在煅烧时组分的改变比厚釉层大,釉的热膨胀系数降低得多,而且中间层相对 厚度增加,有利于提高釉中的压力,有利于提高釉适应性。对于厚釉层,坯、釉中间层厚度相对降低,因而不足以缓和两者之间因热膨胀 系数差异而出现的有害应力,不利于坯釉适应性。

釉层厚度对于釉面外观质量有直接影响,釉层厚会加重中间层的负担,易造成釉面开裂及其它缺陷,而釉层过薄则易发生于釉想象,一般釉层通常小于0.3mm或通过实验来确定。7 基本施釉的方法有浸釉、烧釉和喷釉。

发展中的施釉方法:流化床施釉、热喷施釉、干压施釉。

第十一章 干燥 坯体在干燥过程中变化的主要特征是随干燥时间的延长,坯体温度升高,含水率降低,体积收缩;气孔率提高,强度增加。影响干燥速度的因素及其作用

1)坯料的性质 粘土的可塑性越强,加入量越多,颗粒越细,干燥速度就越难提高;瘠性物料越多,颗粒越粗,越有利于提高干燥速度。

2)坯体形状、大小和厚度 形状复杂,体大壁厚的坯体在干燥时易产生收缩应力,故其干燥速度应加以控制,不宜太快。

3)坯体温度 坯体温度高,水的粘度小,有利于水分表面移动。

4)干燥介质的性质 干燥介质温度越高,湿度越小,则吸收水分的能力越大。增大干燥介质速度,减小边界层的厚度,增大对流传质系数,则可加快干燥速度。

5)使热扩散与湿扩散的方向一致 坯体中水分的内扩散包括湿扩散和热扩散。湿扩散是坯体内部由于存在湿度梯度引起的水分移动,其方向由坯体内部指向坯体外部;热扩散是坯体内部由于存在温度梯度而使水分移动,其方向由坯体表面指向坯体中心。当温度梯度与湿度梯度方向一致时会显著加快内扩散速度。

第十二章 烧成 烧成过程中的物理化学变化

1)低温阶段(室温~300度)

低温阶段也成坯体水分蒸发期。主要是排除在干燥过程中没有除掉的残余水分。随水分的 排除,组成坯体的固体颗粒逐渐靠拢,坯体发生少量收缩哦,气孔率增加。2)中温阶段(300~950度)

坯体内部发生较复杂的物理化学变化,瓷坯中所含有机物、碳酸盐、硫酸盐及铁的化学物等,大多要在此阶段发生氧化与分解,此外还伴随有晶型转变,结构水排除和一些物理变化。

坯体中存在的碳素及有机物在600度以上开始氧化分解,这类反应一直要进行到高温。碳素、硫化物及有机物必须在本阶段氧化,产生的气体必须完全排除掉,不然会引起坯体起泡。3)高温阶段(950度~~最高烧成温度)

高温阶段也称为玻化成瓷期,是烧成过程中温度最高的阶段。在本阶段坯体开始烧结,釉层开始融化。由于各地陶瓷制品晶胚、釉组成和性能的不同,对烧成温度和烧成气氛的要求也不相同。

弱还原阶段:在此阶段,由于熔融长石和其他低共融物形成的液相大量增加液相的表面张力作用,使坯体颗粒重新排列紧密,使颗粒相互胶结并填充空隙,颗粒间距缩小,坯体逐渐致密。同时促进莫来石的生成和发育,降低烧成温度,促进烧结。莫来石晶体长大并 形成‘骨架’,坯体强度增大。2 烧成制度包括温度制度、气氛制度和压力制度。气氛的作用:

1)气氛对陶瓷坯体过烧膨胀的影响

瓷石-高岭土瓷坯在还原气氛中过烧,产生的膨胀比在氧化气氛小得多;高岭土-长石-石英-膨润土瓷坯却在还原气氛下的过烧膨胀较大。2)气氛对坯体的收缩和烧结的影响

二者在还原气氛中的烧结温度都比在氧化气氛中低,随含铁量的减少而减小。瓷石质坯体在还原气氛中的收缩大,长石和膨润土坯则相反。

3)气氛对坯的颜色和透光性以及釉层质量的影响 A 影响铁、钛的价数

氧化焰烧成产生胶态Fe2O3而显黄色,还原焰则形成FeO显淡青色。含钛坯料应避免还原焰,因为其会使坯体颜色加深,而失去增白作用。

B 使SiO2和CO还原 SiO2经还原分解作用,生成单质硅,产生黑斑;CO则会分解出C而产生烟熏,也可产生釉泡。瓷器的烧成缺陷: 记五个

开裂;变形;气泡; 毛孔和桔釉; 色黄、火刺、落渣、斑点、烟熏; 生烧和过烧; 釉裂(惊釉); 釉缕与缺釉。

第十四章 气硬性胶凝材料 石膏的脱水转变图 P170-图14-2 2 石膏浆体的硬化

石膏哦浆体硬化并形成具有强度的人造石,一般认为其结构变化经历两个阶段,即凝聚结构形成阶段和结晶结构网的形成和发展阶段。在凝聚结构形成阶段,石膏浆体中的微粒彼此之间存在一个薄膜,粒子之间通过水膜以范德华分子引力互相作用,仅具有低的强度,这种结构具有触变复原的特性。在结晶结构网的形成和发展阶段,水化物晶粒已大量形成,结晶不断长大,且晶粒之间相互接触和连生,使整个石膏浆体形成一个结晶结构网,具有较高的强度,并且不再具有触变复原的特点。

尤为指出的是,石膏浆体在其自身硬化过程中,存在着结构的形成和结构的破坏这一对矛盾,其影响因素是多方面的,但是最本质的因素是与过饱和度有关。过饱和度较高时液相中形成的晶核数量多,晶粒细小,因而产生的结晶接触点多,容易形成结构网,反之,过饱和度较低则液相中形成的晶核数量少,晶粒粗大,因而结晶接触点也较少,形成同等结晶结构网所消耗的水化物较多。在初始结构形成以后,水化物继续生成,有利于结晶结构网的密实强化。但是,当达到某一限度值后,若过饱和度仍然过大,水化物势必会继续增加,就会对已形成的结晶结构网产生一种内应力(成为结晶应力),当结晶应力大于结构所能承受的限度时,就会导致结构破坏。此外,在结晶接触点的区段,晶格不可避免地发生歪曲和变形,因此,它与规则晶体相比较,具有较高的溶解度。所以,在潮湿条件下,产生接触点的溶解和较大晶体的再结晶,也会明显地影响石膏硬化浆体的结构强度。实际生产中,应注意控制石膏的质量和细度、养护温度、水灰比以及外加剂的 种类和掺量,从而保证石膏制品的质量。

3石灰浆体的硬化: 干燥硬化和碳化硬化。

第十五章 硅酸盐水泥 煅烧过程中的物理和化学变化

1)干燥和脱水; 2)碳酸盐分解; 3)固相反应; 4)孰料烧结; 5)孰料冷却。水泥孰料中各种氧化物的作用;1)CaO.CaO是水泥孰料的主要成分。作用:与酸性氧化物作用,生成C2S,C3S,C3A,C4AF等孰料矿物,其中C3S是由CaO与C2S作用后形成的,因此CaO的含量会直接影响到C3S的含量。CaO含量过少,生成的C3S就少; 若CaO过量,会产生游离CaO,使水泥的安定性不良。一般含量在62~68%。

2)SiO2.SiO2也是水泥的主要成分之一,其含量决定水泥孰料中CaSiO3矿物的数量。当CaO含量一定时,SiO2的含量影响C3S和C2S的相对含量。SiO2含量较高时,C3S的生成量减少,其含量一般在20~24%。

3)Al2O3,Fe2O3.与CaO作用,生成C3A,C4AF.在CaO-Al2O3-Fe2O3组成中,首先是CaO+ Al2O3形成C3A,随后C3A+ Fe2O3生成C4AF.只有Fe2O3及时作用完了,才有C3A的存在,所以配比应考虑Al2O3/ Fe2O3比。4)MgO.MgO超过一定含量时,会以方镁石的形式存在,使水泥安定性不良。水泥孰料的组成:

1)硅酸三钙

A矿:硅酸三钙并不以纯的形式存在,而是含有少量氧化镁,氧化铝等形成的固溶体。

硅酸三钙加水调和后,凝结时间正常。它水化较快,粒径为40μm~45μm的硅酸三钙颗粒,加水后28D其水化程度可达到70%左右。所以硅酸三钙强度发展比较快,早期强度较高,且强度增进率较大,28D强度可以达到其一年强度的70%~80%。但硅酸三钙水化热较高,抗水性较差,且孰料中硅酸三钙含量过高时,会给煅烧带来困难,往往使孰料中游离氧化钙增高,从而降低水泥强度,甚至影响水泥安定性。2)硅酸二钙

B矿:以固熔有少量氧化物的β-C2S的形式存在的硅酸二钙。

贝利特水化较慢,至28D 龄期仅水化20%左右,凝结硬化缓慢,早期强度较低,但28D以后,强度仍能较快增长,在一年后,可以赶上阿里特。贝利特水化热较小,抗水性较好,因而对大体积工程或处于一定侵蚀环境下的工程用水泥,适量提高贝利特含量,降低阿里特含量是有利的。3)中间相

填充在阿里特,贝利特之间的铝酸盐,铁酸盐,组成不定的玻璃体和含碱化合物等成为中间相。

A.铝酸钙:铝酸三钙水化迅速,放热多,凝结很快,如不加石膏等缓凝剂,易使水泥急凝。铝酸三钙硬化也很快,它的强度3天内就大部分发挥出来;故其早期强度较高,但绝对值不高,以后几乎不再增大,甚至倒缩。铝酸三钙的干缩变形大,抗硫酸盐性能差。

B.铁铝酸四钙的水化速度在早期介于铝酸三钙与硅酸三钙之间,但随后的发展不如硅酸三钙。它的强度早期发展较快,后期还能不断增长,类似于硅酸二钙,才利特(C矿)的抗冲击性能和抗硫酸盐性能较好,但有一定的水硬性。

4)游离氧化钙和方镁石 4 孰料的率值

率值作为生产控制的一种指标,可以比较方便地表示化学成分和矿物组成之间的关系,明确地表示对水泥孰料的性能和煅烧的影响。

1)硅率:表示孰料中SiO2与Al2O3,Fe2O3之和的质量比值,以SM或n表示。

硅率表达了水泥孰料矿物中硅酸盐矿物与熔剂性矿物C3A+C4AF)之间的数量对比关系。硅率越大,则硅酸盐矿物含量越高,熔剂性矿物含量越少,煅烧过程中出现的液相含量越小,所要求的烧成温度越高;但硅率过小,则煅烧过程中容易形成孰料大块甚至结圈。通常硅率控制在1.7~2.7之间。

2)铝率:又称铁率,表示孰料中Al2O3和Fe2O3含量的质量比,以IM或P表示。

若孰料中Al2O3和Fe2O3的总含量已确定,那么铝率表示C3A和C4AF的相对含量。3)石灰饱和系数

在水泥孰料中,氧化钙总是与酸性氧化物Al2O3,Fe2O3饱和生成C3A,C4AF,在生成上述矿物后,所余下的CaO与使SiO2饱和形成C3S所需的CaO的比值成为石灰饱和系数,以KH表示。它表示SiO2与CaO 饱和形成C3S的程度。C3S的水化

C3S的水化作用、产物以及所形成的结构对硬化水泥浆体的性能起主导作用。P198-图15-4说明C3S的水化过程五个阶段。表15-10.6 硅酸盐水泥的水化(三个阶段):

1)钙矾石形成期 C3A率先水化,在石膏存在条件下,迅速形成钙矾石,是导致第一放热峰的主要因素。2)C3S水化期 C3S开始迅速水化,大量放热,形成第二放热峰。有时会有第三放热峰或在第二放热峰上,出现一个‘峰肩’,一般认为是由于钙矾石转化成单硫型水化硫铝(铁)酸钙而引起的,当然,C2S与铁相亦以不同程度参与了这两个阶段的反应,生成相应的 水化产物。

3)结构形成和发展期 放热速率很低,趋于稳定。随着各种水化产物的增多,填入原先由水所占据的空间,再逐渐连接,相互交织,发展成硬化的浆体结构。水化速度 :常以单位时间内的水化程度或水化深度来表示。8 水泥浆体的水化硬化:

水泥的水化反应在开始主要为化学反应所控制;当水泥颗粒四周形成较为完整的水化物膜层后,反应历程又受到离子通过水化产物层时扩散速率的影响。随着水化产物层的不断增厚,离子扩散速率即成水化历程动力学行为的决定性因素。在所生成的水化产物中,有许多是属于胶体尺寸的晶体。随着水化反应的不断进行,各种水化产物逐渐填满原来由水所占据的空间,固体粒子 逐渐接近。由于钙矾石针、棒状晶体的相互搭接穿插,特别是大量箔片 状、纤维状C-S-H的交叉攀附,从而使原先分散的水泥颗粒以及水化产物连结起来,够长一个三维空间牢固结合、密实的整体。孔分布及总孔隙率

在水化过程中,水化产物的体积要大于孰料矿物的体积。据计算,每1cm³的水泥水化后约需占据2.2cm³的空间。即约45%的水化产物处于水泥颗粒原来的周界之内,成为内部水化产物;另有55% 则为外部水化产物,占据着原来冲水的空间。这样,随着水化过程的进展,原来冲水的空间减少,而没有被水化产物填充的空间,则逐渐被分割成形状极不规则的毛细孔。另外,在C-S-H凝胶所占据的空间内还存在着孔,尺寸极为细小,用扫描电镜也难以分辨。

一般在水化24h以后,硬化浆体中绝大部分(70~80%)的孔已经在100nm以下。随着水化过长的进展,孔径小于10nm,即凝胶孔的数量由于水化产物的增多而增加,毛细孔则逐渐填充减小,总的孔隙率则相应降低。凝结速度

从矿物组成后,铝酸三钙水化最为迅速,硅酸三钙水化也快,数量也多,因而这两种矿物与凝结速度的关系最为密切。强度及影响因素: 1)浆体组成和强度的关系; 2)密实度和强度的关系; 3)温度和压力对强度的影响 环境介质的侵蚀

对水泥侵蚀的环境介质主要有:淡水、酸和酸性水、硫酸盐溶液和碱溶液等。其侵蚀作用可以概括为:溶解浸析、离子交换以及膨胀性产物等三种形式。

第十六章 掺混合材料的水泥 水泥混合材料

常用的激发剂有两类:碱性激发剂(石灰或水化时能析出Ca(OH)2的 硅酸盐水泥孰料)和硫酸盐激发剂(二水石膏、半水石膏、无水石膏或以CaSO4为主要成分的化工废渣,如磷石膏、氟石膏等),起作用机理如下: 碱性激发剂的Ca(OH)2与活性混合材料中所含呈活性状态的SiO2和Al2O3发生化学反应,发生水化硅酸钙和水化铝酸钙。在同时有硫酸盐激发剂存在的条件下,石膏与活性Al2O3化合,生成水化硫铝酸钙。矿渣水泥的水化硬化过程

矿渣水泥调水后,首先是 孰料矿物与水作用,生成水化硅酸盐,水化铝酸钙、氢氧化钙、水化硫(铁)铝酸钙等。还可能生成水化铝硅酸钙(C2ASH3)等水化产物。因此,矿渣水泥早期硬化速度就较慢。矿渣水泥的性质和用途:矿渣水泥早期强度低,后期强度可赶上甚至超过硅酸盐水泥。

第十七章 其他品种水泥

高铝水泥的水化,主要是铝酸一钙的水化,其水化产物与温度关系极大。2 膨胀水泥:是指在水化过程中,由于生成膨胀性水泥产物,使水泥在硬化后体积不收缩或膨胀的水泥。由强度组分和膨胀组分组成。

铝酸盐自应力水泥

铝酸盐自应力水泥加水拌和后,高铝水泥中的CA和CA2等铝酸盐矿物与石膏进行水化。

在水化形成钙矾石的同时,会析出相当数量的氢氧化铝(AH3)凝胶,不但有效地增进了水泥石的密实性,而且在钙矾石晶体生长、膨胀过程中,起着极为重要的塑性衬垫作用,使水泥石在不断增高强度的情况下,具有较大的变形能力。又由于钙矾石析晶时的过饱和度较小,生成的钙矾石就比较分散,而且分布均匀,结晶压力不会过分集中,对水泥石结构的破坏就相对较小。因此,可以任务钙矾石和氢氧化铝凝胶共同构成了强度因素和膨胀因素。

第十八章 耐火材料的组成、结构和性能 耐火材料

定义: 是由多种不同化学成分及不同结构矿物组成的非均质体。

耐火材料的若干性质取决于其中的物相组成、分布和各相的特性。

1)化学组成: 是耐火材料的基本特征。为了抵抗高温作用,必须选择高熔点化合物。2)矿物组成

耐火材料一般是多相组成体,其矿物相可分为结晶相和玻璃相两类,又可分为主晶相和基质。主晶相是构成耐火材料的主题,一般来说,主晶相是熔点较高的晶体,其性质、数量及结合状态决定制品性质。基质又称为结合相,是填充在主晶相之间的结晶矿物和玻璃相。其含量不多,但对制品的某些性质影响极大,是制品使用过程中容易损坏的薄弱环节。耐火材料中气孔可分为三类:(1)封闭气孔;(2)开口气孔;(3)贯通气孔 高温蠕变性: 在高温条件下,承受应力作用的耐火制品随时间变化而发生的等温变形 4 抗热震性

耐火材料对于急热急冷式的温度变动的抵抗能力较抗热震性,又称为抗温度急变性、耐火热崩裂性、耐热冲击性、热震稳定性、热稳定性、耐急冷急热性等。

第十九章 耐火材料生产工艺 陶瓷结合:主晶相间低熔点的硅酸盐非晶质和晶质联结在一起而形成的结合较陶瓷结合 2 化学结合

化学结合指耐火材料制品中由化学结合剂形成的结合,即加入少量结合物质,在低于烧结温度的条件下,发生一系列的化学反应使制品硬化而形成的结合。直接结合

由耐火主晶相直接接触所产生的一种结合方式称之为直接结合,它既不同于化学结合,也不属于陶瓷结合。

第三篇:无机非金属主角硅教案

第一节 无机非金属材料的主角——硅

教材分析:

硅是带来人类文明的重要元素之一,硅及其化合物是元素化合物知识的重要基础知识。本节内容不仅为形成化学基本观念提供感性基础,也为了解化学与生活,化学与社会发展,化学与技术进步之间的密切关系提供了丰富的素材。

本节的主要内容有硅在自然界中的存在形式、二氧化硅的性质、硅酸盐的性质、硅及化合物的用途。在教学中可采用碳和硅(同一主族相邻的两种元素)进行对比,突出它们的相似性与不同性。另外多运用日常生活中的事例进行教学,联系生产生活的实际,充分利用实物、模型、彩图、实物照片等形式,增强教学的直观行,激发学生的学习兴趣,培养学生热爱科学的情感。教学目标:

知识与技能

1、了解硅的重要化合物的主要性质,认识硅及其化合物的主要用途。

2、联系生产生活实际,培养学生对知识的迁移能力。

过程与方法

1、采用对比的方法,联系碳、二氧化碳大等学生已有的知识、经验来介绍硅、二氧化硅等新知识。

2、运用日常生活中事例进行教学,增强教学的直观性。

科技的象征。

[师]既然硅这么重要,那么他是如何存在,有些什么性质呢?

[板书]§4-1无机非金属材料的主角——硅 [师]主角,我们足以看出硅的地位。我们看课本P46 图3-1,硅在地壳中的含量居第二,仅次与氧。

硅的氧化物及硅酸盐构成了地壳中大部分的岩石、沙子和土壤、约占地壳总量的90%以上。[学生活动]看图4-1 [师]大家在元素周期表中找到硅,并且写出硅和碳的原子结构示意图。[学生活动] C

Si

[师]它们最外层均为四个电子,既不容易得到也不容易失去,性质稳定。但他们却是不可以忽视的:碳--统治了有机界:碳是构成有机物的主要元素;硅—统治了无机矿物界:硅是构成岩石与许多矿物的基本元素。

下面我们的学习就围绕着碳和硅的相似性进行学习。[学生活动]回顾碳的相关知识

存在酸性氧化物

弱酸

性质

[学生活动] [归纳、总结、板书] ① 物理性质:熔点高、硬度大 ② 用途:建筑材料、饰品、工艺品 ③ 化学性质:稳定性好

[过渡]下面我们一起来看看SiO2的化学性质,玻璃的主要成分是二氧化硅和硅酸盐,我们通过其性质,来看SiO2的性质。

[师]我们可以用玻璃瓶来装试剂:酸、碱、盐,这可以看出其化学性质稳定,不能够跟一般的酸发生反应,除HF外。[板书]a、不与酸反应,氢氟酸除外

SiO2+4HF=SiF4↑+2H2O

用途:可以在玻璃上雕刻花纹等

[师]因为HF酸可以和SiO2反应,所以HF的保存就不能使用玻璃瓶,而用塑料或橡胶瓶,我们可以用这个性质在玻璃上雕刻花纹,量器上雕刻刻度等。

[展示]装有NaOH的试剂瓶

[思考]一般的试剂瓶都使用玻璃瓶塞,而这个试剂瓶使用的是橡胶塞,为什么? [思考、讨论] [总结]我们开始将CO2和SiO2比较,CO2是酸性氧化物,SiO2也是酸性氧化物,所以其具有酸性氧化物的通性,即能与碱、碱性氧化物反应。

制取、用途。需要重点掌握二氧化硅的性质和硅酸的制取。

板书设计:

§4-1无机非金属材料的主角——硅

1、二氧化硅

SiO2 ① 物理性质:熔点高、硬度大 ② 用途:建筑材料、饰品、工艺品 ③ 化学性质:稳定性好

a、不与酸反应,氢氟酸除外

SiO2+4HF=SiF4↑+2H2O

用途:可以在玻璃上雕刻花纹等

b、与碱性氧化物反应

SiO2CaO  CaSiOC、与碱反应

SiO2+2NaOH=Na2SiO3+H2O

2、硅酸

实验过程:

现象:红色消失,生成白色凝胶

结论:硅酸钠转化为硅酸

反应:Na2SiO3+2HCl=H2SiO3(胶体)+2NaCl

高温

第四篇:第四章:无机非金属材料.

材料导论 第四章

第四章:无机非金属材料 本章主要内容

无机非金属材料概论

结构陶瓷材料

功能陶瓷材料

传统日用、建筑材料 什么是无机非金属材料

金属材料和有机高分子材料以外的固体材料通称为无机非金属材 料。

主要特性:

熔点高、硬度高、化学稳定性好、耐高温、耐腐蚀、耐磨损、耐氧 化、弹性模量大、强度高。一般为脆性材料

陶瓷材料的物质结构 陶瓷材料的结合键

陶瓷材料的组成相的结合键为离子键(MgO、Al2O3)、共价键(金 刚石、Si3N4)以及离子键与共价键的混合键

以离子键结合的晶体称为离子晶体。离子晶体在陶瓷材料中占有很 重要的地位。它具有强度高、硬度高、熔点高、等特点。但这样的 晶体脆性大,无延展性,热膨胀系数小,固态时绝缘,但熔融态可 导电等特点。金属氧化物晶体主要以离子键结合,一般为透明体。以共价键结合的晶体称为共价晶体。共价晶体具有方向性和饱和性,因而共价键晶体的原子堆积密度较低。共价键晶体具有强度高、硬 度高、熔点高、结构稳定等特点。但它脆性大,无延展性,热膨胀 系数小,固态、熔融态时都绝缘。最硬的金刚石、SiC、Si3N4、BN 等材料都属于共价晶体。

陶瓷材料的相组成 晶体相

晶体相是陶瓷材料最主要的组成相,主要是某些固溶体或化合物,其结构、形态、数量及分布决定了陶瓷材料的特性和应用。晶体相 又分为主晶相、次晶相和第三相。陶瓷中晶体相主要有含氧酸盐(硅 酸盐、钛酸盐等)、氧化物(MgO、Al2O3)、非氧化物(SiC,Si3N4)等。

硅氧四面体是硅酸盐陶瓷中最基本的结构单元。

材料导论 第四章

玻璃相

玻璃相是陶瓷材料中原子不规则排列的组成部分,其结构类似于玻 璃。

玻璃相的作用是:将分散的晶体相粘结起来,填充晶体之间的空隙,提高材料的致密度;降低烧成温度,加快烧结过程;阻止晶体转变、抑止晶粒长大。

玻璃相对陶瓷强度、介电常数、耐热性能是不利的。气相(气孔)

陶瓷中气孔主要是坯体各成分在加热过程中单独或互相发生物理、化学作用所生成的空隙。这些空隙可由玻璃相来填充,还有少部分 残留下来形成气孔。

气孔对陶瓷的性能是不利的。它降低材料的强度,是造成裂纹的根 源。

陶瓷材料的晶体缺陷 点缺陷

陶瓷材料晶体中存在的置换原子、间隙原子和空位等缺陷称之为点 缺陷。陶瓷材料的很多性质如导电性与点缺陷有直接关系。此外,陶瓷材料的烧结、扩散等物理化学过程也与点缺陷有关。线缺陷

位错是陶瓷材料晶体中存在线缺陷。陶瓷材料中位错形成所需要的 能量较大,因此,不易形成位错。陶瓷材料中位错密度很低。

陶瓷材料主要是离子键和共价键。这两种结合键造成位错的可动性 降低。当位错滑移事,离子键中同号离子相斥,导致离子键断裂; 而共价键的方向性和饱和性,具有确定的键长和键角,位错的滑移 也会导致共价键的破断。

面缺陷

陶瓷材料一般是多晶材料。多晶材料中存在的晶界和亚晶界就是陶 瓷材料中的面缺陷。

我们知道晶粒细化可以提高材料的强度。晶界对金属材料和陶瓷材 料强度的提高作用机理是不同的。对金属材料来说,晶界阻碍位错 的运动,从而强化了材料;而对陶瓷材料来说,利用晶界两侧晶粒 取向的不同来阻止裂纹的扩展,提高强度 陶瓷材料的性能特点 力学性能 硬度

陶瓷的硬度很高,多为1000Hv~1500Hv(普通淬火钢的硬度500~ 800Hv)。陶瓷硬度高的原因是离子晶体中离子堆积密度大、以及共 价晶体中电子云的重叠程度高引起的。刚度

陶瓷的刚度很高。刚度是由弹性模量衡量的,而弹性模量又反映其 化学键的键能。离子键和共价键的键能都要高于金属键,因此陶瓷 材料的弹性模量要高于金属材料。强度

陶瓷材料的强度取决于键的结合力,理论强度很高。但陶瓷中由于

材料导论 第四章

组织的不均匀性,内部杂质和各种缺陷的存在,使得陶瓷材料的实 际强度要比理论强度低100多倍。

陶瓷材料的强度也受晶粒大小的影响。晶粒越细,强度越高。此外,陶瓷材料一般具有优于金属材料的高温强度,高温抗蠕变能力强,且有很高的抗氧化性。常用于高温材料。塑性与韧性

陶瓷材料的塑性和韧性较低,这是陶瓷最大的弱点。陶瓷材料受到 载荷时在不发生塑性变形的情况下,就发生断裂。断裂是裂纹形成 和扩展的过程。陶瓷内部和表面所产生的微裂纹,由于裂纹尖端的 应力集中,内部裂纹在受到外应力时扩展很快,这是导致陶瓷材料 断裂的根本原因。热学性能

熔点陶瓷材料由离子键和共价键结合,因此具有较高的熔点。热容

陶瓷材料在低温下热容小,在高温下热容增大。热膨胀

陶瓷材料的热膨胀系数小,这是由晶体结构和化学键决定的。一般为 10-5~10-6/K。陶瓷材料加工方法

配料——成形——煅烧 结构陶瓷材料 结构陶瓷的种类

氧化物结构陶瓷

炭化物结构陶瓷

氮化物结构陶瓷 氧化物结构陶瓷

特点:化学稳定性好、抗氧化性强、熔融温度高、高温强度高。Al2O3陶瓷

Al2O3陶瓷又称高铝陶瓷,主要成分是Al2O3和SiO2。主晶相为刚 玉(α-Al2O3),随着SiO2质量百分数的增加,还出现莫来石和玻 璃相。根据陶瓷坯中主晶相的不同,分为刚玉瓷、刚玉-莫来石瓷 和莫来石瓷。Al2O3有三中结晶形态,即α、β、γ型。α型是高温 型,而γ型是低温型。其中刚玉瓷的性能最佳 Al2O3陶瓷的性能及应用

1。强度高

2。硬度高:机械加工磨料、磨具、切削工具等

3。熔点高、抗腐蚀:耐火材料、炉管、热电偶保护套等

4。化学稳定性好:坩埚、人体关节、人工骨骼

5。电绝缘性好:基板、火化塞、电路外壳

6。光学性能好:制成透光材料、微波整流罩窗口、激光振荡元件等 ZrO2陶瓷

ZrO2陶瓷有三种晶型。常温下是单斜晶系,1000度以上转变为四 方晶系,到2300度以上又转变成立方晶系。由单斜向四方的转变

材料导论 第四章

是可逆的,并伴随7%的体积变化。导致陶瓷在烧结时容易开裂,为此,要加入适量的稳定剂,如Y2O3。

ZrO2陶瓷的特点是热导率小,是理想的高温绝热材料。化学稳定性 好,能抵抗酸性或中性熔渣的侵蚀,可用作特种耐火材料;硬度高,可制作冷成型工具、整形模、切削工具、剪刀等;强度高、韧性好,可制作发动机构件等。BeO陶瓷

BeO晶体无色,属六方晶系,在固态下无晶型转变,结构稳定

BeO陶瓷的导热系数大,线膨胀系数不大,抗热震性高,高温电绝 缘性好,电导率低,介电常数高;硬度与Al2O3差不多,化学稳定 性好,是抵抗炭还原作用最强的一种氧化物.Mgo陶瓷

耐高温,抗金属及碱性熔渣腐蚀,可以用作坩埚冶炼高纯度Fe、Mo、Cu、Mg等。也可用于高温热电偶保护套等

炭化物结构陶瓷

特点:高耐火度、高硬度、高耐磨性。

SiC陶瓷有两种晶体结构:α-SiC和β-SiC。前者属六方晶系,是 高温稳定相;后者属等轴晶系,是低温稳定相。SiC陶瓷的莫氏硬 度13,在1400度的高温下仍能保持相当高的弯曲强度;SiC陶瓷 有很高的热传导能力,抗蠕变性能好,对酸性熔体有很强的抵抗力,但不抗强碱。SiC陶瓷主要用作高温结构材料。如火箭尾喷管的喷 嘴,热电偶套管等高温零件。还可用于高温下热交换器。

氮化物结构陶瓷

特点:高耐火度、高硬度、高耐磨性

Si3N4陶瓷是强共价键材料,原子结合力强,属六方晶系。Si3N4陶瓷具有良好的化学稳定性,能抵抗除氢氟酸以外的 各种酸、碱和熔融金属的侵蚀;具有优异的绝缘性;硬度高,摩擦系数小,是一种优良的耐磨材料;线膨胀系数小,热导 率高,抗热震性好;室温强度虽然不高,但高温强度较高。

功能陶瓷材料

功能陶瓷是指具有电、光、磁以及部分化学功能的多晶无机固体材 料,其功能的实现主要来自于它所具有的特定的电绝缘性、半导体 性、导电性、压电性、铁电性、磁性、生物适应性等

功能陶瓷的种类

电子陶瓷

生物陶瓷

光学陶瓷

磁性陶瓷

超导陶瓷

敏感陶瓷 电子陶瓷 压电陶瓷

当外力作用于晶体时,发生与应力成比例的介质极化,同时在晶体 两端将出现正负电荷,这种由于形变而产生的电效应,称为压电效 应。反之,当在晶体上施加电场引起极化时,将产生与电场成比例 的变形或压力,称之为逆压电效应。材料的压电效应取决于晶体结 构的不对称性,晶体必须有极轴,才有压电效应。

材料导论 第四章

压电陶瓷是具有压电效应的陶瓷材料 压电陶瓷的种类

压电陶瓷主要有钛酸钡、钛酸铅、锆钛酸钡(PZT)、改性PZT等。

压电陶瓷的晶体结构随温度的变化而变化。对钛酸钡和钛酸铅,当 温度高于居里温度Tc时,为立方晶体,具有对称性,无压电效应; 低于Tc时,为四方晶体,具有非对称性,有压电效应。压电陶瓷的应用

压电陶瓷的优点是价格便宜,可以批量生产,能控制极化方向,添 加不同成分,可改变压电特性。

压电陶瓷可用作超声波发生源的振子或水下测声聘仪器上的振子; 也可用作声转换器。但压电陶瓷收到机械应力的作用时,由压电效 应发生的电能可用于煤气灶的点火器和打火机等;压电陶瓷还可用 于滤波器等。电子陶瓷 光电陶瓷

光电陶瓷是具有光电导效应的陶瓷材料

当光电陶瓷受到光照射时,由于能带间的迁移和能带与能级间的迁 移而引起光的吸收现象时,能带内产生自由载流子,而使电导率增 加,这种现象称为光电导现象。

利用光电导效应检测光强度的元件称为光敏元件。检测从波长 很短的X射线到波上很长的紫外线的光敏元件主要是烧结GdS多 晶;如果在GdS中添加Cu杂质,可以用作检测可见光的光敏元件 超导陶瓷

1986年超导陶瓷的出现,使超导体的临界温度Tc有了很大提高。出现了高温超导体。超导陶瓷主要有:

1。镧系高温超导陶瓷:以La2CuO3为代表;

2。钇系高温超导陶瓷:以YBa2Cu2Oy为代表;

3。铋系高温超导陶瓷:以Bi-Sr-Cu-O为代表;

4。铊系高温超导陶瓷:以Ta-Ba-Ca-Cu-O为代表; 超导陶瓷的应用

在信息领域:用作高速转换元件、通信元件和连接电路。

在生物医学领域:用于核磁共振断层摄像仪、量子干涉仪、粒子线 治疗装置等。

在交通运输领域:完全抗磁体制造的磁悬浮列车、电磁推进器、飞 机航天飞机发射台等。

在电子能源领域:用于超导磁体发电、超导输电、超导储能等

在宇宙开发、军事领域:潜艇的无螺旋浆无噪声电磁推进器、超导 磁炮等。磁性陶瓷

什么是铁氧体?铁氧体是铁和其他金属的复合氧化物,MO-Fe2O3,M代表一价、二价金属。铁氧体属半导体,电阻率在1-1010Ωm。由 于电阻率高,涡流损失小,介质耗损低,故广泛用于高频和微波领域。

磁性陶瓷主要指铁氧体

铁氧体;软磁铁氧体

硬磁铁氧体

材料导论 第四章

软磁铁氧体

主要有:尖晶石型的Mn-Zn铁氧体、Ni-Zn铁氧体、Mg-Zn铁氧体、Li-Zn铁氧体和磁铅石型的甚高频铁氧体(Ba3Co2Fe24O41)。软磁铁氧体要求起始磁化率高,磁导率温度系数小,矫顽力小,比 损耗因数小。

软磁铁氧体主要用于无线电电子学和电讯工程等弱点技术中,如各 种电感线圈的磁芯、天线磁芯、变压器磁芯、滤波器磁芯以及录音 与录像磁头等。硬磁铁氧体

主要有两类:一类是CoFe2O4-Fe2O3;

另一类是BaO-xFe2O3。

软磁铁氧体要求具有较大的矫顽力Hc、较高的剩余磁Br和高的最 大磁积能(BH)max。

硬磁铁氧体可用作永磁体,用于高频磁场领域。由于Hc值大,可制成片状或粉末状,应用在与橡胶和树脂混合制成的复合磁铁上。光学陶瓷

什么是光学陶瓷?能够透光的陶瓷材料.要求:具有优良的耐热性、耐风化性、耐膨胀性;除了能透过可见光外,还能够波长更长或波 长更短的光;光损耗低,能在远距离进行光传播;经光的照射,其 性质发生可逆或不可逆变化.陶瓷材料怎样才能透明

在各向同性晶体构成的多晶体中,晶界不产生散射,但不存在气孔 等缺陷时,是透明的;在各向异性的晶体中,光从一个晶粒向邻近的晶粒入射时,由于双折射现象而产生散射,是不透明的。若要得 到透明多晶体,双折射必须很小。

制造透明陶瓷的关键:消除气孔和控制晶粒异常长大!消除气孔和控制晶粒异常长大的常用方法;

1。添加微量或少量的添加剂

2。改变烧结气氛

3。改变原料

4。采用先进的烧结技术 氧化物透明陶瓷

Al2O3、Gd2O3、CaO、LiAl5O8、MgO、HfO、BeO等 非氧化物透明陶瓷 红外光学陶瓷

随着红外技术的发展,出现了很多新型的材料和器件。这些材料包 括滤光材料、红外接受材料和红外探测材料。以往这类材料主要采 用单晶或玻璃,最近已开始使用多晶陶瓷。这样的陶瓷材料就称为 红外光学陶瓷。

氧化钇是一种优良的高温红外材料,主要用于红外导弹的窗口和整 体罩、天线罩、微波基板、绝缘支架、红外发生器管壳、红外透镜 和其他高温窗口。激光陶瓷

激光陶瓷的实质是具有适当的能级结构,通过激励,使粒子从低能

材料导论 第四章

级向高能级跃迁。激光晶体通常包括两部分:组成晶格的称为基质 晶体,其主要作用是为激活离子提供适当的晶格场;另一部分是发 光中心,即少量的掺杂离子。

几种典型的激光陶瓷材料:

1。红宝石激光晶体:α-Al2O3单晶为基质,掺入Cr3+

2。掺钕的钇铝石榴石晶体。生物陶瓷

什么是生物陶瓷?用于人体器官替换、修补以及外科矫形的陶瓷材 料。

要求:具有良好的力学性能,在体内难于溶解,不易氧化,不易腐 蚀变质,热稳定性好,耐磨且有一定的润滑性,和人体组织的亲和 性好,组成范围宽,易于成形等。生物陶瓷的种类 1。生物惰性陶瓷

该陶瓷的物理、化学性能稳定,在生物体内完全呈惰性状态 2。生物活性陶瓷

具有优异的生物相容性,能与骨形成结合面,结合强度高,稳定性 好,参与代谢。生物惰性陶瓷

1)氧化铝陶瓷:传统的生物陶瓷,稳定性好,纯度高。可制成单晶、多晶或多孔材料。

2)氧化锆陶瓷:生物相容性好,稳定性高,具有更高

的断裂韧性和更耐磨。

3)碳素类陶瓷:与血液相容性、抗血栓性好,与人体

组织亲和性好,耐蚀、耐疲劳、量轻。生物活性陶瓷

1。磷酸钙陶瓷:具有生物降解性,能被人体吸收。

2。生物活性玻璃陶瓷

3。Na2O-K2O-MgO-CaO-SiO2-P2O5陶瓷

4。BCG人工骨头 敏感陶瓷

指某些性能随外界条件(温度、湿度、气氛)的变化而发生改变的 陶瓷材料

1。热敏电阻陶瓷

2。压敏电阻陶瓷

3。磁敏电阻陶瓷

4。气敏电阻陶瓷

5。湿敏电阻陶瓷 热敏电阻陶瓷

电阻随温度发生明显变化的陶瓷材料。

正温度系数陶瓷(PCT)

负温度系数陶瓷(PCT)

临界温度系数陶瓷(PCT)正温度系数陶瓷(PCT

电阻随温度升高而增加的陶瓷材料。

钛酸钡陶瓷或以钛酸钡为主晶相的陶瓷

材料导论 第四章

应用:

1.马达的过热保护、液面深度测量、温度控制和报警、非破坏

性保险丝、晶体管过热保护、温度电流控制器等。

2。彩色电视机自动消磁、马达启动器、自动开关等;

3。等温发热件、空调加热器等 负温度系数陶瓷(NCT)

电阻随温度升高而减小的陶瓷材料。

多为尖晶石型氧化物,有二元和三元等。如:MnO-CuO2-O2;Mn-Co-Ni 等。压敏电阻陶瓷

电阻值对外加电压敏感的陶瓷材料。电压提高,电阻率下降。

压敏陶瓷有SiC、Si、Ge、ZnO等。以ZnO的性能最优。具有高非线 形、大电流和高能量承受能力。

稀土氧化镨为主要添加剂的ZnO压敏陶瓷。

应用:微型马达电噪声、彩色显像管放电吸收、继电器节点保护、汽车发动机异常输出功率吸收、电火花、稳压元件等。磁敏电阻陶瓷

将磁性物理量转化成电信号的陶瓷材料。

应用:可用来检测磁场、电流、角度、转速、相位等。

在汽车工业中:用于无触点汽车点火开关;

在计算机工业中:用于霍尔键盘;

在家用电器和工业上:用于无刷电机和无触点开关等 气敏电阻陶瓷

将气体参量转化成电信号的陶瓷材料。它能以物理或化学吸附的方 式吸附气体分子。

气敏陶瓷有氧化铁系气敏陶瓷、氧化锌系气敏陶瓷、氧化锡系气敏 陶瓷等。

应用:可燃气体和毒气的检测、检漏、报警、监控等。它的 灵敏度高,对被测气体以外的气体不敏感。湿敏电阻陶瓷

将湿度信号转化成电信号的陶瓷材料。

MgCr2O4-TiO2陶瓷

Zn-Cr2O3-Fe2O3陶瓷

应用:用于湿度指示、记录、预报、控制和自动化等。传统日用、建筑材料

普通陶瓷

水泥

玻璃

耐火材料 普通陶瓷

1。日用陶瓷

2。普通工业陶瓷

1)建筑陶瓷

2)卫生陶瓷

3)电器绝缘陶瓷 4)化工陶瓷 1。日用陶瓷

一般应具有良好的白度、光泽度、透光性、热稳定性和强度。

日用陶瓷主要应用于茶具、餐具和工艺品

材料导论 第四章

1)建筑陶瓷

以黏土为主要原料而制得的用于建筑物的陶瓷

粗陶瓷:以难熔黏土为主要原料,包括砖、瓦、盆罐等

精陶瓷:以瓷土和高岭土为主要原料,包括釉面砖、建筑卫生陶瓷等

炻瓷:以陶土和黏土为主要原料,包括地砖、外墙砖、耐酸陶瓷等 2)卫生陶瓷

以高岭土为主要原料而制得的用于卫生设施的带釉陶瓷制品,有陶质、炻瓷质和瓷质等。3)电器绝缘陶瓷

又称电瓷,是作为隔电、机械支撑及连接用的瓷质绝缘器件。分为低 压电瓷、高压电瓷和超高压电瓷等。4)电器绝缘陶瓷

要求耐酸、耐高温、具有一定强度。主要用于化学、化工、制药、食 品等工业。水泥

什么是水泥?水泥是一种加入适量水后,成为塑性浆体的,既能在空 气中硬化,又能在水中硬化的,并能把砂、石等材料牢固地胶结在一 起的水硬性胶凝材料。水泥的种类

硅酸盐水泥 铝酸盐水泥 硫铝酸盐水泥 氟铝酸盐水泥

火山灰水泥

材料导论 第四章

硅酸盐水泥的主要矿物成分

硅酸三钙 3CaO·SiO2,C3S

硅酸二钙 2CaO·SiO2,C2S

铝酸三钙 3CaO·Al2O3,C3A

铁铝酸四钙 4CaO·Al2O3·Fe2O3,C4AF 硅酸盐水泥的主要矿物成分对水泥性能的影响

提高C3S可以提高水泥的强度,得到高强水泥

提高C3A,C3S,可以得到快硬水泥

降低C3A和C3S,提高C2S,可以得到中低热水泥

提高C4AF,降C3A,可以得到道路水泥 衡量水泥性质和质量的指标

密度

容重

细度

需水性

凝结时间

安定性

强度

标号

水化热 玻璃

什么是玻璃?凡熔融体通过一定方式冷却,因黏度逐渐增加而具有 固体性质与一定结构特征的非晶态物质,都称为玻璃。玻璃的种类

钠钙玻璃

钢化玻璃

磨光玻璃

铅玻璃

微晶玻璃

磨砂玻璃

硼硅酸盐玻璃

彩色玻璃

压花玻璃

石英玻璃

变色玻璃

夹层玻璃 玻璃的性质

力学性质;理论强度高,实际强度低。抗压强度高,抗拉强度低。硬度高,脆性大。

物理性质;高度透明,具有很重要的光学性质。能透可见光和红外 线。

化学性质;

化学性质稳定。抗酸腐蚀,但不抗碱。玻璃的生产方法

压制成形

拉制成形

吹制成形

加工纤维 耐火材料

什么是耐火材料?耐火度不低于1580度的材料。广泛应用于冶金、硅酸盐、化工、机械等领域的窑炉以及高温容器的耐高温材料。常见的耐火材料

耐火砖;黏土砖

轻质砖

半硅砖

高铝砖

镁砖

碳砖

耐火纤维

耐火混凝土 耐火材料的性能指标

耐火度;材料在高温下不熔化的性质。

荷重软化温度;指耐火材料在温度和荷重的作用下抵抗变形的能力。

高温体积稳定性

;

在高温下外形体积及线度保持稳定的能力。

抗热震性;在高温下,温度急剧变化不破坏的能力。

抗渣性;抵抗熔渣或熔融液侵蚀的能力。

耐真空性;在真空和高温下服役的能力。

第五篇:无机非金属材料复习

无机非金属材料

本章主要内容

无机非金属材料概论 陶瓷材料

玻璃与非晶态材料 传统日用、建筑材料

无机非金属材料概论 什么是无机非金属材料?

金属材料和有机高分子材料以外的固体材料通称 为无机非金属材料。

主要特性:

熔点高、硬度高、化学稳定性好、耐高温、耐腐蚀、耐磨损、耐氧化、弹性模量大、强度高。一般为脆性材料

无机非金属材料的种类

陶瓷:传统陶瓷、特种陶瓷 玻璃:普通玻璃、新型玻璃

还有水泥、胶凝材料、混凝土、耐火材料

陶瓷

 陶瓷概述 陶瓷涵义与分类  陶瓷制备技术  陶瓷结构

陶瓷组成、结构与性能关系:组成通过结构决定性能

传统陶瓷生产工艺p76 原料加工→

坯料制备→

成型→

素烧或干燥→

施釉→

烧成

陶瓷材料的物质结构p85 陶瓷材料的键性

陶瓷材料的组成相的结合键为离子键(MgO、Al2O3)、共价键(金刚石、Si3N4)以及离子键与共价键的混合键以离子键结合的晶体称为离子晶体。离子晶体在陶瓷材料中占有很重要的地位。它具有强度高、硬度高、熔点高等特点。但这样的晶体脆性大,无延展性,热膨胀系数小,固态时绝缘,但熔融态可导电等特点。

陶瓷材料的物质结构p85 陶瓷材料的键性

以共价键结合的晶体称为共价晶体。共价晶体具有方向性和饱和性,因而共价键晶体的原子堆积密度较低。共价键晶体具有强度高、硬度高、熔点高、结构稳定等特点。但它脆性大,无延展性,热膨胀系数小,固态、熔融态时都绝缘。最硬的金刚石、SiC、Si3N4、BN等材料都属于共价晶体。

陶瓷材料的物质结构p85 陶瓷材料的相组成 晶体相

晶体相是陶瓷材料最主要的组成相,主要是某些固溶体或化合物,其结构、形态、数量及分布决定了陶瓷材料的特性和应用。晶体相又分为主晶相、次晶相和第三相。陶瓷中晶体相主要有含氧酸盐(硅酸盐、钛酸盐等)、氧化物(MgO、Al2O3)、非氧化物(SiC,Si3N4)等。

硅氧四面体是硅酸盐陶瓷中最基本的结构单元。

陶瓷材料的物质结构p85 陶瓷材料的相组成 玻璃相

玻璃相是陶瓷材料中原子不规则排列的组成部分,其结构

类似于玻璃。玻璃相的作用是:将分散的晶体相粘结起来,填充晶体之 间的空隙,提高材料的致密度;降低烧成温度,加快烧结 过程;阻止晶体转变、抑止晶粒长大。

玻璃相对陶瓷强度、介电常数、耐热性能是不利的。

陶瓷材料的物质结构p86 陶瓷材料的相组成 气相(气孔)

陶瓷中气孔主要是坯体各成分在加热过程中单独或互相 发生物理、化学作用所生成的空隙。这些空隙可由玻璃 相来填充,还有少部分残留下来形成气孔。

气孔对陶瓷的性能是不利的。它降低材料的强度,是造 成裂纹的根源。

陶瓷材料的物质结构★

陶瓷材料的晶体缺陷

(点缺陷)

陶瓷材料晶体中存在的置换原子、间隙原子和空位等缺陷称之为点缺陷。陶瓷材料的很多性质如导电性与点缺陷有直接关系。此外,陶瓷材料的烧结、扩散等物理化学过程也与点缺陷有关。

陶瓷材料的晶体缺陷(线缺陷)

位错是陶瓷材料晶体中存在线缺陷。陶瓷材料中位错形成所需要的能量较大,因此,不易形成位错。陶瓷材料中位错密度很低。陶瓷材料主要是离子键和共价键。这两种结合键造成位错的可动性降低。当位错滑移时,离子键中同号离子相斥,导致离子键断裂;而共价键的方向性和饱和性,具有确定的键长和键角,位错的滑移也会导致共价键的破断。

陶瓷材料的晶体缺陷(面缺陷)陶瓷材料一般是多晶材料。多晶材料中存在的晶界和亚晶界就是陶瓷材料中的面缺陷。我们知道晶粒细化可以提高材料的强度。晶界对金属材料和陶瓷材料强度的提高作用机理是不同的。对金属材料来说,晶界阻碍位错的运动,从而强化了材料;而对陶瓷材料来说,利用晶界两侧晶粒取向的不同来阻止裂纹的扩展,提高强度。

陶瓷材料的性能

力学性能

硬度:陶瓷的硬度很高,多为1000Hv~1500Hv(普通淬火钢的硬度500~800Hv)。陶瓷硬度高的原因是离子晶体中离子堆积密度大、以及共价晶体中电子云的重叠程度高引起的。★

刚度:刚度是由弹性模量衡量的,弹性模量又反映其化学键的键能。离子键和共价键的键能都要高于金属键,因此陶瓷材料的弹性模量要高于金属材料。弹性模量对组织不敏感,但结构中存在气孔将降低弹性模量,温度升高也使弹性模量降低

强度:陶瓷材料的强度取决于键的结合力,理论强度很高。但陶瓷中由于组织的不均匀性,内部杂质和各种缺陷的存在,使得陶瓷材料的实际强度要比理论强度低100多倍。

陶瓷材料的强度也受晶粒大小的影响。晶粒越细,强度越高。此外,陶瓷材料一般具有优于金属材料的高温强度,高温抗蠕变能力强,且有很高的抗氧化性。常用于高温材料。

塑性与韧性:陶瓷材料的塑性和韧性较低,这是陶瓷最大的弱点。断裂包括裂纹形成和扩展的两过程陶瓷内部和表面因表面划伤、化学侵蚀、热胀冷缩不均匀等易产生的微裂纹,载荷时,裂纹尖端产生应力集中,而陶瓷材料不能由塑性变形将应力松弛,因此内部裂纹很快扩展,导致陶瓷材料断裂,这也是陶瓷材料脆性大的根本原因。

热学性能

熔点:陶瓷材料由离子键和共价键结合,因此具有较高的熔点。热容: 陶瓷材料在低温下热容小,在高温下热容增大。

热膨胀:陶瓷材料的热膨胀系数小,这是由晶体结构和化学键决定的。一般为10-5~10

-6/K。

电学性能

陶瓷材料是良好的绝缘体。可用于隔电的绝缘材料;陶瓷还具有介电特性,可作为电器的介质。陶瓷材料的介电损耗很小,可大量制造高频、高温下工作的器件。

光学性能 陶瓷材料由于晶界和气孔的存在,一般是不透明的。可以通过烧结方法的改变和控制晶粒的大小,制备出透明的氧化物陶瓷。

陶瓷材料 之普通陶瓷p79  瓷器用原料:

长石质瓷的主要原料有高岭石、长石和石英;

绢云母质瓷的主要原料有高岭石、长石、石英和绢云母; 滑石质瓷的主要原料有高岭石、长石、石英和滑石; 骨灰质瓷的主要原料有高岭石、长石、石英和骨灰

 普通陶瓷按用途分为日用陶瓷和普通工业陶瓷

 普通工业陶瓷主要为粗陶瓷、精陶瓷、炻器和瓷器,按用途分为建筑陶瓷、卫生陶瓷、电器绝缘陶瓷、化工陶瓷等

 日用陶瓷主要为瓷器,长石质瓷、绢云母质瓷、滑石质瓷和骨灰质瓷

日用陶瓷

 一般应具有良好的白度、光泽度、透光性、热稳定性和强度。 日用陶瓷主要应用于茶具、餐具和工艺品

普通工业陶瓷

1)建筑陶瓷: 以黏土为主要原料而制得的用于建筑物的陶瓷

2)卫生陶瓷: 以高岭土为主要原料而制得的用于卫生设施的带釉陶瓷制品,有陶质、炻瓷质和瓷质等。

3)电器绝缘陶瓷: 又称电瓷,是作为隔电、机械支撑及连接用的瓷质绝缘器件。分为低压电瓷、高压电瓷和超高压电瓷等。

4)化学、化工陶瓷: 要求耐酸、耐高温、具有一定强度。主要用于化学、化工、制药、食品等工业。

新型陶瓷★

(与传统陶瓷或称普通陶瓷比较)

 原料方面:普通陶瓷以粘土为主要原料;新型陶瓷通常以氧化物、氮化物、硅化物、碳化物等为主要原料

 化学组成控制方面:普通陶瓷化学组成和性能由粘土的成分、产地等决定;新型陶瓷的原料是化合物,成分有人工配比决定,其性质由原料的纯度和工艺决定

 制备工艺上:普通陶瓷以普通炉窑为主要设备烧结而成;新型陶瓷广泛采用真空烧结、保护气氛烧结、热压、热等静压等手段制备。

 性能方面:新型陶瓷又不同于普通陶瓷的特殊性能,如高强度、高硬度、耐腐蚀、导电以及在电、磁、光、声、生物工程等方面的特殊功能。

 应用方面:新型陶瓷除普通陶瓷的应用领域外,广泛用于现代科技中高、精、尖端领域.玻璃、非晶态材料

 玻璃、无定形、非晶态材料定义

非晶态定义:组成物质的原子、分子的空间排列不呈现周期性和平移对称性,即长程无序;但原子间的相互关联作用,使其在小于几个原子间距的小区域内保持着形貌和组分的有序性,即短程有序;这样的物质状态★ 玻璃、无定形固体实质上就是非晶态材料

玻璃、无定形、非晶态材料关系

 一般非晶态材料包含玻璃、无定形材料;具有玻璃转变温度的非晶态材料,即玻璃材料;除此之外其他非晶态材料,即无定形材料★

非晶态材料: 低分子非晶态固体.氧化物玻璃、非氧化物玻璃.非晶态高分子聚合体

玻璃分类

 按组成分类:元素玻璃、氧化物玻璃、非氧化物玻璃

 按性能或功能分类:光敏玻璃、声光玻璃、光致变色玻璃、低膨胀玻璃、半导体玻璃、超导玻璃等

玻璃的制备方法

玻璃的制备方法:

熔体冷却法

液相析出法

气相凝聚法

晶体能量泵入法

玻璃的形成 热力学条件(玻璃的生成的热力学理论)玻璃的能量

G=H – TS

高温熔体

– TS 起主导作用

G<0 低温玻璃

H 占主导

G>0 玻璃态内能>相应结晶态物质,有析晶倾向

形成玻璃的热力学条件:玻璃态与晶态的内能差越小越易形成玻璃 2 动力学条件(玻璃的生成的动力学理论)

 玻璃形成与过冷度T、粘度、成核速率Ir、晶体生长速率u等有关。 熔体冷却速率非常关键 熔体结构、键性和键强对生成玻璃的作用(结晶化学理论)

Ⅰ熔体结构

熔体冷却时,分子、原子动能减小,聚合形成大阴离子,熔体粘度增大。熔体中阴离子基团是低聚合→难于形成玻璃 熔体中阴离子基团是高聚合→易于形成玻璃 Ⅱ键性★

1)离子键

:无方向性、饱和性,原子相对位置容易改变,组合成晶格容易。

2)共价键

:有方向性、饱和性,作用范围小。纯共价键化合物为分子结构,以范氏力结合成分子晶体。

3)金属键

:无方向性、饱和性。倾向于最紧密堆积,原子间易成晶格。最不易成玻璃。4)过渡键(离子-共价、金属-共价):形成大阴离子,易成玻璃。如离子-共价键,既有离子键的易变键角、形成无对称变形的趋势,造成长程无序;又有共价键的方向、饱和性,不易改变键长、键角倾向,造成短程有序。Ⅲ 孙光汉单键能理论

键能大,键的破坏、重组也难,成核位垒高,不易析晶。键能>335 KJ/mol的氧化物可单独成玻。

玻璃的结构

玻璃的结构是指玻璃中质点在空间的几何配置、有序程度及它们彼此间的结合状态

玻璃的结构学说(或称玻璃的结构理论):凝胶学说、高分子学说、晶子学说(微晶模型)、无规则网络学说、五角对称学说、无规堆积硬球学说、近程有序论等。主要的玻璃结构学说是:晶子学说、无规则网络学说

主要的玻璃结构学说之晶子学说

1)晶子学说(1921年前苏联学者列别捷夫提出)

列别捷夫主要论点:

玻璃是由无数“晶子”所组成,晶子是具有晶格变形的有序排列的区域,分散在无定形的介质中,从“晶子”部分到无定形部分是逐步过渡的,两者之间没有明显的界限。晶子的化学性质取决于玻璃的化学组成 实验证据:

成分递变的钠硅双组分玻璃的X射线散射强度曲线

结晶氧化硅和玻璃态氧化硅在3~26m的波长范围内的红外反射光谱

钠硅双组分玻璃系统的原始玻璃态和析晶态的红外反射和吸收光谱

 成功之处:

玻璃的结构特征是微不均匀性以及近程有序

 未解决的问题:

晶子的大小、含量和化学组成等未得到理论确定★ 主要的玻璃结构学说之无规则网络学说

无规则网络学说(1932年德国学者扎哈里阿森)扎哈里阿森认为:

凡是成为玻璃态的物质与相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是离子多面体(四面体或三角体)构筑起来的。玻璃中结构多面体的重复没有规律。实验证据:

瓦伦对玻璃的X射线衍射光谱的一系列研究结果,石英玻璃、方石英和硅胶的X射线衍射光谱的对比;用傅立叶分析法和物质的晶体结构数据得到近距离内原子排列的图形,从而得到玻璃结构有序部分距离在1.0~1.2nm附近

 成功之处:

玻璃的结构特征是玻璃中的离子与多面体相互间排列的均匀性、连续性以及无序性。

 未解决的问题:

玻璃的结构中微不均匀、不连续性和近程有序等问题无法解释。

无规则网络派:阳离子在玻璃结构网络中所处的位置不是任意的,而是有一定配位关系。多面体的排列也有一定的规律,并且在玻璃中可能不止存在一种网络。因此承认了玻璃结构的近程有序和微不均匀性。

晶子学派:玻璃是具有近程有序(晶子)区域的 无定形物质

玻璃的通性

各向同性、亚稳性、无固定熔点、熔融态向玻璃态转化的可逆与渐变性、熔融态向玻璃态转化时物理、化学性质随温度变化的连续性

玻璃无固定熔点原因

 玻璃不像晶体在析晶时,有新相形成而产生突变,形成熔点

 物质由熔体向固态玻璃转变时,随着温度降低,熔体的粘度逐渐增大,最后形成固态玻璃,此凝固过程中,相应温度变化范围宽

 在此温度变化范围内,始终没有结晶,即没有晶相形成,因此没有所谓的结晶温度点存在。

玻璃具有亚稳性原因

 玻璃从熔体经快速冷却的过程中,由于冷却速度快,粘度急剧增大,质点来不及作有规则的排列而释放出结晶潜热,玻璃态物质比相应晶态物质含有较大内能,使玻璃在常温下不处于能量最低的稳定状态,而是亚稳态

 从动力学角度分析,在常温下,玻璃粘度远远大于析晶粘度,玻璃析晶必须克服很大的析晶势垒,阻力大,玻璃结晶速度非常小,即析晶可能性很小,因此常温下玻璃能够稳定存在

 从热力学角度分析,玻璃态处于高能态,不稳定,必然有向低能态转化的趋势,即有析晶倾向。

玻璃性质

1、玻璃熔体的工艺性质:粘度、表面张力和密度★

2、玻璃的力学性质:弹性、强度、硬度、致密化和内耗(理论强度高,实际强度低;抗压强度高,抗拉强度低;硬度高,脆性大。)

3、热学性质:热膨胀系数、导热系数、比热容、热稳定性等

4、玻璃光学性质:光吸收、折射和色散、反射、透光率等(高度透明,具有很重要的光学性质;能透可见光和红外线。)

5、化学稳定性:化学性质稳定,抗酸腐蚀,有一定抗碱。

粘度特征点、工艺意义

(Pa  S)

对应温度

108~1010

膨胀软化点Tf 1012

退火上限 1012.4

转变点Tg 1013.5

应变点(退火下限)1.熔化

石英砂的熔化包括表面溶解和扩散,粘度小利于扩散。2.澄清

气泡上升速度与粘度成反比。3.均化

实际是质点的扩散,粘度小有利。

4.成形

料性短的玻璃可较快成形。TW–TL过小易析晶。5.退火

在 =1011.5~1013帕 秒内通过粘滞流动消除应力,温度较低(>1013帕秒)时有部分应力通过弹性松弛消除。表面张力的工艺意义     1.澄清

Vr2 大,气泡长大难,澄清难。2.均化

大时,力求成球,均化难。3.成形

拉边器

自抛光 4.热加工

烧口

火抛光

注:熔化过程:化合物形成、玻璃液形成、澄清、均化、冷却

生产者关心的性能或性质:

粘度、表面性质、热膨胀性、导热率、比热容、密度、弹性、脆性等随温度变化的规律

用户关心的性能或性质:

机械强度、硬度、热稳定性、化学稳定性、耐热性、光学性能、电磁性能等

常见玻璃结构参数与物理性质:基于玻璃无规则网络的基本概念,为便于比较玻璃各种物理性质,引用一些基本结构参数来描述玻璃的网络特性。

若X表示多面体的平均非桥氧数;Y表示多面体的平均桥氧数;Z表示网络形成正离子的配位数;R表示玻璃中全部氧离子与全部网络形成体离子数之比,则:

常见玻璃:

1、硅酸盐玻璃:石英玻璃、钠钙硅玻璃、钾钡硅玻璃(又称钡冕玻璃)、钠钙硅玻璃、钾钡硅玻璃主要产品:瓶罐玻璃、艺术玻璃、建筑玻璃、汽车玻璃、镜片玻璃等。石英玻璃可制备高硅氧仪器特种玻璃、电光源玻璃

钠钙硅玻璃以硅砂、纯碱、石灰石等为原料采用熔融冷却法制备。其结构:以硅氧四面体为结构单元向三度空间发展的无序的架状结构;Na+、Ca2+均匀分布于硅氧网络空穴中以维持网络中局部电中性。

2、硼酸盐玻璃:B2O3玻璃、钠硼酸盐玻璃、钠硼硅酸盐玻璃(或称派莱克斯、安瓿玻璃)

钠硼酸盐玻璃、钠硼硅酸盐玻璃主要产品:仪器玻璃、医药用玻璃、光致变色玻璃、电光源玻璃(B2O3玻璃结构:以硼氧三角体或硼氧三元环为结构单元,顶角相连组成向二度空间发展的层状结构,此结构松散并且层与层之间作用力为分子间力,这一弱键导致B2O3玻璃的一系列性能变坏,加适量Na2O后,Na2O提供的氧使硼氧三角体转变为完全由桥氧组成的硼氧四面体,导致玻璃从原来的层状结构部分转化为架状结构,使结构变得致密,部分分子引力也随之转化为键强较强的极性共价键,从而加强网络,使钠硼酸盐玻璃的各种物理性质与相同条件下的B2O3玻璃相比,相应向着相反方向变化,即发生硼反常现象)

新型玻璃:

 光学功能玻璃:磷酸盐玻璃、氟化物玻璃、铝硼酸盐玻璃、铝磷酸盐玻璃、硫系玻璃、碲酸盐玻璃

 热学功能玻璃:Li2O-Al2O3-SiO2系微晶玻璃

 力学功能玻璃:Li2O-Al2O3-SiO2系微晶玻璃、MgO-Al2O3-SiO2系微晶玻璃

 生物及化学功能玻璃: MgO-Al2O3-TiO2-SiO2系生物玻璃、Na2O-CaO-SiO2-P2O5系生物活性玻璃;SiO2系、P2O5 系、稀土类多孔玻璃

传统玻璃与新玻璃材料

玻璃工业新技术发展趋势

 能源、材料、环保、信息、生物等五大领域的发展

产品方面:玻璃原片的生产向大片、薄片、厚片、白片四大类发展;

研发新技术方面:从玻璃产品的表面和内在改性应用、功能等方面着手,使玻璃在强度、隔热、耐火、安全、阳光控制、隔音、自洁(环保)等功能上优化。

水泥

什么是水泥?水泥是一种加入适量水后,成为塑性浆体的,既能在空气中硬化,又能在水中硬化的,并能把砂、石等材料牢固地胶结在一起的水硬性胶凝材料。

水泥的种类:硅酸盐水泥

铝酸盐水泥

硫铝酸盐水泥

氟铝酸盐水泥

火山灰水泥

硅酸盐水泥

原料:石灰石(CaO)、黏土(Al2O3SiO2)、铁粉(Fe2O3)、煤粉、矿化剂等

工艺:配料、粉磨(水泥的生料)、成球、煅烧(水泥的熟料)、粉磨、包装。

水泥的熟料和石膏→矿渣、粉煤灰、火山灰→普通水泥、矿渣水泥、粉煤灰水泥、火山灰水泥

硅酸盐水泥的主要矿物成分:硅酸三钙 3CaO·SiO2,C3S、硅酸二钙 2CaO·SiO2,C2S、铝酸三钙 3CaO·Al2O3,C3A、铁铝酸四钙 4CaO·Al2O3·Fe2O3,C4AF。

硅酸盐水泥的主要矿物成分对水泥性能的影响:提高C3S可以提高水泥的强度,得到高强水泥;提高C3A,C3S,可以得到快硬水泥;降低C3A和C3S,提高C2S,可以得到中低热水泥;提高C4AF,降C3A,可以得到道路水泥。

衡量水泥性质和质量的指标:密度、凝结时间、水化热、容重、安定性、细度、强度、需水性。

p113/p114

耐火材料

什么是耐火材料?耐火度不低于1580度的材料。广泛应用于冶金、硅酸盐、化工、机械等领域的窑炉以及高温容器的耐高温材料。

常见的耐火材料:耐火砖、耐火纤维、耐火混凝土

耐火材料的性能指标

耐火度:材料在高温下不熔化的性质。

荷重软化温度:指耐火材料在温度和荷重的作用下抵抗变形的能力。高温体积稳定性:在高温下外形体积及线度保持稳定的能力。抗热震性:在高温下,温度急剧变化不破坏的能力。抗渣性:抵抗熔渣或熔融液侵蚀的能力。耐真空性:在真空和高温下服役的能力。

下载无机非金属材料教案[样例5]word格式文档
下载无机非金属材料教案[样例5].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    无机非金属材料论文

    无机非金属材料的研究与应用前景 摘要 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳 化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、......

    无机非金属实习任务书

    河南城建学院 《无机非金属材料专业》土木工程结构试验 与检测实习任务书班级0134101-2 专业土 木 工 程实习类别结构检测实习 时间2013—2014(1) 指导教师张锋剑、马哲河南城......

    无机非金属材料1

    一、概念题 连续性与可逆性以及可变性。 ④多孔材料法。(四选三) 1.无机非金属材料:是以某些元素的氧化物,碳化物,10. 石英在陶瓷生产中发挥的主要作用。7.试述陶瓷三大原料之一......

    无机非金属材料的主角----硅教案

    无机非金属材料的主角------硅 教案 院系:化学化工学院 时间:15min 科目:化学必修一 课题:无机非金属材料的主角---硅(一) 主讲人: 汪敏 训练技能: 一、 教学目标 1.知识与......

    无机非金属材料的主角硅 教案

    第四章 第1节 无机非金属材料的主角——硅 (第一课时) 一.教学目标 1、知识与技能: (1)了解硅在自然界中的存在形式、含量和用途; (2)了解二氧化硅的性质,认识二氧化硅的用途; (3)了解硅......

    无机非金属材料及其发展前景

    无机非金属材料及其发展前景 无机非金属材料也和金属材料以及有机高分子材料等一样,是当代完整的材料体系中的一个重要组成部分。 普通无机非金属材料的特点是:耐压强度高、硬......

    无机非金属材料工艺学题库

    四、 简述题 1. 有一瓶罐玻璃生产厂欲提高玻璃的化学稳定性、提高机速,对配比应做如何 调整? 为什么? 碱金属氧化物(Na2O,K2O)对玻璃的化学稳定性影响最大 。为了提高 设计玻璃......

    无机非金属生产实习报告

    安徽工业大学 无机非金属专业实习报告 材料科学与工程 无机非金属 院别:______________ 专业:________________ 099024255 无机092班班级:_______________ 学号:______________......