探索三角形全等的条件(三)教学案

时间:2019-05-15 01:45:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《探索三角形全等的条件(三)教学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《探索三角形全等的条件(三)教学案》。

第一篇:探索三角形全等的条件(三)教学案

探索三角形全等的条件

(三)教学案

课题:探索三角形全等的条件

(三)课型:新授课 课程标准:

对于本节课内容课标要求:探索并掌握两个三角形全等的条件;注重所学内容与现实生活的联系,注重经历观察、操作、推理、想像等探索过程.初步建立空间观念,发展几何直觉;在探索并掌握两个三角形全等的条件,与他人合作交流的过程中,发展合情推理,进一步学习有条理的思考与表达.学习内容:

对于全等三角形的研究,实际是平面几何中研究封闭的两个图形关系的第一步.它是两三角形间最简单、最常见的关系.本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形之后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、角相等的重要依据.同时,《课标》将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用.因此,本节课的知识具有承上启下的作用.学情分析:

七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要不断创造条件和机会,让学生发表见解,充分发挥学生学习的主动性,体现学生的主体地位.学习目标:

1、使学生掌握并初步学会应用三角形全等的判定——边角边公理

2、指导学生分析问题,寻找判定三角形全等的条件.

3、三角形全等证明的书写格式 评价设计:

1、通过创设情境,检测目标一,二的达成

2、通过三角形全等应用,检测目标三的达成 学习过程:

一、复习提问

1.怎样的两个三角形是全等三角形?2.全等三角形的性质?

3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能 使它们完全重合:

图(1)中:△ABD≌△ACE,AB与AC是对应边; 图(2)中:△ABC≌△AED,AD与AC是对应边.

二、新课 创设情境

(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:

如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?

不难看出,这两个三角形有三对元素是相等的:

AO=CO,∠AOB= ∠COD,BO=DO.

如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.

(附注:此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1(2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.

2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:

(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够 2 完全重合? 3.边角边公理.

有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三角形全等判定Ⅰ的应用 1.填空:

(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是()=();还需要一个条件()=()(这个条件可以证得吗?).

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:()=(),()=()(这个条件可以证得吗?). 2.例题

例1 已知: AD∥BC,AD= CB(图3).求证:△ADC≌△CBA.

问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF= CE或AE =CF)?怎样证明呢?

例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE. 小结:

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理. 3.证明的书写格式:

(1)通过证明,先把题设中的间接条件转化成为可以直接用于判定三角形全等的条件;

3(2)再写出在哪两个三角形中:具备按边角边的顺序写出可以直接用于判定全等的三个条件,并用括号把它们括起来;(3)最后写出判定这两个三角形全等的结论. 作业:

1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.

教后分析:

1.从本节课开始,学生要逐步学习几何命题的证明,正式进入逻辑推理的系统训练阶段,也是学生学习推理的入门阶段,因此,要把增强学生学习几何的兴趣和信心,作为本课的首要任务。

2.本节内容要学习“SAS”公理,并进行简单的三角形全等的证明,教材通过画图剪纸实验让学生自己发现“SAS”公理,学生对使用量角器画相等角可能较生疏,这是本节的一个难点,因此,我注意指导学生正确使用量角器,准确画图,以免影响“SAS”公理内容的学习和冲淡运用公理证题的训练。

第二篇:11.1全等三角形教学案

§11.1 全等三角形

教学目标

1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 教学重点

全等三角形的性质. 教学难点

找全等三角形的对应边、对应角. 教学过程

Ⅰ.提出问题,创设情境

1.观察下列图案,指出这些图案中中形状与大小相同的图形

2.学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板、完全一样.

3.获取概念

形状与大小都完全相同的两个图形就是 .(要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.)即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念: 对应顶点:、对应角:、对应边:。“全等”符号: 读作“全等于”

Ⅱ.导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

ADBADAECBC甲EF乙DB丙C

议一议:各图中的两个三角形全等吗?

不难得出: ≌△DEF,△ABC≌,△ABC≌ .(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,•但、都没有改变,所以平移、翻折、旋转前后的图形

,这也是我们通过运动的方法寻求全等的一种策略.

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质:

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.

COADB

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.

ABDEC

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.

AEOBCD

Ⅲ.课堂练习

(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、DABD对应边、对应角

BCAoOADBDBCDACACDB

ACD

CDA

(2)如图,ABEACD,AB与AC,AD与AE是对应边,已知:A43,B30,求ADC的大小。

Ⅳ.课时小结

Ⅴ.作业

1.教材:第四页习题:第1题,第2题 2.《创新设计》

ADEBC

第三篇:全等三角形

复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。

活动二:讲授新课 全等三角形的判定条件的探究 首先提出

问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。

问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的 情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。

问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。

活动三:题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题。

第四篇:全等三角形判定3导学案

全等三角形判定3(SSS)

学习目标:能说出三角形全等的判定“边边边”的内容,能用数学语言表示这个判定定理.2 能用“边边边”判定两个三角形全等,并会利用该定理进行简单的推理与计算.3 知道三角形具有稳定性。并会在实际生活中进行简单应用.学习重点:全等三角形“边边边”的判定方法及应用.预习导学————不看不讲

一 已知三边作三角形

摆一摆:用长为4cm、6cm、8cm的木棒摆成三角形,组内互相观察一下,大家摆出的三角形形状和大小一样吗?

画一画:已知三角形的三边长分别为4cm、6cm、8cm,你能画出这个三角形吗?如果可以,把你画的与小组内的同学进行比较,观察是否全等,然后剪下来,看能不能重合? 作图:

已知:ABC.求作:ABC,使BCABAB,BCBC,CACA.(用尺规作图)

二 “边边边”的判定

三边对应_______的两个三角形全等,简记为“边边边”或_________.三 三角形的稳定性

只要三角形三边的长度确定了,这个三角形的形状和大小就_________,这个性质叫做_______.(生活中有很多实例,如:)

合作探究————不议不讲在下列图中找出全等三角形。(图略,见课本100页练习1)

2你能举出周围运用三角形稳定性的实例吗?和同学交流。

3已知:如图,点B、E、C、F在同一直线上,ABDE,ACDF,BECF.求证:AB//DE,AC//DF.BECF4 已知:如图,在ABC中,点ABAC.点D、E在BC上,且ADAE,BECD.求证:ABDACE.作业:略

小结:

我的收获与质疑:

第五篇:《探索三角形全等的条件》教学设计

《探索三角形全等的条件(2)》

教学设计

教学目标:

1.经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程;

2.掌握三角形全等的“角边角”,“角角边”条件;

3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。教学重点:

掌握三角形全等条件“ASA”和“AAS”,并能应用它们来判断两个三角形是否全等。教学难点:

能够进行有条理的思考和简单推理 教学方法:探索、归纳总结。

教学工具:量角器、刻度尺、白纸、剪刀。【教与学互动设计】: 1.内容回顾

如图,在△ABC中,AB=AC,AD是BC边上的中线,△ABD和△ACD全等吗?你能说明理由吗?

三边对应相等的两个三角形全等

2、创设问题情景,引入新课 我们在前面学习了给出三个条件判断两个三角形是否全等中的: 三边,三角。今天我们来研究给出“两角一边”两个三角形能否全等。“两角一边”有几种可能性?——两角和它们的夹边;两角和其中一角的对边 探究练习1.两角和它们的夹边 将学生分组小组分工合作完成下列问题: 画一个△ABC使它满足以下条件: 第一组:∠A=90°, ∠B=30°,AB=10cm 第二组: ∠A=60°, ∠B=45°,AB=9cm 学生动手操作,完成问题后,小组交流比较,看看能得到什么结论?学生表述,老师板书:

两角和它们的夹边对应相等的两个三角形全等;(简写为“角边角”或者 “ASA”)(老师适当表扬,引出下列问题): 探究练习2.两角和其中一角的对边

比如三角形的两个内角分别是60 和45,一条边长为10cm,情况会怎样呢?(1)

如果60 角所对的边为10cm,你能画出这个三角形吗?(2)

如果45 角所对的边为10cm,那么按这个条件画出的三角形都全等吗?

结论:两角和其中一角的对边对应相等的两个三角形全等 简写为“角角边”或者“AAS”

思考:若两个三角形具备两角和其中一个角的对边分别相等,哪么这两个三角形全等,你认为对吗?能举例说明吗? 3.举例应用:

1.如图,O是AB的中点,∠A= ∠B,△AOC与△BOD全等吗?为什么?

(学生看图师生共同完成)

举例2.如图:已知BD=CE,∠B=∠C,△ABD与△ACE全等吗?为什么?

(学生通过自己思考,自己做出,老师点评)

结:本节课你学到了什么?发现了什么?有什么收获?还存在什么没有解决掌握三角形的“角边角”“角角边”条件,能够进行有条理的思考并进行简单的推理。

业:

习题5.8 知识技能1、2、3

下载探索三角形全等的条件(三)教学案word格式文档
下载探索三角形全等的条件(三)教学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《探索三角形全等的条件》说课稿(5篇)

    《探索三角形全等的条件》说课稿 各位老师,你们好! 我今天说课的内容是《探索三角形全等的条件1》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我......

    《全等三角形的判定3》导学案

    http://blog.sina.com.cn/shuxue725《全等三角形的判定3》导学案一、学习目标:1、掌握“已知两角及夹边画三角形”的方法。2、掌握角边角公理及推论角角边定理,能较熟练地运......

    11.2 三角形全等的判定教学案

    11.2三角形全等的判定 一、教学目标 1、三角形全等的“边边边”的条件. 2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. 二、重点难点 教学重点......

    全等三角形说课稿

    《全等三角形(第一课时)》说课稿 一、教材简介: 义务教育课程标准实验教科书鲁教版五四学制初中数学七年级下册第十章第一节《全等三角形》第一课时。 二、教学目标: 1、课程标......

    全等三角形教案

    1 11.1全等三角形 教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质 3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉, 4 学生通......

    全等三角形教案

    15.1 全 等 三 角 形 教材内容分析: 本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学......

    全等三角形证明

    全等三角形的证明1.翻折如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;旋转如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;平移如图(3),DEF≌ACB,DEF可以看成是......

    全等三角形测试题

    全等三角形测试题 ( 出题人孟令震2011 9 12 ) 一.选择题: 1. 在△ABC和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保证△ABC ≌△A’B’C’, 则补充的这个条件......