全等三角形的判定课件

时间:2019-05-11 20:58:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全等三角形的判定课件》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全等三角形的判定课件》。

第一篇:全等三角形的判定课件

【教学目标】

1.探索三角形全等“边角边”的条件.

2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.

【教学重、难点】

1.应用“边角边”证明两个三角形全等,进而得出线段或角相等(重点)

2.能运用“SAS”证明简单的三角形全等问题,寻找判定三角形全等的条件(难点)

【教学准备】

1.教师准备:课件

2.学生准备:剪刀、白纸、作图工具。

【学情介绍】

这节课是探究三角形全等条件的第一课,学生已了解全等三角形的概念及特征,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这为学生主动参与本节课的操作和探究做好了准备。“SAS”条件掌握好了,再学习其他条件就不困难了。

【内容分析】

教材通过尺规作图作出一个与已知三角形的两边及其夹角对应相等的三角形,发现这两个三角形能够重合,从而归纳出判定三角形全等的第一种方法“SAS”。

【教学过程】

一、温故知新

1.什么叫全等三角形?

2、全等三角形的性质是什么?

3、根据定义判定两个三角形全等,需要知道哪些条件?

二、情景导入

1、问题:有一人工湖。要测人工湖两端A、B的距离,可无法直接达到,因此这两点的距离,无法直接量出,你能想出办法来吗?(幻灯片出示画面)

2.如图,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?(出示幻灯片)

3.板书课题:三角形全等的判定

(一)三、合作探究

小组活动

(一)按以下条件画图并作如下的实验:

(1)已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.

(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?由此你能得到什么结论。(学生画图操作)

归纳:上述事实说明,两边和它们的夹角对应相等的两个三角形全等。简记为“边角边”或“SAS”(小组内讨论后,师生共同总结)

四、随堂练习,巩固深化

练习一

1.在下列推理中填写需要补充的条件,使结论成立:

(1)如图,在△AOB和△DOC中

(2).如图,在△AEC和△ADB中,2.在下列图中找出全等三角形,并把它们用线连起来.五、范例学习,应用所学

例:已知: 如图,AC=AD ,∠CAB=∠DAB.求证: △ACB ≌ △ADB.(小组讨论后,在黑板展示)

证明:在△ACB 和 △ADB中

六、归纳总结证明三角形全等的步骤。

小组活动

(二)(各组讨论后发表观点,师生共同总结)

证明三角形全等的步骤:

1.ê写出在哪两个三角形中证明全等。(注意把表示对应顶点的字母写在对应的位置上).2.ê按边、角、边的顺序列出三个条件,用大括号合在一起.3.ê写出结论.每步要有推理的依据.七、应用所学,解决问题。

小组活动

(三)问题:如图有一人工湖。要测人工湖两端A、B的距离,可无法直接达到,因此这两点的距离,无法直接量出,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?(小组讨论后,在黑板展示)

证明:在△ABC和△DEC中

八、课堂小结

本节课主要学习了那些知识?你获得了那些成功的经验?与同伴进行交流。

师生共同归纳总结:

1.边角边基本事实的发现过程(包括画图、猜想、分析、归纳等.)

2.边角边基本事实:有两边和它们的夹角对应相等的两个三角形全等(SAS)

3.边角边基本事实的应用:证明线段(或角)相等转化为证明线段(或角)所在的两个三角形全等.边角边证明两个三角形全等需注意:

1.证明两个三角形全等所需的条件应按边、角、边顺序书写.2.基本事实中所出现的边与角必须在所证明的两个三角形中.3.基本事实中涉及的角必须是两边的夹角.九、课后作业:

作业:P.100.第1,2,3题

十、板书设计:

(一)三角形全等的判定1:

两边及其夹角分别相等的两个三角形全等。简记为“边角边”或“SAS”

(二)应用所学,解决问题。

证明:在△ABC和△DEC中

(三)课堂小结

1.边角边的发现过程(包括画图、猜想、分析、归纳等.)

2.边角边:两边及其夹角分别相等的两个三角形全等(SAS)

3.边角边的应用:证明线段(或角)相等转化为证明线段(或角)所在的两个三角形全等.十一、课后说课和反思:

(1)说课:《全等三角形的判定》这节课根据学生现有的认知水平和能力水平,首先,展示图案,引出问题,激发学生兴趣,让学生体会数学来源于生活,生活中存在数学美。设疑。第二,让学生自己动手作图形,通过动手实践,合作交流,直观感知判断全等三角形所需条件,师生共同总结边角边。第三,通过三个练习巩固新知。第四,通过例题的学习归纳总结证明三角形全等的步骤。第五,应用所学,解决测量人工湖两端无法直接达到A、B两点的距离,释疑。

这一节用一课时完成了“全等三角形判定一”的学习。我的最大收获就是百分之九十的学生都能比较清楚地表达验证的过程,所以说,本部分的教学设计是比较成功的,既给学生留下了比较充分地探索空间,又从学生已有的认知基础出发,同时注重了必要的练习巩固。首先,本节课设计了探究活动,让学生带着问题进行探究,调动了学生学习的积极性,而且使好奇心得以持续发展。学生在探究活动中,通过观察猜想、操作验证、归纳概括等一系列活动,使学生对问题的本质理解更为深刻。学生不仅知道了全等三角形判定的方法,而且明白为什么可以通过它们证明两个三角形全等。

(2)反思整个过程,我觉得做得较为成功的有以下几个方面:

1、教学设计整体化,内容生活化。在课题的引入方面,然学生动手做、裁剪三角形。既提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。

2、把课堂充分地让给了学生。我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。

3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作一个两边长分别相等,并且这两边的夹角也相等的三角形,并要求相互之间检查比较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:“边角边”,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称“SAS”。

听课教师点评

熊严明:严老师这节课准备充分,并能运用多媒体手段进行教学,能调动学生学习的积极性。老师引入问题,学生相互交流探究、动手操作、个人展示,轻松地完成了教学任务。教学效果良好,并且给学生鼓励性评价较为合理,增强学生自信心。

舒晓云:严老师这节课教学环节紧凑。教学中,通过手工制作、黑板演示、小组比赛展示结果等活动,充分调动了学生的参与教学活动的积极性,培养了学生的动手操作能力、小组合作能力及语言表达能力等。收到了良好的教学效果。

朱宽兵:严老师的这节课目标明确,重点突出,环节紧凑,是一堂成功的示范课。由如何测量池塘的宽度,导入新课。情景设置新颖且紧扣教学内容;然后由学生动手实验,利用两边和夹角画三角形,并比较与原三角形的大小关系。得出判定三角形全等的“边角边”公理,学生由感性认识到理性认识,符合认识规律,且学生易掌握理解新知;另有小组合作探究交流,课堂气氛活跃,加强了学生的团结协作精神,对学生的发言解答给予了鼓励性的评价,增强了学生的信心。总之,教学效果显著,值得我们学习。

指导教师点评

程立琼:严老师在准备这堂课的时候,就很谦虚,多次请我参与备课、修改教学设计、提提好的建议。说实在的,严老师在课件制件和教学流程的设计上,我看了初稿,已经就很不错了,各方面都考虑的比较周全,我只是提了极少部分不成熟的建议,他都作了采纳。同时他又听取数学组其他同仁的意见进行了多次修改后才定稿。严老师这种谦虚好学的精神和严谨治学的态度值得大家学习。

听了这堂课后,我感觉到,严老师的教学又有着相当的灵活性和随机应变之教学功底,有几处并没有完全按照教学设计中事先“谋划”的那样去做,而是采取灵活的处理方式解决了课堂上的生成问题,做的恰到好处。

这堂课教学安排给人的总体印象很不错。三维目标已完全达到,突出了重点,问题导入情境新颖,让学生动手操作,亲身体验知识的发生发展过程,再通过小组交流与合作探究很自然地得出结论——“边角边”公理,这样做学生更容易理解和接受,这比老师直接给出结论要强得多。

课堂上,严老师注重学生的问题意识和应用数学的意识的培养,使学生懂得,数学来自实际,并能应用于实际。同时对学生鼓励性的评价语言有利于培养学生的自信心,使学生乐学、善思,学的开心、学的有劲。学习有了劲头,自然就收到了效果。

课堂上,让小组多次讨论与交流既体现了同伴们团结协作的精神风貌,又营造出宽松和谐的学习氛围。这堂课充分体现出的“教师主导,学生主体,问题主线”,这不正是新课程理念下的有效教学所倡导的吗?这堂课的教学效果就不言而喻了!

第二篇:全等三角形判定课件

全等三角形是几何学中的重要概念,下面就是小编为您收集整理的全等三角形判定课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

全等三角形判定课件

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

(1)投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

思考题:

板书设计:

探究活动

(2)证明 :AF∥DE

第三篇:全等三角形判定2课件范文

导语:课件(courseware)是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。以下是小编整理全等三角形判定2课件的资料,欢迎阅读参考。

教学目标:

1、知识目标:

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等。

2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力。

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用角边角公理及其推论证明两个三角形全等。

教学难点:sas公理、asa公理和aas推论的综合运用。

教学用具:直尺、微机

教学方法:探究类比法

教学过程:

1、新课引入

投影显示

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案。

2、公理的获得

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。

公理:有两角和它们的夹边对应相等的两个三角形全等。

应用格式:

(略)

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

所以找条件归结成两句话:已知中找,图形中看。

(3)、公理与前面公理1的区别与联系。

以上几点可运用类比公理1的模式进行学习。

3、推论的获得

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,教师巡视,适当参与讨论。

4、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的总结

第四篇:全等三角形课件

全等三角形课件

【教学目标】

1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2.继续培养学生画图、实 验,发现新知识的能力.【重点难点】

1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2.重点:灵活运用SSS判定两个三角形是否全等.【教学过程 】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:

(1)画一线段AB使 它的长度等于c(4.8cm).(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.(3)连结AC、BC.△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现了什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.).2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

3、问题

3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

4、范例:

例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知 AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA5、练习:

6、试一试:已知一个三角形的三个内 角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

(所画出的三角形都是相似的,但大小不一定相 同).三个对应角相等的两个三角形不一定全等.三、加强练习,巩固知识

1、如图,△ABC≌△DCB全等吗?为什么?

2、如图,AD是△ABC的中线,.与 相等吗?请说明理由.四、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等.三个角对应相等的两个三角不一定会全等.五、作业

第五篇:《全等三角形判定》说课稿

《全等三角形判定》说课稿

一、教材分析:

教材的地位和作用

这节课是一节新授课。

本节是初中几何第一册第三章“三角形”第二部分的重要内容。三角形是最常见的几何图形之一,在日常生活中有着广泛的应用。而证明全等三角形是证明线段相等和角相等的重要手段,本节作为证明两个三角形全等的依据之一,因此成为重中之重。

根据教学大纲,从这一章开始,学生要逐步学会几何证明,本节的教学为了初步培养学生逻辑推理的基本能力,引导学生学好这部分知识可以提高学生学习几何的兴趣和信心。

教学目标

知识目标:掌握ASA公理及推论,并且学会应用ASA,AAS证明两个三角形全等。

能力目标:通过组织学生自己总结出公理和推论,培养学生归纳总结的能力;培养学生对几何图形问题的演绎推理和综合分析能力。

情感目标:培养学生探索的学习精神,通过组织学生分组讨论培养学生团结合作的精神和创新意识。

教学重点和难点:

重点:本节课的重点是ASA,AAS判定方法的应用和推理过程的书写。

初中学生的认知水平还是对图形本身基本特征的认识。在学习这节之前,学生已经学习了三角形的基本概念以及三边关系及内角和定理,但是这都局限于一个图形自身各元素之间的关系。在上一节学生已经学习了全等三角形的判定

(一)SAS公理,这节课则继续学习判定的第二种方法。因此判定公理及推论是此节课的重点。

学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,因此在两个三角形全等证明的推理过程中,应该引导学生落实推理表达。通过推理证明的书写,培养学生有条理的思考与表达。

难点:引导学生找出解题的途径。

因为以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,因此在教学过程中应该引导学生自己通过观察探索,自己体验找出全等条件的过程。

二、教学方法

采取引导学生自主发现、师生互动和学生互相讨论相结合的方法来完成本节课的教学。因为新课的教学理论性较强,教师的讲解与引导分析很重要,但不能直接将知识传输给学生,教师只能作为组织者、合作者和引导者,引导启发学生自己归纳总结,在教学过程各个环节让学生多参与,激发学习的热情,体验成功的喜悦,使教师的主导作用和学生的主体地位相统一。

三、教学过程

教学流程:

情景导入————探索新知————合作讨论——————总结归纳

情景导入:

为了引发学生的学习热情,使学生能够理解数学在生活中的重要地位,因此在新课引入的环节设置了一个情景:老师三角形教具不小心被弄坏,然后让学生开动脑筋想出办法帮助老师把教具还原。(课件)

通过学生的方案,引导学生自己组织语言,归纳出全等三角形判定公理二的文字内容。

探索新知

(1)

1、通过课件的演示,把两个三角形经过第一次简单的变换,这部分主要目的一是引导学生通过对图形的观察,挖掘出图形隐藏条件——对顶角相等。二是落实学生推理过程的格式。这样可以使学生体验分析和推理的过程,增强了学生学习几何的自信心。

2、通过课件演示,使图形做第二次变换成为教科书的例一。在这个例题中,通过师生互动引导学生分析题目中的条件,挖掘隐含条件。这道题,学生容易通过上一题的顺应思维而想到直接证明这两条线段相等,通过初步推理发现条件不足,这条途径不成立。让学生在经历分析题目的过程中,感受证明的必要性。

3、在稍做停顿之后,图形继续变换。这道题目中需要用到两个相等的角加上公共角仍为相等的角的结论。

4、图形再次变换,这时通过上个例题,学生已经多掌握了一种挖掘隐含条件的方法,这次把线段相等的条件换成一条线段的中点。

这几个图形的变换的给出旨在让学生通过观察,自主探索,激发对图形的观察能力使学生通过动态的几何,更能理解图形的本质。

使学生在获得知识的同时学会学习。强调突出学生的发展,以学生发展为利于学生的终身学习。

(2)

给出一个练习,通过这个练习,使学生利用以前学习的三角形内角和定理,自己归纳出ASA公理的推论AAS,然后给出例二。

合作讨论

给学生合作讨论的时间,主题是,在刚才变换的图形中选择一个,每个小组自己编出一个证明两个三角形全等的题目,要求用AAS这个判定方法,在此过程中教师巡视,并挑出一组,口述给大家然后别的同学都做,这样促使学生经历题目形成的过程,激发学习的积极性,也通过资源共享实现生生互动。给予学生充分的思维空间。这个阶段的学生容易自我发展,可以培养学生合作与交流能力的同时调动每一个学生的参与意识和学习积极性。学生是学习的主人,增强自主创新能力。注重培养学生的独立性和自主性,使学习成为在实践中的学习。在教师指导下主动的,常有个性的过程,使每个学生都能得到充分发展。同时,这俄国教学环节关注学生学习的个性化特征,使学生在知识学习中,获得合理的个人经验的内化。

归纳总结

通过一节课的学习,帮助学生总结出现有的判定两个三角形的判定方法。

布置作业,书面以及一道思考题,为了达到巩固,强化所学内容,落实教学目标并为下节习题课做好铺垫。

下载全等三角形的判定课件word格式文档
下载全等三角形的判定课件.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形判定 课堂实录

    12.2三角形全等的判定题外话:先给大家谈一个教师节前一天发生在我身上的一件真实的事情。从中学到教管会,对于我这样一个路痴老师来说,竟然在镇上转到半个多小时。高德地图竟然......

    全等三角形电子课件

    全等三角形电子课件讲解了什么是全等形、全等三角形及全等三角形的对应元素、以下是小编整理的全等三角形电子课件,希望下面对数学全等三角形定理公式的内容讲解学习,学生们都......

    全等三角形优质课课件

    一、教材背景及学情分析:本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发......

    全等三角形的课件

    一般来说考试中出现的线段与角相等需要证明全等,我们可以用全等的相应知识点来解题。下面是关于全等三角形的课件的内容,欢迎阅读!一、教材分析(一) 本节内容在教材中的地位与作......

    关于全等三角形教学课件

    全等三角形是我们小学数学必上课程。下面小编带来的是关于全等三角形教学课件,希望对你有帮助。一、教材分析本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形......

    全等三角形判定教学反思

    全等三角形判定教学反思本节课主要想让学生明白三个问题:一是了解研究任何一个几何对象的路径;二是经历探究SSS基本事实的全过程;三是SSS基本事实的巩固应用。对于第一个问题,......

    三角形全等的判定说课稿

    三角形全等的判定说课稿 6篇 三角形全等的判定说课稿 1 各位老师:大家好!我说课的内容是人教版八年级数学上册第十一章第二节《全等三角形的判定》第一课时,下面我将从教材、教......

    12.2 三角形全等的判定

    学习方法报社 全新课标理念,优质课程资源 12.2 三角形全等的判定(1) 教学目标 1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性. 3.经历探索三角形全等条件的过程,体会利用......