《倍数和因数》教学案例与反思大全

时间:2019-05-15 12:48:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《倍数和因数》教学案例与反思大全》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《倍数和因数》教学案例与反思大全》。

第一篇:《倍数和因数》教学案例与反思大全

德胜小学

教学目标:

1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。

2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

教学重点:理解因数和倍数的含义。

教学难点:探索并掌握找一个数的倍数和因数的方法。

教学过程:

一、认识倍数和因数

1、操作活动。

(1)小黑板出示要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法表示出来。

(2)整理:全班交流,分别板书4×3=1212×1=126×2=123、学习“倍数”和“因数”的概念

(1)谈话:刚才同学们通过不同的摆法摆出了不同的长方形,而且还写出了3个不同的乘法算式,今天,我们就一起来研究乘法算式中,数与数之间的关系。(出示:倍数和因数)

(2)根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?

板书:12是4的倍数,12是3的倍数

4是12的因数,3是12的因数

(3)根据6×2=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据12×1=12呢?

(4)练一练:从3×6=1836÷4=9中任选一题说一说。

为什么4和9是36的因数?

4、小结:根据乘法或除法算式我们可以确定谁是谁的因数,谁是谁的倍数。为了方便,在研究倍数和因数时,所说的数一般指不是0的自然数。

二、探索找一个数的倍数的方法

1、谈话:在刚才的谈话中,我们知道了12是3的倍数,18也是3的倍数

提问:3的倍数只有这两个吗?

你还能再写出几个3的倍数?

你是怎样想的?

你能按照从小到大的顺序有条理地说出3的倍数吗?

你能把3的倍数全都说完吗?

可以怎样表示?

2、议一议:你有没有发现找3的倍数的小窍门?(在找3的倍数时,可以按从小到大的顺序,依次用1、2、3……与3相乘,每次乘得的积都是3的倍数)

3、试一试:

(1)2的倍数有

(2)5的倍数有

4、想一想:观察上面几个例子,你发现一个数的倍数有什么特点?

5、练一练:想想做做

2三、探索求一个数的因数的方法

1、提出问题:你能找出36的所有因数吗?

2、四人小组合作完成3、交流整理找一个数的因数的方法。

4、试一试(既要一组一组地找,又要按次序排列)

15的因数

16的因数

5、比一比:根据上面几个例子,你发现一个数的因数有什么特点?和同桌说一说

6、练一练:想想做做

3四、课堂总结

1、这节课,你有什么收获?

五、巩固提高

1、判断

(1)12是倍数,3是因数

(2)6既是2的倍数,又是3的倍数。

(3)25以内4的倍数有:4,8,12,16,20,24……

(4)6的最小倍数是12,12的最小因数是6。

2、看谁反应快

游戏准备:学生按学号编成连续的自然数。(课前)

游戏规则:凡是学号符合以下要求的,请站起来,看谁反应快?

(1)谁的学号是5的倍数

(2)谁的学号是24的因数

(3)谁的学号是30的因数

(4)谁的学号是1的倍数

反思:

在教学过程中出现了一个问题:是在提问:“根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?”时,发现学生根本不能回答,本来以为学生在三年级的时候应该对这部分的内容有所了解,能顺利回答,但是在课后与三年级的教师交流后发现没有这方面的内容安排。由此,我想:新课程实施了五年,我其实还是门外汉,还不能很好地适应新课程的要求,新课程的教材编排具有连续性,而老版本经常是一个知识点安排在一起,注重深度。看来教师不光要关心自己年级的教材内容,还得知道整个教材编排体系,知道各个年级知识点之间的联系。这样才能更好地完成教学任务,使学生得到应有的发展而不是降低要求的发展或者是被强行提高要求的发展。

第二篇:倍数和因数教学案例

倍数和因数教学案例

杨岔小学 马占兵

一、认识倍数和因数

师:一起看大屏幕,数一数,几个正方形?(12)

第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来? 生:1×12 师:猜猜看,他每排摆了几个,摆了几排? 生:12个,摆了一排。

师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?

生:三四十二 师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗? 生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。

师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。师板书:因数和倍数 师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行? 师:谁先来? 生说略 师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?

生:12是12的因数,12是12的倍数。师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊? 生:自然数 师:而且谁得除外。生:0 师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36 生说略。

二、探索找因数倍数的方法

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完? 生1:

3、18 师:还有谁? 生2:36 师:3、18、36都是36的因数,只有这3个吗?

生1:1 生2:4 生3:6 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的

所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。学生填写时师巡视搜集作业。

师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。A:2、4、13、12、18、36 B:1、2、4、3、6、9、12、18、36 C:1、36、2、18、3、12、4、9、6 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。

生1:都对的 师:有没有道理?看来要找一个人的优点挺困难的。生2:写全了 生大声说:没有!

师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?

生:没有写全,少了3、6、9。师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?

生:36÷4,只写了4,没写9 师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找? 生齐:两个两个找。

生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。师:第二个同学有没有找全,有没有更好的建议送给他。

生:他应该把4、3调换一下。

师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?

师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?

生:他们那样还要头对尾头对尾的,像这样直接就可以写了。

师:有没有听明白,也是同样一对一对出现的。生:大小没有排,B大小排完后从小到大很舒服。

师:你看你那个舒服吗?

生:舒服 师:正是因为你的质疑,他把方法说了出来。他用了什么?

生:乘法口诀 师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。

师:虽然这个同学找到了尝试完了1,找到

36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢? 生1:找到开始重复就不找了

生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。

师:体会体会

1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。

生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。

师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20 生齐:1、2、4、5、10、20 再试一个:15,写在练习纸上。学生汇报

师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。

生:

21、300 师:你能把3的倍数全部写下来吗? 生:不能。太多太多了。

师:那怎么办?写不完可以用省略号表示。试试看。学生练习纸上完成,汇报。师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的? 生1:3×1、3×2 师:能理解吗?

生1:3+3=6、6+3=9 师:有理吗?不要小看加3了,当到数大的时候也比较方便。

生:略 师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数 学生练习纸上完成:50以内7的倍数。

师:谁来说说这一次你找了哪几个? 生:7、14、21、28 师:为什么不加省略号? 生:因为给了一个限制。

师:任何自然数的倍数是无限的。会寻找一个数的因数吗? 生:略

三、感受倍数和因数的神奇奥秘

师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗? 生1:27 生2:36 师:把你知道的两位数跟同桌说一说。学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示: 18、27、36、45、54、63、72、81 仔细观察9颗珠子拨的两位数,你发现了什么? 生:都是9的倍数

师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。

师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?

生1:1 生2:99 师:还有谁要发表的?

生3:9 师问生2:为什么认为99的因数最多?

生:9是最大的。师:张老师公布一下答案: 60 师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。

师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律 师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?

生:1、2、3、6 师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁? 学生试这四个数。

师:写出所有的因数,然后把自己给去掉。

师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?

生:好奇心 师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。

倍数和因数教学反思:

这是因数与倍数的案例,充满人性化的评价语,丰富多彩的文化信息,善于引导,让学生学会思考,让我颇受启发。我也尝试着按照这样的思路开始了我的课堂教学。基于时间的限制,我把“感受倍数和因数的神奇奥秘”这一块极富文化气息的内容放在了我的阅读课的教学中,很好地激发了学生的学习兴趣,让学生感受到了数学的奥秘。

老师的“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……学生在潜移默化中感受到的是成功,是对数学学习的无限乐趣。相比之下,我的课堂上习惯性地少了些对学生学习的肯定,学生收获的成功不多,积极性不够。

老师敢于放手让学生自己找出36的因数和3的倍数,真正做到了“教育的引导者,引导学生去发现、思考。而我的课堂总是害怕学生这个不行,那个不行,所以不敢放手,学生也常在我设计的框框里思考,自然同样的教案我也没有上出这份精彩。

努力去做一个发现者、引导者!让我的学生在我的课上感受数学的乐趣,体会学习成功的快乐。

第三篇:《因数与倍数》教学案例

《因数与倍数》教学案例

刘标

【教学内容】人教版数学五年级下册P12一14,练习二。

教学目标:

1.通过动手操作和写不同的乘法算式,认识倍数和因数。

2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。教学重点、难点分析:

由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。教具学具准备:

1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

2.教师准备多媒体课件。

教学过程:

一、操作空间,初步感知。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.学生动手操作,并与同桌交流摆法。

3.请用算式表达你的摆法。

汇报:1×12=12,2×6=12,3×4=12。

【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

二、探索空间,理解新知。

1.理解因数和倍数。

(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗?

师根据学生的表达完成以下板书:

3是12的因数

12是3的倍数

4是12的因数

12是4的倍数

3和4是12的因数

12是3和4的倍数

(2)用因数和倍数说说算式l×12=12,2×6=12的关系。

(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

学生汇报。

师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才能保证既不重复,又不遗漏。

教师巡视,展示学生几种答案。

生1:1,2,3,4,9,12,36。

生2:1,36,2,18,3,12,4,9,6。

生3:1,4,2,36,9,3,6,12,18。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

师:有序思考更能准确找出一个数的所有因数。

完成板书:描述式、集合式。

(3)30的因数有哪些?

【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

3.求一个数的倍数。

(1)3的倍数有:——,怎样有序地找,有多少个?

找一个数的倍数,用l,2,3,4……分别乘这个数。

(2)练一练:6的倍数有:,40以内6的倍数有:一o

【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

4.发现规律。

观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现?

根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

【评析】通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。

三、归纳空间,内化新知。

师生共同总结:

(1)因数和倍数是相互的,不能单独存在。

(2)找一个数的因数和倍数,应有序思考。

四、拓展空间,应用新知。

1.15的因数有:——,15的倍数有:——。

2.判断。

(1)6是因数,24是倍数。()

(2)3.6÷4=0.9,所以3.6是4的因数。

()

(3)l是l,2,3,4……的因数。

()

(4)一个数的最小倍数是2l,这个数的因数有l,5,25。()

4.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

5.举座位号起立游戏。

(1)5的倍数。

(2)48的因数。

(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

五、课堂小结;

我们一起来回顾一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

第四篇:因数和倍数“教学反思

因数和倍数“教学反思

“倍数和因数”是整数学习中的重要概念。新教材在揭示“倍数”和“因数”的概念时,没有像原来教材那样,先揭示整除的概念,再利用整除认识因数和倍数,而是让学生在现实的情景中通过解决问题列出乘法算式,利用具体的乘法算式用描述性的语言提出倍数和因数的概念。

本节课,教材提供“水果超市”的情景图,让学生通过读图、收集图中信息完善对数的认识,并用描述性的语言梳理、归纳以前学习过的自然数和整数,培养学生的观察、收集信息和语言表达能力。在此基础上,再次结合现实情景,通过解决“买水果”的问题,引出乘法算式,从而揭示倍数和因数的概念。

这是本学年第一次数学课,在预设时,我打算先抛开主题图,通过设问了解学生四年数学知识的起点,包括学生的观察习惯和观察能力、用数学语言表达的能力以及倾听的习惯。课开始,我设计如下问题:我们现在是五年级的学生了,学了几年的数学,关于数,你都有那些了解?问题提出了,没有学生举手,都望着我。过了好一会,才有个学生说:“我知道1”。因为这个学生的“启发”,接着有学生说,我知道2,我知道3.....我说:“大家说得不错,这些都是我们原来学习的数,他们都是......?”还是没有学生接我的问题,我说:“刚才同学们说的这些数都叫什么名字?”学生沉默。我说,这些都是我们以前学习的自然数,也是整数。“主题图中还有哪些数是自然数呢?还有哪些是整数呢?还有哪些数跟这些数是不同的?你知道他们叫什么名字吗?花了20分钟的时间,千呼万唤才揭示出“自然数”和“整数”。

揭示“倍数”和“因数”的概念是借助乘法算式来解决,解决“买5千克梨子要花多少钱”的问题,学生基本知道用乘法计算。我说:谁能告诉大家算式“5×4=20”表示什么含义?有个学生还算积极,他说:一个叫做

4、一个叫做

5、一个叫做20,在这个孩子的启发下,又有一个孩子说,叫做5乘4等于20,没有一个人能说出这个算式在这里表示“5个4相加的和”......当初他们是怎么形成“乘法”的概念的呢?学生数学语言表达的能力让我很是担忧。

利用乘法算式,在非0的自然数范围内研究倍数和因数,并能用描述性的语言提出倍数和因数的概念,体会倍数和因数相互依存的关系是本节课的教学目标,也是重难点,区分“因数和倍数”中的“因数”与以前学习的“因数和积”中的“因数”也是本节课的难点。鉴于学生的理解能力和表达能力,为了完成本节课的教学任务,我只好“讲授”了,虽然我非常不情愿。

开始做课堂练习,我在黑板上写了一个示范的例子,让学生照着这个格式来模仿,哪知道作业本收上来一看,有一半的学生不知道怎么抄题,做题时什么时候该换行都不知道。我说,你们以前不在本子上做题?他们说,老师,我们以前不要抄题的,好累的哟!我们只做印好的题的。

原来是这样。

这就是新学期的第一节课,教学任务没完成,教学目标没达成,我又累又急。

下课了,一个孩子跟我说:夏老师,你讲课真有趣!

这也叫有趣?我告诉她,以后会更有趣。

第五篇:因数和倍数教学反思

本课的内容是基于学生已经学习了一定量的知识(包括整数的知识,整数的四个运算及其应用)的知识来理解整数的性质。这个单位和倍数所涉及的因素是基本理论的基本知识。

成功:

1.了解分类标准,明确多重的意义和含义。在示例1中的教学的情况下,根据不同的部门对学生进行分类,以及他们的思考的标准基础是什么。通过学生的独立思考和团体交流学生来到:第一类分为两类:一类是业务是整数,另一类是业务是小数;第二个分为三类:一类是一个整数,一个是小数,另一个是周期数。如何将学生在辩论和交流中分类以达成共识的答案分为两类。然后根据第一种情况的倍数和因子的含义,特别强调因子的含义和倍数满足两个条件:首先,必须在整数除法中,第二个是整数没有剩余。在这两个条件下,被除数是除数的倍数,除数是除数的因子。

2.为了澄清多次和几次的概念,注意强调多重和因素相互依存。在教学中可以直接告诉学生的因素和时间 数字不能单独存在,不能说2是因素,12是一个倍数,但必须说谁是因素,谁是谁的倍数。对于多次和多次的差别:多次必须在整数除法中研究,并且几次可以在整数范围内,也可以在十进制范围内进行,其研究范围比乘数范围。

不足:

1.减少设计能力,导致剩余时间在教室中。

2.因素和倍数的意义也应该总结到摘要的字母。

重新教学设计:

1.根据教科书的做法补充。

因子和倍数的含义被总和为a÷b = c(a,b,c是非零自然数),a是b和c的倍数,b和c是因子一个。

下载《倍数和因数》教学案例与反思大全word格式文档
下载《倍数和因数》教学案例与反思大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    因数和倍数教学反思

    《因数与倍数的整理复习》反思 【教后反思】 在设计和执教这节复习课的过程中,我不止一次的体会到上好一节复习课真的很难,既要全面、详细的了解学生的认知现状,又要科学、合理......

    《倍数和因数》教学反思

    《倍数和因数》教学反思1 《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,......

    倍数和因数教学反思

    倍数和因数教学反思 倍数和因数教学反思1 体会:一、动手实践、合作交流是学生有效学习的重要方式《数学课程标准》指出:有效的数学学习活动,不能单纯地依赖模仿与记忆,动手实践......

    因数和倍数教学反思

    因数和倍数教学反思 因数和倍数教学反思1 体会:一、动手实践、合作交流是学生有效学习的重要方式《数学课程标准》指出:有效的数学学习活动,不能单纯地依赖模仿与记忆,动手实践......

    因数和倍数教学反思

    因数和倍数教学反思 因数和倍数教学反思1 在上学期的白纸备课活动中,我们高年段数学抽到的教学内容就是因数与倍数,这个内容是我没有教过的,在看到教学内容时,我心里不禁在打鼓,......

    倍数和因数教学反思

    倍数和因数教学反思3篇倍数和因数教学反思1今天这堂课其实是有点匆忙的。课前的一个小游戏忘了,忘了让学生体会因数和倍数之间的相互联系和依存关系了。明天的课上补上。满意......

    因数和倍数教学反思

    《因数和倍数》整理与复习教学反思 清远小学五年级数学教研组 詹小春 小学数学复习课就是把平时相对独立地进行教学的知识,以再现、整理、归纳等办法串起来,进而加深学生对知......

    因数和倍数教学反思

    因数和倍数教学反思 因数和倍数教学反思1 通过今天的学习,你有什么收获?课后作业 :课后自已或与同学合作制作一个含有因数和倍数知识的转盘。教后反思:40分钟的时间一闪而过,轻松......