11.2 三角形全等的判定教学案

时间:2019-05-15 03:04:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《11.2 三角形全等的判定教学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《11.2 三角形全等的判定教学案》。

第一篇:11.2 三角形全等的判定教学案

11.2三角形全等的判定(1)

一、教学目标

1、三角形全等的“边边边”的条件.

2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.

二、重点难点

教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件.

A'

三、合作探究 A1、复习:什么是全等三角形?全等三角形有些什么性质? 如图,△ABC≌△A′B′C′那么

C'B'BC相等的边是: 相等的角是:

2、合作探究(周围同学配合)三组对应边相等的两个三角形全等

已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? a.作图方法:

b.以小组为单位,把剪下的三角形重叠在一起,发现,•这说明这些三角形都是 的.

c.归纳:三边对应相等的两个三角形,简写为“ ”或“ ”. d、用数学语言表述:

A'A在△ABC和A'B'C'中, ABA'B'∵AC ∴△ABC≌ BCBCB'C'用上面的规律可以判断两个三角形 .判断,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.

四、精讲精练

1、精讲

1、如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.

求证:△ABD≌△ACD. A

证明的书写步骤:

①准备条件:证全等时要用的间接条件要先证好; BDC

②三角形全等书写三步骤:

A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。

2、尺规作图。

已知:∠AOB.求作:∠DEF,使∠DEF=∠AOB

2、精练

1、如图,AB=AE,AC=AD,BD=CE,求证: △ABC ≌ △ ADE。

2、已知:如图,AD=BC,AC=BD.求证:∠OCD=∠ODC

五、课堂小结: SSS

六、作业:

1、第15页习题11.2 1-2 2、第16页第9题

第二篇:12.2.4__三角形全等的判定教学案“HL”

12.2.4 三角形全等的判定---“HL”

主备人: 9月23日

学习目标

知识与技能 1.、掌握直角三角形全等的条件,并能运用其解决一些实际问题

过程与方法

2、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程; 情感态度价值观:

3、在学习过程中,通过交流合作,使学生体会成功的喜悦。教学重难点:运用直角三角形全等的条件解决一些实际问题。

一、自主探究

情境导入:舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?

方法一:测量斜边和一个对应的锐角.(AAS)方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)⑵ 如果他只带了一个卷尺,能完成这个任务吗?

工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?下面我们来验证一下吧。探索练习:(动手操作):

已知线段a,c(a

1、按步骤作图: a c ① 作∠MCN=∠=90°,② 在射线 CM上截取线段CB=a,③以B 为圆心,C为半径画弧,交射线CN于点A,

④连结AB

2、与同桌重叠比较,是否重合?

3、从中你发现了什么?

斜边与一直角边对应相等的两个直角三角形全等.(HL)

二、尝试应用:

(例题)如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由

答: 理由:∵ AF⊥BC,DE⊥BC(已知)

∴ ∠AFB=∠DEC= °(垂直的定义)

在Rt△ 和Rt△ 中

_______________ ________________∴ ≌()

∴∠ = ∠()∴(内错角相等,两直线平行)

1、如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”)根据(用简写法)

2、判断两个直角三角形全等的方法不正确的有()

(A)两条直角边对应相等(B)斜边和一锐角对应相等(C)斜边和一条直角边对应相等(D)两个锐角对应相等

3、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。

三、补偿提高:如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据

(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,根据(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据

四、课时小结

至今,我们一共学习了6种全等三角形的判定方法。思考一下它们的适用范围?

五、当堂达标

如图,AC=AD,∠C,∠D是直角,你能说明BC与BD相等吗?

A

六、作业

A组课本习题12.

1、2题,同步自我尝试; B组同步自我尝试和开放性作业; C组同步开放性作业和拓展性学习

七、课后反思

C B

D

第三篇:全等三角形判定3导学案

全等三角形判定3(SSS)

学习目标:能说出三角形全等的判定“边边边”的内容,能用数学语言表示这个判定定理.2 能用“边边边”判定两个三角形全等,并会利用该定理进行简单的推理与计算.3 知道三角形具有稳定性。并会在实际生活中进行简单应用.学习重点:全等三角形“边边边”的判定方法及应用.预习导学————不看不讲

一 已知三边作三角形

摆一摆:用长为4cm、6cm、8cm的木棒摆成三角形,组内互相观察一下,大家摆出的三角形形状和大小一样吗?

画一画:已知三角形的三边长分别为4cm、6cm、8cm,你能画出这个三角形吗?如果可以,把你画的与小组内的同学进行比较,观察是否全等,然后剪下来,看能不能重合? 作图:

已知:ABC.求作:ABC,使BCABAB,BCBC,CACA.(用尺规作图)

二 “边边边”的判定

三边对应_______的两个三角形全等,简记为“边边边”或_________.三 三角形的稳定性

只要三角形三边的长度确定了,这个三角形的形状和大小就_________,这个性质叫做_______.(生活中有很多实例,如:)

合作探究————不议不讲在下列图中找出全等三角形。(图略,见课本100页练习1)

2你能举出周围运用三角形稳定性的实例吗?和同学交流。

3已知:如图,点B、E、C、F在同一直线上,ABDE,ACDF,BECF.求证:AB//DE,AC//DF.BECF4 已知:如图,在ABC中,点ABAC.点D、E在BC上,且ADAE,BECD.求证:ABDACE.作业:略

小结:

我的收获与质疑:

第四篇:全等三角形 判定2

波峰中学初二数学导学案作业A(课前)

姓名______班级___组别___编制_______时间______编号_____

课题:全等三角形

山重水复疑无路,柳暗花明又一村

波峰中学初二数学导学案作业B(课后)

姓名______班级___组别___编制_______时间______编号_____

课题:全等三角形

基础题(共15分)

1、如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?)。

2、如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:一是___________,二是

____________还需要一个条件________________(这个条件可以证得吗?)

3、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。

A

BD

山重水复疑无路,柳暗花明又一村

提高题:(共30分)

1、已知:如图,AB=AC,F、E分别是AB、AC的中点。求证:△ABE≌△ACF。

2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.

求证:△ABE≌△CDF.

3、(中考链接)已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证: △ABD≌△ACE

B

A

D

E

满分共45分,学生得分_______ 【日期】________月___________日 【批语】

____________________________

第五篇:11.1全等三角形教学案

§11.1 全等三角形

教学目标

1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 教学重点

全等三角形的性质. 教学难点

找全等三角形的对应边、对应角. 教学过程

Ⅰ.提出问题,创设情境

1.观察下列图案,指出这些图案中中形状与大小相同的图形

2.学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板、完全一样.

3.获取概念

形状与大小都完全相同的两个图形就是 .(要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.)即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念: 对应顶点:、对应角:、对应边:。“全等”符号: 读作“全等于”

Ⅱ.导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

ADBADAECBC甲EF乙DB丙C

议一议:各图中的两个三角形全等吗?

不难得出: ≌△DEF,△ABC≌,△ABC≌ .(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,•但、都没有改变,所以平移、翻折、旋转前后的图形

,这也是我们通过运动的方法寻求全等的一种策略.

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质:

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.

COADB

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.

ABDEC

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.

AEOBCD

Ⅲ.课堂练习

(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、DABD对应边、对应角

BCAoOADBDBCDACACDB

ACD

CDA

(2)如图,ABEACD,AB与AC,AD与AE是对应边,已知:A43,B30,求ADC的大小。

Ⅳ.课时小结

Ⅴ.作业

1.教材:第四页习题:第1题,第2题 2.《创新设计》

ADEBC

下载11.2 三角形全等的判定教学案word格式文档
下载11.2 三角形全等的判定教学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形判定 课堂实录

    12.2三角形全等的判定题外话:先给大家谈一个教师节前一天发生在我身上的一件真实的事情。从中学到教管会,对于我这样一个路痴老师来说,竟然在镇上转到半个多小时。高德地图竟然......

    《全等三角形判定》说课稿

    《全等三角形判定》说课稿 一、教材分析: 教材的地位和作用 这节课是一节新授课。 本节是初中几何第一册第三章“三角形”第二部分的重要内容。三角形是最常见的几何图形之一......

    《全等三角形的判定3》导学案

    http://blog.sina.com.cn/shuxue725《全等三角形的判定3》导学案一、学习目标:1、掌握“已知两角及夹边画三角形”的方法。2、掌握角边角公理及推论角角边定理,能较熟练地运......

    三角形全等判定(sss)说课稿

    《全等三角形的判定》说课稿 各位老师: 大家好!我说课的内容是人教版义务教育标准实验教科书八年级数学第十一章第二节《全等三角形的判定1》,下面我从教材分析、教学目的的确......

    全等三角形判定一教案

    《全等三角形判定一》教案设计 教学目标 一、知识目标 1、熟记边角边公理的内容 2、能用边角边公理证明两个三角形全等 二、能力目标 1、通过边角边公理的运用,提高学生的逻......

    12.2 三角形全等的判定

    学习方法报社 全新课标理念,优质课程资源 12.2 三角形全等的判定(1) 教学目标 1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性. 3.经历探索三角形全等条件的过程,体会利用......

    三角形全等的判定教案

    三角形全等的判定教案 第3课时 11.2.3三角形全等的判定(3)【教学目标】:1、知识与技能: 1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结. 3.掌握三角形全等的“角边角”......

    全等三角形的判定教案

    全等三角形的判定(第4课时) 教学任务分析 一、教学目标 1、知识技能: 1)掌握全等三角形的4种判定方法; 2)利用三角形全等的判定方法证明三角形全等; 3)通过证明三角形的全等,利用......