第一篇:三角形全等的判定教学设计说明
教学设计说明
一、本课数学内容的本质、地位和作用分析
本课内容选自人教版《义务教育课程标准实验教科书·数学》八年级上册“11.2三角形全等的判定”(第三课时).全等三角形是研究图形的重要工具,只有掌握全等三角形的有关内容,并且能灵活的加以运用,才能学好等腰三角形、四边形和圆等内容,同时为今后研究轴对称、旋转等全等变换打下良好的基础.此外,也由于它在日常生活中有着广泛的应用,研究全等三角形,具有重要的意义.
发展学生的合情推理和初步的演绎推理能力是《数学课程标准》的重要要求之一.本章是在七年级下册第七章出现证明和证明格式的基础上,进一步介绍了推理论证的方法.通过定理内容的规范化书写,并在例习题中注重分析思路,让学生学会思考、学会清楚地表达思考的过程,可以进一步培养学生的推理能力.同时,“11.2三角形全等的判定”中几种判定方法,是作为基本事实提出来的,通过画图和实验,让学生确信其正确性,符合学生的认知水平.这样的分析问题、解决问题的方法,对全章乃至以后的学习都是至关重要的.
本节课是全等三角形判定的第三课时,主要探究利用“角边角”和“角角边”两种方法判定三角形全等,以及简单应用.探索三角形全等的条件,不仅是“全等三角形”知识体系的重要组成部分,而且在探索过程中所体现的思想方法,为学生主动获取知识、感悟三角形全等的数学本质、积累数学活动经验、体验运用类比的方法研究问题等,提供了很好的素材.通过本节课的学习,可以加深学生对已学几何图形的认识,并为今后的学习奠定基础.
本节课的重点是:掌握角边角和角角边两个判定三角形全等的方法及简单应用.二、教学目标分析
(一)目标
1.掌握角边角、角角边判定方法的内容.2.学会分析法、综合法解决问题.3.让学生在数学学习的过程中获得解决问题的经验.4.逐步养成良好的个性思维品质.(二)目标解析
1.使学生掌握角边角、角角边判定两个三角形全等的方法,会运用这两种方法解决问题.2.通过有关的证明及应用,教给学生一些基本的数学思想方法,使学生逐步学会分别从题设或结论出发,寻找论证思路,学会用综合法证明问题,从而提高学生分析问题、解决问题的能力.3.通过学生探究特殊角度、特殊边长的三角形全等的条件,再由教师利用课件演示数学事实,让学生充分参与到数学学习的过程中来,获得解决问题的经验;通过习题变式,从中体会事物之间的相互联系与区别,从而进一步培养学生的辩证唯物主义观点.4.探究本课的两个判定方法,使学生经历“实践——观察——猜想——验证——归纳——概括”的认知过程,培养学生良好的个性思维品质.
三、教学问题诊断分析
基于学生的学习基础,在研究几何图形的方法和合情推理方面还存在欠缺.本节课是学生在已经掌握了边边边和边角边判定之后,继续探索三角形全等的条件.他们已经了解了一些探究的思路,也经历过一些探究的过程:动手实践、观察猜想、归纳总结、巩固应用等.因此,本节课的学习,可以引导学生类比前面的研究方法.另外,由于本节课所探究的两种方法,其图形不易辨别,那么,学生如何分析图形之间的内在联系,如何清晰地表达数学思考的过程,也是教师应要特别关注的问题.教学难点是利用角边角、角角边判定两个三角形全等方法的应用及规范化书写.四、教法特点以及预期效果分析
根据本节课内容的特点,为了更直观、形象的突出重点、突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式,在教学过程中,通过设置一系列例题变式,创设问题情境,启发学生思考,利用计算机和《几何画板》软件,结合操作测量,让学生亲身体验知识的产生、发展和形成的过程.
为加强本节课所学内容与实际生活的联系,在教学设计中,加入了一个应用所学知识解决实际问题的环节,使学生了解数学知识可以为生活和生产的需要服务.
在学生推理能力培养方面,本节课首先通过几个证明线段长度相等的例习题,体会转化的思想方法,让学生学会思考问题.通过问题的解决,体会合情推理的作用.接着通过图形的轴对称和旋转变换,让学生理解各图形之间的联系,从而在遇到问题时能快速找出有效的解法,提高解决问题的能力,并为今后的学习奠定基础.最后通过开放题的练习,培养学生思维的灵活性和发散性,提高其分析问题和解决问题的能力.
第二篇:全等三角形判定教学反思
全等三角形判定教学反思
本节课主要想让学生明白三个问题:一是了解研究任何一个几何对象的路径;二是经历探究SSS基本事实的全过程;三是SSS基本事实的巩固应用。
对于第一个问题,我认为,数学研究是有路径与研究程序的,怎样从已知走向未知,路径很重要,没有明确的路径,处于迷路状态的教学,学生是不清楚的、混沌的、迷茫的,教学是费时费事的,效果是事倍功半的,打了折扣的。老师只有清楚研究路径,才能教会学生知识产生、形成和发展的来龙去脉,才可能让学生明白这节课要研究什么,它从哪里来?要到哪里去?通过本节课的学习,学生很清楚全等三角形的判定是全等三角形的定义、性质之后的必经之路,而本节SSS的研究,又为后续其它几个判定的研究提供了经验与策略。
对于探究SSS判定,应该让学生亲身经历探究的全过程,让学生从一个条件到两个条件、三个条件,逐步有序探究,自己经历画图(正或反例图形)、观察、判断的全过程,在此探究的过程中,动用自己的体感(动手操作、动眼观察、动口交流)和心感(直觉的认知与实践结果的契合度是否一致?对大脑固有观念和心里的执念产生碰撞与交流),多方位的感知,对不同条件下得到的不同结论的判断更明晰,更准确。只有亲身经历这样的过程,才能真正从学生的每一个个体去感知为什么是用3个条件可以判定全等,而一个条件、两个条件为什么不行,6个条件又为什么不必要。在此过程中,学生不是被动地等着老师灌输,而是主动探究、主动认知,对获得的结论更是认可的。只有这样的学习,效果才是事半功倍的。
探究之后,SSS判定的应用环节的练习设计,紧抓课本例题,在例题上大做文章。先是在例题结论上拓展,AD平分∠BAC吗?AD⊥BC吗?进而对例题图形与结论再进行变式1,△ABD保持不变,将△ADC翻折后,如图所示,根据条件,证明的结论除全等外,再判断线段是否平行。如果去掉AD,结论还成立吗?而变式2与变式3在翻折的基础上进一步平移,得到两种不同的图形,改变一条边的条件,变直接条件为间接条件,逐步提高难度的情况下,继续提出问题:上述结论还成立吗?并开放问题结论,由学生自主获取还有哪些结论?在作业环节,进一步要求学生,运用翻折、平移、旋转来改变例题的图形,设计新的问题,并写出完整的解答过程。这样设计的目的,是以例题为“根”,逐步变式是“开枝散叶”,到作业完成是“枝繁叶茂”。课堂变式完成后,最重要的一个环节就是教师要引导学生对解题方法与学法进行指导、点拨与小结。明白老师设计的目的是:将△ABD的静与△ACD的动相结合,借助于翻折、平移、旋转的图形变换,达到静动结合,从而形成千变万化的题目,而这些千变万化的题目背后的本质却是一个,那就是运用“SSS”判定,证明三角形全等,进而证明角等,最后由角的问题转化线段的问题(线段或平行或垂直或平分角)。要明确告知学生,“多题归一”的妙处,要有“解一题而通一片”的解题境界追求。在“SSS”判定的应用环节,通过丰富多彩的题目一方面牢牢巩固了判定,而另一方面更为重要的是做完这组题目之后的小结,对学法和思维的指导,起到了画龙点睛的作用。
存在的问题:时间不够用,拖堂。
原因分析:1、学生动手能力差,几乎没有任何经验,老师没训练过,探究时间长,不会探究,耽误时间。
2、师生首次配合,磨合不够,适应需要时间,课堂节奏注意调整。
解决方法:1、在探究一个条件时,学生画图后老师也给出一个图形让学生观察,由于老师给出图形的特殊性,学生可以由这个图发现同时满足一个条件与两个条件中的很多反例,从而来节约时间。如图所示。
2、让学生观察手中的一幅三角板,作为反例,节约时间。
3、老师提前进行示范,做好引路,节约时间。
4、课前进行尺规作图的复习,以便顺利解决本节作图问题,节约时间。
第三篇:《全等三角形判定》教学反思
论文题目:《全等三角形判定》教学反思 知识点编码:10222311020 工作单位:广州市第八十九中学 作者姓名:黄冬梅
职务职称:中学数学一级教师 联系电话:*** 电子信箱地址:zyzhdm@sohu.com
问:“从一个元素到二个元素再到三个元素„„,一步一步地探索下去的思路是正确的,但不够具体,请同学们将元素所代表的具体情况(边或角)写出,并进一步画出草图表示对应相等的边角位置。”小组讨论,分类如下:
二个元素一个元素一个角两条边一条边一条边和一个角边角相邻边角相对两个角三个元素三条边两条边和一个角边角边两边与一边对角一条边和两个角角边角角角边三个角
可以说,通过这样分类的学习,达到了两个目标:(1)渗透数学的分类思想;(2)明确对应关系,使得后继学习变得顺利。
2、容量问题。“与其把学生当天津鸭儿添入一些零碎知识,不如给他们几把锁匙,使他们可以自动去开发文化的金库和宇宙之宝藏。” 本课为了达到内容的完整性和思路的连续性----找两个三角形全等的判定,将“找的方法”-----分类和验证得出结论,放在一节课上,使人觉得容量比较大。造成“容量大”的原因主要在画图验证上,而画图验证的过程中以学生画图占用的时间最长,弄不好整节课就好像在上画图课,而学生画图并不困难。因此,我将本课学习分为两部分完成,第一部分是画图和识图,放在课前学习,(1)要求学生按所给的不同的3个条件(附上作图步骤),画出6个图并在图注上已知条件,剪下来备用。在课堂上需验证时才取出与小组同学对比,是否全等。实际上,学生在上课前早已忍不住进行了对比,正为有的三角形与同学的全等,有的三角形与同学的不全
的对角对应相等,那么这两个三角形全等”,是假命题。而且认识到不可随意放弃作图出现的点D,以及如何书写所举的反例。
4、在运用中巩固知识。由于本节课的重点是找出三角形全等的判定,因而本节课不必理会如何书写“证明两个三角形全等”,所以我参考了一些同事的方法,采取了根据条件说出两个三角形全等的理由,或者写出两个条件,让学生灵活补充一个条件使得两个三角形一定全等。补充原设计的练习,学生们很来劲,效果显著。(注:“角角边”定理的证明留到下节课进行严格的书写证明。)
三、成效性反思
原教学设计附有作图练习卷(按要求作三角形,使得三角形有三个元素等于所给的具体值),要求学生在课堂上做,因考虑到内容较多,在上课时将学生分成6组,每组完成同一个作图(其它为作业),每个同学独立完成作图,然后与小组成员比较所画图形的形状和大小并汇报给全班同学。操作上可进行,但我始终有一种不踏实的感觉,可又说不出为什么。给我的学生上课,才意识到“边边角”情况,画了图的六分之一学生说全等,而六分之五的学生没动手画过,我不能直接点评,一急之下,我脱口说这一组的作图藏有一个秘密,我们再仔细画一次,这才顺利解决了问题。因而,另一个班,我就将“作图练习卷”作为课前作业,正如陶行知先生所说:“行是知之始,知是行之成。” “教学做是一件事,不是三件事。我们要在做上教,在做上学。不在做上用功夫,教固不成为教,学也不成为学。” 这样处理效果更好。
四、本节课“发现公理”的教学模式
1、课前准备:为目标而做的巩固练习、作品、小研究。
2、课中:(1)巩固、引入、提出问题;
(2)学生实践活动:分类与验证;
(3)教师点评;(4)归纳总结;(5)简单应用练习。
3、课后:(1)回顾发现过程:撰写小报告;
(2)巩固练习。
第四篇:《全等三角形判定》说课稿
《全等三角形判定》说课稿
一、教材分析:
教材的地位和作用
这节课是一节新授课。
本节是初中几何第一册第三章“三角形”第二部分的重要内容。三角形是最常见的几何图形之一,在日常生活中有着广泛的应用。而证明全等三角形是证明线段相等和角相等的重要手段,本节作为证明两个三角形全等的依据之一,因此成为重中之重。
根据教学大纲,从这一章开始,学生要逐步学会几何证明,本节的教学为了初步培养学生逻辑推理的基本能力,引导学生学好这部分知识可以提高学生学习几何的兴趣和信心。
教学目标
知识目标:掌握ASA公理及推论,并且学会应用ASA,AAS证明两个三角形全等。
能力目标:通过组织学生自己总结出公理和推论,培养学生归纳总结的能力;培养学生对几何图形问题的演绎推理和综合分析能力。
情感目标:培养学生探索的学习精神,通过组织学生分组讨论培养学生团结合作的精神和创新意识。
教学重点和难点:
重点:本节课的重点是ASA,AAS判定方法的应用和推理过程的书写。
初中学生的认知水平还是对图形本身基本特征的认识。在学习这节之前,学生已经学习了三角形的基本概念以及三边关系及内角和定理,但是这都局限于一个图形自身各元素之间的关系。在上一节学生已经学习了全等三角形的判定
(一)SAS公理,这节课则继续学习判定的第二种方法。因此判定公理及推论是此节课的重点。
学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,因此在两个三角形全等证明的推理过程中,应该引导学生落实推理表达。通过推理证明的书写,培养学生有条理的思考与表达。
难点:引导学生找出解题的途径。
因为以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,因此在教学过程中应该引导学生自己通过观察探索,自己体验找出全等条件的过程。
二、教学方法
采取引导学生自主发现、师生互动和学生互相讨论相结合的方法来完成本节课的教学。因为新课的教学理论性较强,教师的讲解与引导分析很重要,但不能直接将知识传输给学生,教师只能作为组织者、合作者和引导者,引导启发学生自己归纳总结,在教学过程各个环节让学生多参与,激发学习的热情,体验成功的喜悦,使教师的主导作用和学生的主体地位相统一。
三、教学过程
教学流程:
情景导入————探索新知————合作讨论——————总结归纳
情景导入:
为了引发学生的学习热情,使学生能够理解数学在生活中的重要地位,因此在新课引入的环节设置了一个情景:老师三角形教具不小心被弄坏,然后让学生开动脑筋想出办法帮助老师把教具还原。(课件)
通过学生的方案,引导学生自己组织语言,归纳出全等三角形判定公理二的文字内容。
探索新知
(1)
1、通过课件的演示,把两个三角形经过第一次简单的变换,这部分主要目的一是引导学生通过对图形的观察,挖掘出图形隐藏条件——对顶角相等。二是落实学生推理过程的格式。这样可以使学生体验分析和推理的过程,增强了学生学习几何的自信心。
2、通过课件演示,使图形做第二次变换成为教科书的例一。在这个例题中,通过师生互动引导学生分析题目中的条件,挖掘隐含条件。这道题,学生容易通过上一题的顺应思维而想到直接证明这两条线段相等,通过初步推理发现条件不足,这条途径不成立。让学生在经历分析题目的过程中,感受证明的必要性。
3、在稍做停顿之后,图形继续变换。这道题目中需要用到两个相等的角加上公共角仍为相等的角的结论。
4、图形再次变换,这时通过上个例题,学生已经多掌握了一种挖掘隐含条件的方法,这次把线段相等的条件换成一条线段的中点。
这几个图形的变换的给出旨在让学生通过观察,自主探索,激发对图形的观察能力使学生通过动态的几何,更能理解图形的本质。
使学生在获得知识的同时学会学习。强调突出学生的发展,以学生发展为利于学生的终身学习。
(2)
给出一个练习,通过这个练习,使学生利用以前学习的三角形内角和定理,自己归纳出ASA公理的推论AAS,然后给出例二。
合作讨论
给学生合作讨论的时间,主题是,在刚才变换的图形中选择一个,每个小组自己编出一个证明两个三角形全等的题目,要求用AAS这个判定方法,在此过程中教师巡视,并挑出一组,口述给大家然后别的同学都做,这样促使学生经历题目形成的过程,激发学习的积极性,也通过资源共享实现生生互动。给予学生充分的思维空间。这个阶段的学生容易自我发展,可以培养学生合作与交流能力的同时调动每一个学生的参与意识和学习积极性。学生是学习的主人,增强自主创新能力。注重培养学生的独立性和自主性,使学习成为在实践中的学习。在教师指导下主动的,常有个性的过程,使每个学生都能得到充分发展。同时,这俄国教学环节关注学生学习的个性化特征,使学生在知识学习中,获得合理的个人经验的内化。
归纳总结
通过一节课的学习,帮助学生总结出现有的判定两个三角形的判定方法。
布置作业,书面以及一道思考题,为了达到巩固,强化所学内容,落实教学目标并为下节习题课做好铺垫。
第五篇:全等三角形判定课件
全等三角形是几何学中的重要概念,下面就是小编为您收集整理的全等三角形判定课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!
全等三角形判定课件
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1)投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
思考题:
板书设计:
探究活动
(2)证明 :AF∥DE