ANSYS系统及其应用教学大纲

时间:2019-05-15 01:01:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《ANSYS系统及其应用教学大纲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《ANSYS系统及其应用教学大纲》。

第一篇:ANSYS系统及其应用教学大纲

《ANSYS系统及其应用》教学大纲

课程编号:S5081090 课程名称: ANSYS系统及其应用

课程英文名称:INTRODUCTION AND APPLICATION OF ANSYS 总学时:16 讲课学时:16 学 分:1 开课单位:机电工程学院机械制造及自动化系 授课对象:机电工程学院机械设计制造及其自动化专业 先修课程:机械结构有限元分析 开课时间:第八学期 教材与主要参考书:

“有限元分析ANSYS应用教程”讲义(自编);

张亚欧主编.《有限元分析ANSYS7.0实用教程》.清华大学出版社 2004年;

龚曙光主编.《ANSYS基础应用及范例分析》.机械工业出版社 2003年。

一、课程的教学目的

随着科学技术的发展,产品的结构和功能日趋复杂化和多样化,对产品机械结构的布局和力学性能提出了更高的要求,不仅要求产品的机械结构满足力学性能,还要在设计时使它的结构尺寸和重量趋于合理,而常规的力学计算已无法满足,有限元分析是解决该问题的合适方法。

ANSYS是一种广泛的商业套装工程有限元分析软件。该软件在工程上应用相当广泛,在机械、电机、土木、电子及航空等领域的使用,都能达到某种程度的可信度,颇获各界好评。使用该软件,能够降低设计成本,缩短设计时间。ANSYS软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。

本课程是为机械设计制造及其自动化专业本科生开设的一门专业选修课,主要通过多媒体教学和上机实验,使学生熟悉并掌握ANSYS软件,能够利用软件解决实际工作中遇到的有限元分析问题,为进一步学习或实际应用及参加科研工作开辟道路。具体的教学目的如下:

1、了解ANSYS软件的主要特点;

2、掌握ANSYS软件有关机械结构静力分析、动力学分析、优化设计及接触问题分析的功能和性能的使用方法;

3、能够用ANSYS软件软件解决实际工作中所遇到的大型科学和工程计算难题。

二、教学内容及基本要求

各章节主要内容及学时分配:

(一)本课程的主要章节

第一章 概论(讲课1学时)

ANSYS软件主要功能、主要技术特点、支持的图形传递标准与CAD软件的接口以及运行环境等。

第二章 ANSYS软件的基本使用(讲课2学时)多媒体教学部分(1个学时)

ANSYS软件界面下各窗口的功能,具体包括应用命令菜单、主菜单、工具栏、输入窗口、图形窗口和输出窗口。ANSYS架构及命令,具体包括简单模型的建立、材料属性输入、单元的选择和划分、求解处理和后置处理。

指导上机部分(1个学时)

学生自己上机熟悉ANSYS软件的命令,并对简单的例题进行有限元静、动态分析。

第三章 有限元模型的建立和后置处理(讲课4学时)

多媒体教学部分(2个学时)

ANSYS软件中坐标系统和坐标平面、节点和元素的定义、负载定义、复杂实体模型的建立方法等。对分析结果进行后处理,具体包括绘变形图、支反力列表、绘应力等值线图和网格密度检查等。

指导上机部分(2个学时)

学生在老师的指导下自己上机熟悉ANSYS软件的相关命令,练习输入和自己建立三维实体模型,并对复杂的结构进行有限元静、动态分析。

第四章 优化设计(讲课4学时)多媒体教学部分(2个学时)

首先给出一些基本的定义:设计变量、状态变量、目标函数、合理和不合理的设计、分析文件、迭代、循环和设计序列等,然后介绍优化设计的步骤,主要包括生成循环所用的分析文件、参数化建立模型、求解、提取并指定状态变量和目标函数、在ANSYS数据库里建立与分析文件中变量相对应的参数、选择优化工具或优化方法等。

指导上机部分(2个学时)

学生在老师的指导下自己上机熟悉ANSYS软件的相关命令,并用软件对例题进行优化设计。

第五章 接触问题的有限元分析(讲课3学时)多媒体教学部分(1个学时)

简单了解接触问题的定义、接触协调条件、接触单元和一些接触问题的处理方法。面对面问题的建模和处理过程。

指导上机部分(2个学时)

学生在老师的指导下自己上机熟悉ANSYS软件的相关命令,并用软件对例题进行有限元分析。

第六章 热变形问题的有限元分析(讲课2学时)

多媒体教学部分(1个学时)

如何用ANSYS 软件分析计算物体的稳态或瞬态温度分布,以及热量的获取或损失、热梯度、热通量等。

指导上机部分(1个学时)

学生在老师的指导下自己上机熟悉ANSYS软件的相关命令,并用软件计算由于热变形不均匀引起的应力

(三)考试权重

采用累加式的考核方法,即课程的总成绩由各次上机作业的成绩构成。

第一次上机作业成绩20%,第二次上机作业成绩30%,第三次上机作业成绩20%,第四次上机作业成绩20%,第五次上机作业成绩10%。

第二篇:《单片机应用系统设计》课程教学大纲

《单片机应用系统设计》课程教学大纲

Single-Chip Microcomputer Application System Design 课程编号:公选课

适用专业:全校工科类专业

学 时 数:16

学 分 数:1 执 笔 者:王福忠

编写日期:2008年12月

一、课程的性质和目的

单片机技术在通信、家电、自动控制、仪器仪表中得到广泛的应用。单片机应用系统设计是面向工科类专业的一门公共选修课,是一门逻辑性强、理论与实践并重,软硬件结合,内容丰富,知识面宽广的课程。

2.课程任务

通过本课程的学习,使学生对单片微型计算机应用系统有一个系统的了解。掌握单片微型计算机应用系统设计的初步方法,建立有关微型计算机应用系统的初步概念,了解高科技的发展动态,增强学生对后续课程如自动控制原理,微型计算机原理、单片机原理及应用系统等课程学习的兴趣。为其他专业课程的学习和走向工作岗位从事单片机应用的相关工作打下良好的基础。

二、教学要求的基本层次

本课程的教学要求可分为四个层次,即:掌握、理解、应用和了解。1.掌握

对于本课程的重点内容要求学员达到掌握的程度。即要求学员能够全面、深入地掌握所学内容,能够举一反三,熟练解决相关问题。要求学员掌握的内容也就是考试的主要内容。

2.理解

对于本课程的一般内容要求学员能够理解。即要求学员能够理解所学内容,对所涉及的内容能够进行简单的分析和判断。

3.应用

使学生具有一定的单片机应用技能和按要求组织单片机应用系统的初步能力 4.了解

对于本课程的次要内容要求学员能够了解。所涉及的内容都是一些基本概念和简单叙述,知道了就行,没有进一步深入和扩展的要求。二.教学内容和要求 1 单片机基础 1.1 教学内容

(1)单片机的基本概念;(2)单片机的产生与发展;(3)单片机硬件结构;(4)单片机特点及应用; 1.2 教学要求(2学时)本章的基本任务是学习单片微型计算机系统的基本概念、发展概况及应用。单片机与典型微型计算机在结构上的区别。为后续章节奠定基础知识。

掌握:单片微型计算机系统的基本概念、单片机与典型微型计算机在结构上的区别,单片机系统的扩展和配置的概念;

了解:单片机的特点、发展及应用领域,典型单片机系列的基本情况。2 应用系统的基本组成与设计内容 2.1 教学内容

(1)单片机应用系统的一般硬件组成;(2)单片机应用系统的设计内容 2.2 教学要求(2学时)

本章的基本任务是对应用系统的基本组成与设计内容有一个初步了解,为后续章节提供必要的概念基础。

理解:典型单片机应用系统结构、前向通道的组成及其特点和各环节的作用、常见的传感器、后向通道的组成与特点道结构、模拟输出通道的作用、执行机构、人机通道的结构及其特点、单片机应用系统的设计内容。3 单片机应用系统开发过程与内容 3.1 教学内容

(1)单片机应用系统开发主要步骤;(2)总体方案确定;(3)硬件设计;(4)软件设计。

3.2 教学要求(2学时)

本章的基本任务是学习单片机应用系统开发过程与内容。

掌握:单片机应用系统开发主要步骤及内容,总体方案,硬件设计,软件设计等内容与注意的问题。4 人机接口的设计 4.1 教学内容

(1)开关及接口;(2)按键、键盘及接口;(3)LED显示器及接口;(4)液晶显示器(LCD)及其接口 4.2 教学要求(2学时)

掌握:人机接口的基本原理与设计初步方法。5 数据采集技术与输入接口 5.1 教学内容

(1)检测信号与数据放大器;(2)采样保持器及其与微机的连接;(3)A/D转换器 5.2 教学要求(2学时)

掌握:模拟量输入数据采集系统设计原则;模拟输入数据采集系统的结构配置;模拟量输入数据采集系统设计中应注意的问题;模拟低通滤波器(ALF);模拟多路转换器;A/D转换器的选择和使用注意事项。6 控制输出(后向)通道与接口 6.1 教学内容

(1)后向通道中的常用器件;(2)后向通道中的D/A转换技术和接口芯片;(3)执行器类型

6.2 教学要求(1学时)

掌握:后向通道应解决的问题,大功率I/O口接口器件,光电隔离与接口驱动器件,D/A转换接口设计的一般问题,执行器类型。7 数据处理技术 7.1 教学内容(2学时)

(1)标度变换及其程序设计;(2)数字滤波及其程序设计;(3)控制技术及其算法 7.2 教学要求

掌握:线性仪表的标度变换、非线性测量的标度变换、常用的静态滤波算法原理、自动控制系统的基本概念、数字PID算法原理。8 单片机系统的抗干扰技术 8.1 教学内容(2学时)

(1)干扰源及其分类;(2)干扰对单片机系统的影响;(3)硬件抗干扰技术;(4)软件抗干扰技术。8.2 教学要求

掌握:干扰的含义、干扰源的分类、干扰入侵单片机系统的途径、串模干扰的抑制方法、共模干扰的抑制方法、程序执行过程中的软件抗干扰。单片机应用系统举例 9.1 教学内容

(1)单片机应用系统调试工具;(3)单片机应用系统例子 9.2 教学要求(1学时)

掌握:单片机开发系统、万用表、逻辑分析仪等开发工具。

第三篇:ANSYS中坐标系应用及总结

ansys 坐标系 节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标 系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器 /POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用 “Prep7> Move/Modify>Rotate Nodal CS to active CS”, 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。

注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不 是一个转动(Y位移不是theta位移)。

有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括: 输入数据: 1 自由度常数 2 力 主自由度 4 耦合节点 5 约束方程等 输出数据: 节点自由度结果 2 节点载荷 3 反作用载荷等

但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实 现。

总体坐标系

在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系

数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。局部坐标系

局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径 Workplane>Change active CS to>。

节点坐标系

每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加 径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用 “Prep7>Move/Modify>Rotate Nodal CS to active CS”, 选择节点的节点坐标系的 朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些 节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。

注意:节点坐标系总是笛卡尔坐标系。可以 将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。

单元坐标系

单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。

结果坐标系

/Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总 体笛卡尔在坐标系表达。无论节点和单元坐标系如何设定。要恢复径向和环向应力,结果坐标系必须旋转到适当的坐标系下。这可以通过菜单路径 Post1>Options for output实现。/POST26时间历程后处理器中的结果总是以节点坐标系表达。

显示坐标系

显示坐标系对列表圆柱和球节点坐标非常有用(例如, 径向,周向坐标)。建议不要激活这个坐标系进行显示。屏幕上的坐标系是笛卡尔坐标系。显示坐标系为柱 坐标系,圆弧将显示为直线。这可能引起混乱。因此在以非笛卡尔坐标系列表节点坐标之后将显示坐标系恢复到总体笛卡尔坐标系。

ANSYS坐标系总结

工作平面(Working Plane)

工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)

总体坐标系

在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系

数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系

局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径 Workplane>Change active CS to>。

节点坐标系

每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用 “Prep7>Move/Modify>Rotate Nodal CS to active CS”, 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。

注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。

单元坐标系

单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。

结果坐标系

/Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体笛卡尔在坐标系表达。无论节点和单元坐标系如何设定。要恢复径向和环向应力,结果坐标系必须旋转到适当的坐标系下。这可以通过菜单路径Post1>Options for output实现。/POST26时间历程后处理器中的结果总是以节点坐标系表达。

显示坐标系

显示坐标系对列表圆柱和球节点坐标非常有用(例如, 径向,周向坐标)。建议不要激活这个坐标系进行显示。屏幕上的坐标系是笛卡尔坐标系。显示坐标系为柱坐标系,圆弧将显示为直线。这可能引起混乱。因此在以非笛卡尔坐标系列表节点坐标之后将显示坐标系恢复到总体笛卡尔坐标系。

工作平面(Working Plane)

工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)

总体坐标系

在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。它们位于模型的总体原点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系

数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系

局部坐标系是用户定义的坐标系。局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。缺省为总体笛卡尔坐标系。当创建了一个新的坐标系时,新坐标系变为激活坐标系。这表明后面的激活坐标系的命令。菜单中激活坐标系的路径 Workplane>Change active CS to>。

节点坐标系

每一个节点都有一个附着的坐标系。节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。节点力和节点边界条件(约束)指的是节点坐标系的方向。时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加径向约束。首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。这个局部坐标系现在成为激活的坐标系。然后选择圆上的所有节点。通过使用 “Prep7>Move/Modify>Rotate Nodal CS to active CS”, 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。未选择节点保持不变。节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。这些节点坐标系的X方向现在沿径向。约束这些选择节点的X方向,就是施加的径向约束。

注意:节点坐标系总是笛卡尔坐标系。可以将节点坐标系旋转到一个局部柱坐标下。这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。

单元坐标系

单元坐标系确定材料属性的方向(例如,复合材料的铺层方向)。对后处理也是很有用的,诸如提取梁和壳单元的膜力。单元坐标系的朝向在单元类型的描述中可以找到。

结果坐标系

/Post1通用后处理器中(位移, 应力,支座反力)在结果坐标系中报告,缺省平行于总体笛卡尔坐标系。这意味着缺省情况位移,应力和支座反力按照总体笛卡尔在坐标系表达。无论节点和单元坐标系如何设定。要恢复径向和环向应力,结果坐标系必须旋转到适当的坐标系下。这可以通过菜单路径Post1>Options for output实现。/POST26时间历程后处理器中的结果总是以节点坐标系表达。

显示坐标系

显示坐标系对列表圆柱和球节点坐标非常有用(例如, 径向,周向坐标)。建议不要激活这个坐标系进行显示。屏幕上的坐标系是笛卡尔坐标系。显示坐标系为柱坐标系,圆弧将显示为直线。这可能引起混乱。因此在以非笛卡尔坐标系列表节点坐标之后将显示坐标系恢复到总体笛卡尔坐标系。

第四篇:《单片机系统设计与应用(公选)》教学大纲

《单片机系统设计与应用(校公选)》教学大纲

一、课程基本信息

1.课程英文名称:Microcontroller system design and application

2.课程类别:技术基础课程

3.课程学时:总学时32,实验学时32

4.学分:2

5.先修课程:C语言

6.适用专业:所有理工类本专科生

7.大纲执笔:电气信息实验教学中心高凤水

8.大纲审批:电气信息学院学术委员会

9.制定时间:2011年12月

二、课程的目的与任务

本课程是独立开设的实验课,一切从实践应用出发,使学生初步掌握单片机电路设计和单片机程序开发的方法;掌握常用的单片机开发调试工具的使用方法;掌握单片机集成开发环境使用;熟悉常见单片机的性能指标和选型方法;基本掌握单片机系统的设计、组装和调试方法,为以后从事工程技术和科学研究等方面的工作,在实践能力方面打下基础。

三、课程的基本要求

本课程在不影响学生理解的前提下,尽量淡化繁复的单片机工作原理理论,从实际应用出发,着重介绍单片机程序开发方法和硬件设计技巧。包括:常用的单片机设计开发平台、单片机小系统设计方法、单片机程序调试方法和技巧、单片机设计原则和注意事项、常见单片机片上外设的使用、单片机外部器件扩展方法,等。

四、教学内容、要求及学时分配

(一)理论教学

(二)实验教学

1.单片机系统概述验证性教学时数:2 实验目的:

(1)学习和认识什么是单片机;

(2)初步掌握单片机的基本工作原理;

(3)了解和认识单片机系统的硬件组成。

实验仪器设备:单片机通用开发平台,下载器,计算机。

2.单片机开发平台和调试工具使用验证性教学时数:3 实验目的:

(1)学习常用的单片机集成开发环境和下载工具的使用;

(2)学习和认识单片机最小系统板的机构和使用;

(3)学习单片机的IO访问方法。

实验仪器设备:单片机通用开发平台,下载器,计算机。

3.单片机片内资源使用综合性教学时数:3 实验目的:

(1)学习和掌握单片机内数据传递及运算的基本方法;

(2)学习和掌握利用SPI总线驱动七段数码管的方法;

(3)学习和掌握单片机内timer以及中断系统的使用方法。

实验仪器设备:单片机通用开发平台,下载器,计算机。

4.单片机片上外设使用综合性教学时数:3 实验目的:

(1)认识和了解什么是单片机片上外设;

(2)学习利用单片机片载EEPROM存取数据。

实验仪器设备:单片机通用开发平台,下载器,计算机。

5.单片机UART总线使用综合性教学时数:3 实验目的:

(1)认识和学习什么是UART总线;

(2)学习利用RS232接口实现数据传输。

实验仪器设备:单片机通用开发平台,下载器,计算机。

6.单片机I2C总线使用综合性教学时数:3 实验目的:

(1)认识和学习什么是I2C总线;

(2)利用I2C总线实现外部存储器的数据存储。

实验仪器设备:单片机通用开发平台,下载器,计算机。

7.用单片机做个数字温度计综合性教学时数:3 实验目的:

(1)学习和掌握温度的数字化测量方法;

(2)了解基于one-wire总线的数字温度传感器DS18B20的使用方法;

(3)初步掌握综合性程序的设计调试方法。

实验仪器设备:单片机通用开发平台,下载器,计算机。

8.单片机红外接收实验综合性教学时数:3 实验目的:

(1)学习和掌握什么是红外遥控;

(2)初步掌握低速红外数据传输的方法;

(3)初步掌握利用单片机接收、解码红外遥控信号的方法。

实验仪器设备:单片机通用开发平台,下载器,计算机。

9.字符液晶使用综合性教学时数:3 实验目的:

(1)学习和掌握字符液晶的工作原理;

(2)初步掌握字符型液晶的单片机驱动方法和程序编写。

实验仪器设备:单片机通用开发平台,下载器,计算机。

10.单片机PWM波的产生综合性

实验目的:

(1)学习什么是PWM波以及PWM波的简单应用;

(2)学习和掌握PWM的单片机产生方法。

实验仪器设备:单片机通用开发平台,下载器,计算机。

11.单片机A/D转换器使用综合性

实验目的:

(1)初步掌握单片机A/D转换器的使用方法;

(2)利用单片机的片内A/D转换器测量电压。

实验仪器设备:单片机通用开发平台,下载器,计算机。

12.单片机最小系统设计设计性

实验目的:

(1)学习基本的单片机的硬件设计方法;

(2)初步掌握单片机电路设计的基本原则;

(3)能够设计基于单片机最小系统的硬件电路。

实验仪器设备:单片机通用开发平台,下载器,计算机。

在所有设定的实验项目中任选32学时实验。

五、考试考核办法

课程成绩=平时(作业、实验、考勤)50%+考试50%

六、教材及参考书

(一)教材

《单片机系统设计与应用实验指导书》自编

(二)参考书

教学时数:3 教学时数:3 教学时数:3 3

《单片机系统设计与应用实例》,韩志军,机械工业出版社

第五篇:ANSYS在《材料力学》教学中的应用

ANSYS在《材料力学》教学中的应用

href=“#”>

【摘 要】结合材料力学课程的特点和教学过程中的实际情况,通过实例介绍了ANSYS在材料力学教学中的应用,通过计算机仿真手段在课堂中的应用,使教学内容更加直观生动,对提高教学质量、激发学生学习兴趣等方面取得了良好的教学效果。

【关键词】材料力学 ANSYS 教学方法

【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)12-0024-02

【Abstract】Some applications of ANSYS on teaching of mechanics of materials were introduced by the characteristic and teaching process in mechanics of materials.When the CAE was applied in mechanics of materials teaching, it can make the course more vivid.This means gains good teaching effect to inspiring study interest, improving quality of teaching.【Key words】Mechanics of materials ANSYS Teaching method

随着计算机应用的普遍深入,将计算机应用软件应用到高等教育教学课堂中去,已被越来越多的教师和学生接受,通过实践证明,该方法可以大大提高学生的学习兴趣。《材料力学》课程是我国各高等院校机械类及相近专业普遍开设的一门重要的专业技术基础课,该课程知识点较多,知识相对零散,学生学习起来易感到枯燥,为提高学生学习兴趣,将大型计算机应用软件ANSYS技术融入到课堂教学中去,既可以让学生学习、了解计算机辅助工程,又可以增加材料力学课程的趣味性。

一、计算机应用软件ANSYS的特点

计算机辅助工程的应用软件较多,而进行力学方面分析的软件ANSYS功能较为强大,该软件是世界范围内增长最快的CAE软件,能够进行包括结构、热、声、流体等方面的研究,具有强大的数值计算和仿真功能,能够对材料力学的弹性变形体进行有效的计算。因此将ANSYS与材料力学教学有机结合,可以增强教学效果,提高教学质量,让学生在复杂的计算后看到一些更直观的图像,有利于对理论计算过程的理解。

二、利用ANSYS图像绘制功能展现弹性体变形情况

ANSYS软件有强大的图像绘制功能,可以将整个变形体的变形过程很好的绘制出来,让学生对变形体的变形过程有更加直观的理解,让理论计算与形象思维有机结合起来。

例1,求某一工字钢梁在弯曲时的某点的挠度。求解工字钢在力P作用下A点的变形,已知:P=4000lb,L=72in,IZZ=833in4,E=29E6psi,H=12.71in,横截面面积A=28.2in2。

用有限元分析软件

ANSYS进行分析时可以

将工字钢梁简化为一条

直线,然后对其建模、输入参数、网格划分、施加约束并进行加载,最后求解得出所要结果。

利用ANSYS图形绘制功能得出梁变形后曲线及A点挠度。从图2可以看出A点挠度为0.020601,与利EI用计算公式计算 的结果,与仿真结果相符合,从图中我们可以

看出变形之后的曲线及挠曲线形状。

例2,利用ANSYS动画仿真功能模拟细长压杆失稳。

框架结构的端部固定端约束,横截面是边长为150mm的正三角形构架,框架总长15m,分成15小结,每小节长1m,求该结构顶部三角顶点受相同集中载荷作用时的屈曲临界载荷。已知所有杆件均为空心圆管,内半径为4mm,外半径为5mm,所有接头均为完全焊接。材料弹性模量为E=1.0×1011psi,泊松比μ=0.35。

框架结构模型见图3。通过对框架结构进行建模、加载,通过ANSYS有限元分析得出框架的十阶模态,列表见图4。

通过求解可以看出一二阶相等,三四阶相等依次类推,出现这种情况的原因是因为横截面为正三角形,对X和Y的惯性矩相等。所以只展现奇数阶屈曲模态图。

一阶屈曲模态见图5;三阶屈曲模态见图6;五阶屈曲模态见图7;七阶屈曲模态见图8;九阶屈曲模态见图9。

利用ANSYS里面的动画演示功能演示框架的屈曲变形,给学生以形象直观的视觉效果。也可以使学生更好的理解临界力的

表达式 中n取不同整数时不同临界力的屈曲变形情况,在教学中学生经常会不理解计算的欧拉公式是取的n=1时最小压力,当n取其他值时会出现什么情况想象不出来,经过ANSYS的分析得出多阶屈曲模态,使抽象的理论变为形象的动画,使学生更容易理解细长杆受压时的屈曲现象,有助于更好的理论学习。

这里仅举出了一些简单的例子进行说明ANSYS在材料力学中的应用,一些复杂的情况也可以在软件中进行求解。

三、在课堂中渗入ANSYS应用

随着计算机技术的普及,在专业基础课程教学中渗入计算机应用技术已成为必然,计算机辅助工程(CAE)是计算机技术与现代工程方法的完美结合,ANSYS软件以它强大的分析功能成为CAE软件的应用主流。材料力学课程是机械工程等专业所必修课程之一,将CAE技术融入到课堂中去,使学生提前了解CAE技术,为今后计算机应用技术的学习打下良好的基础,同时也增加了专业基础课的学习兴趣。

四、结束语

材料力学课程的知识点较多,计算较为复杂,学生学习起来容易感到枯燥、失去学习兴趣,ANSYS软件具有强大的计算功能,能够将复杂的问题以图像和动画的形式反映出来,有助于提高学生的学习兴趣,从而提高教学质量。

参考文献 王建江.ANSYS11.0结构与热力学有限元分析实例指导教程[M].北京:机械工业出版社,2008 张良田.教学手段论[M].长沙:湖南教育出版社,1999

刘鸿文.材料力学[M].北京:高等教育出版社,2004

下载ANSYS系统及其应用教学大纲word格式文档
下载ANSYS系统及其应用教学大纲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《单片机应用系统设计技术》教学大纲[5篇范文]

    《单片机应用系统设计技术》教学大纲 中文名称: 单片机应用系统设计技术 英文名称: Application system designing technique of the one-chip computer 开课学院: 计算机科学......

    在系统可编程技术及应用课程教学大纲

    《在系统可编程技术及应用》课程教学大纲 一、 课程的性质、目的与任务 在现代数字系统设计中,在系统可编程逻辑器件的使用越来越广泛。《在系统可编程技术及应用》是电子信......

    ansys学习心得

    常规设置 1. 调整显示精度,以使图形看起来更清晰逼真,把参数调到最小,2. CATIA制图自动生成尺寸的命令设置(Dimension generation),更新图纸时建立尺寸:每次更新后,会自动将标注......

    集成系统教学大纲

    《图书馆集成系统》教学大纲 一 说明 课程性质与特点:图书馆集成系统是图书馆自动化管理的重要工具;是计算机管理系统在图书馆现代化管理中的具体应用。 在专业教学计划中的地......

    嵌入式系统教学大纲

    《嵌入式系统》课程教学大纲 课程名称: 嵌入式系统 课程编码:51610209 学时: 44 学分:2.5 开课学期:7 课程类别:专业平台课程 课程性质:必修 适用专业:电子信息科学与技术 电子信息......

    应用语言学教学大纲

    《应用语言学》教学大纲 一、课程基本信息 1.课程编号:AA00620 2.课程名称:应用语言学 3.英文名称:Applied linguistics 4.课程简介:是播音与主持艺术专业(礼仪文化)的一门学科平......

    《应用写作》教学大纲

    《应用写作》教学大纲 第一部分大纲说明一、课程性质及教学目的和要求《应用写作》是吉林广播电视大学开放教育法学专业、小学教育专业、英语专业、公共事业管理专业、行政......

    《应用写作》教学大纲

    《应用写作》教学大纲绪论 第一章主旨和材料 第一节 主旨 第二节 材料 第二章 思路与结构 第一节 思路 第二节 结构 第三章 语言与表达 第一节 语言 第二节 表达 第四章 修......