第一篇:机械工艺课程设计论文
常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是关于机械工艺课程设计论文的内容,欢迎阅读!
前言
针对机械制造工艺课程设计的现状及存在的问题,进行了深入的分析和探讨,阐述了工艺课程设计教学方法改革的必要性;以提高学生创新能力和实践能力为目的,提出了工艺课程设计创新实践教学的模式;该模式较全面的改革了工艺课程设计所存在的问题,不仅将工艺课程设计贯穿到理论课的实践教学过程中,而且更重要的是学生根据设计结果完成产品的制作并应用到真正的生产中。该模式在很大程度上提高了学生的实践能力、动手能力和创新能力[1]。
关键词:机械制造工艺课程设计;实践能力;创新能力
工艺课程设计是机械制造专业的一门重要的实践课程,该课程具有较强的实践性和综合性。是把机械制图、金属材料与热处理、公差配合与技术测量、机械制造工艺等课程的理论知识与实践相结合的课程。通过本课程的安排,使学生运用所学知识分析问题与解决问题的能力得到提高,学生查阅资料的能力、计算的能力、设计的能力都得到了锻炼和提升,为他们以后的发展打下了实践上的基础。
工艺课程设计的内容长期以来都是零件的加工工艺规程的设计与工装夹具的设计,具有很强的专业性和实践性。由于课程设计长期以来不变的设计方法与教学模式,给课程设计带来很多弊端。本人长期从事机械制造工艺的教学和课程设计的指导工作,针对课程设计的教学模式和教学中存在的问题进行了分析和探讨并提出了创新的教学方法。
1.现状分析
长期以来,工艺课程设计的任务,都是老师给出已知零件,学生设计其加工工艺规程,然后再按老师提出的要求设计某个加工面的某道工序的工艺装备,最后完成所有的工艺卡片的填写和夹具图纸的绘制。由于这些零件长期以来变化较少,学生往往按照以往的模式来完成设计任务,出现了很多问题。
(1)由于设计题目固定不变,其相应的指导书、资料、标准、手册也一应俱全,很多指导书已将设计过程规范化,程式化,学生按部就班地来完成设计,有的甚至拿往届学生设计的模板往下抄,只要改动一下尺寸数据即可。学生的思维受到限制,设计理念得不到发挥,在设计上也得不到创新。
(2)课程设计都是在理论教学完成以后才统一安排时间,布置题目进行设计的。时间是两周,在两周的时间内,学生又是设计零件加工工艺规程,又是进行工序尺寸和工时定额的计算,还要完成工装夹具的设计,时间紧,任务重。学习好的学生往是通宵达旦、加班加点才能完成设计,为了赶时间完成任务,学生来不及思考,来不及发挥,基本上是按照老师的要求按部就班地完成任务而已,课程设计的实践性并没有得到体现。
(3)课程设计的最终体现形式是一套工艺过程卡片、工序卡片和工装夹具的装配图纸与零件图。学生设计的夹具是否能满足生产的需要,设计的工艺规程是否能实现零件的使用要求?因为长期以来机械制造工艺课程设计的设计结果一直停留在设计阶段,学生设计的正确性、合理性、经济性无法得到验证,学生在设计中也无法体验成功的喜悦。
2.教学方法的改革
随着高职教育的发展,要求学生从学校到企业实现零距离跨越,对学生的实践能力和动手能力的要求也越来越高。为了提高学生的自主设计能力与创新能力,本文对工艺课程设计教学提出了改革,改革了工艺课程设计的设计模式与指导方法,使学生在设计中不仅要完成理论的设计计算,也让学生参与其制造过程,这样让学生的动手能力和实践能力得到真正的提高和锻炼。具体方法如下:
(1)课程设计的时间为两周,在这样短的时间内,学生即要完成零件工艺规程的设计,又要完成工装夹具的设计,要计算,又要做方案,还要完成图纸的绘制,学生感到难以招架。通过改革,我们把工艺课程设计里的零件的工艺规程的设计安排在课堂的实践课中进行,在讲完零件的工艺规程编制理论知识之后,安排实践环节,学生动手编制零件的工艺规程,该零件不是老师随意选的,而是实训基地加工制造的产品。学生在完成工艺规程编制之后,可以把学生带到实训车间[2],参照实际的生产流程,找出自己设计的不足及创新之处。通过指导教师的督促和指导,及时改正不足之处,并分析创新之处所带来的经济效益的提高。通过这种方法,大大提高了学生设计的积极性和创造性。这样在课程设计未开始之前,学生已经完成了1/3的工作量,为课程设计的完成和对产品的改进与创新争取了大量的时间[3]。
(2)课程设计时具体做法是把学生几个人分成一组,每组学生完成零件所有加工工序的工装夹具的设计,即完成从装配图到零件图的一整套图纸的设计与绘制。在设计过程中,即要分工,也要合作,在这个过程中,体现了他们团队协作精神,也培养他们的团队合作意识。
(3)产品的制造:因为学生设计工艺规程的零件是实训基地的加工对象,设计的工装是生产这些产品时的夹具,这就使产品的最终制造成为可能。学生所有的设计任务完成之后,指导教师要严把质量关,审查图纸的合理性,正确性,经济性,然后把最优秀的设计推荐给实训车间,车间根据生产的需要组织并安排实践教师指导学生来完成产品的制造,最后真正把学生设计的工装夹具应用到实际生产中。
3.可行性分析
(1)院校内有生产型创新实训基地为本次创新提供了基础。
(2)工艺课程设计指导教师为具有企业实战经验的工程师,为学生产品的实现保驾护航。
(3)成本支出,学生产品制造的费用完全是实训基地生产加工的成本。
4.结束语
实践性教学,是高职院校教学中的重要环节,工艺课程设计教学方法的创新,较大程度地改变了传统的设计模式所存在的问题,最后通过产品的制造与应用,使学生在设计过程中能真正体现从理论到实践的结合,提高学生的实践能力和动手能力,有助于提高学生的综合素质和社会能力,增强他们的成就感,也提高了他们的职业能力。
参考文献:
[1]莫海军,黄华梁,除忠阳.机械设计课程设计教学方法改革与探索[J].装备制造技术,2009(7)
[2]王翠芳.浅谈机械制造工艺基础[J].江西化工,2004(4)
[3]倪森寿.机械制造工艺与工艺装备课程设计改革的实践与思考[J].无锡职教教师论坛,2006(11)
第二篇:工艺课程设计前言
前言
机械制造工艺学(machinery technology)是研究集机械、电子、光学、信息科学、材料科学、生物科学、激光学、管理学等最新成就为一体的一个新兴技术与新型工业,归纳总结机械制造工艺的科学理论与实践,探索解决工艺过程中遇到的实际问题,从而揭示出一般规律的一门科学。主要包括机械加工工艺规程的制订、机床夹具设计原理、机械加工精度、加工表面质量、典型零件加工工艺、机器装配工艺基础、机械设计工艺基础、现代制造技术及数控加工工艺等部分。加工工艺课程设计是我们在学习数控加工工艺、机械加工实训及其他有关课程之后进行的一个重要的实践性教学环节,是第一次较全面的工艺设计训练,其目的是培养学生运用机械制造工艺学及有关课程的知识,分析和解决工艺问题的能力,初步具备设计一个中等复杂程度零件的工艺规程的能力。能根据被加工零件的技术要求,运用夹具设计的基本原理和方法,学会拟订夹具设计方案,完成夹具结构设计,初步具备设计出高效,省力,经济合理并能保证加工质量的专用夹具的能力。以进一步巩固、深化、扩展本课程所学到的理论知识,强化工艺设计能力。通过加工工艺课程设计,同学应进一步提高识图、制图和机械设计的水平;掌握机械加工工艺设计的方法,学会查阅和运用有关专业资料、手册等工具书;培养独立思考和工作的能力,为毕业后走向社会从事相关技术工作打下良好的基础。加工工艺设计课程要求我们应该像真正在工厂工作一样的严格要求自己,必须以科学务实和诚信负责的态度对待自己所做的技术决定、数据和计算结果,培养良好的工作作风。
第三篇:热处理工艺课程设计
沈阳理工大学热处理工艺课程设计
T10A 检验量棒的 热处理工艺设计
1 热处理工艺课程设计的目的
热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是 热处理原理与工艺课程的最后一个教学环节。其目的是:(1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所 学知识得到巩固和发展。(2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。
2 热处理课程设计的任务
①普通热处理工艺设计 ②制定热处理工艺参数 ③选择热处理设备 ④分析热处理工序中材料的组织和性能 ⑤设计热处理工艺所需的挂具、装具或夹具 ⑥特殊热处理工艺设计 ⑦填写工艺卡片
3 T10A 检验量棒的技术要求及选材
3.1 T10A 的零件图
T10A 检验量棒的零件如图 3.1 所示。
图 3.1
检验量棒图
3.2 技术要求
1
沈阳理工大学热处理工艺课程设计
T10A 检验量棒的技术要求 如下: 硬度:HRC60~63
[1]
3.3 材料的选择
3.3.1 零件用途 量棒是用来度量工件工件内经专门尺寸的工具。3.3.2 工作条件(1)量棒在使用过程中经常受到工件的摩擦与碰撞,长时期使用量棒会因磨损 而失去其精度。(2)量棒在长时期存放和使用过程中,会因环境和工作而导致量棒的变形,进 而尺寸不再稳定,不能再用来度量工件。(3)量棒在使用过程中,还会受到冲击作用,会导致量棒因偶然碰撞而断裂。综上所述,量棒在使用过程中,经常受到工件的摩擦和碰撞,而作为量棒本身又 必须具备非常高的尺寸精确性和恒定性。长期使用会导致量棒失去其精度,且在存放 时会因保存不当而导致其变形,所以要求量棒不仅要有高的硬度和耐磨性,还要有一 定的韧性。
3.3.3
性能要求
检验量棒的形状简单,尺寸不太大,但量棒在使用中要求很高,为了满足这些要 求,可选用含碳量高的钢,同时要求有一定的韧性。含碳量高的钢经淬火热处理后可 得到马氏体和未溶碳化物,可使量棒有高的硬度和耐磨性,保证量棒在长期使用中不 致被很快磨损,而失去其精度。此外还有高的尺寸稳定性,保证量棒在使用和存放过 程中保持其形状和尺寸的稳定性。高碳钢经淬火并及时回火后,可以在很少降低硬度 的同时使钢的韧性明显提高,这样可使量棒有足够的韧性,以保证量棒在使用时不致 因偶然因素而损坏。
3.3.4
材料选择
根据检验量棒的工作条件,尺寸及性能要求选择碳素工具钢,其未加入合金元素,价格便宜,退火后硬度低,可
加工性好,磨削及抛光性好。T8,T8A,T9,T9A,T10A,T11A 等都属于碳素工具钢,但T8,T8A,T9,T9A接近共析成分,含碳量较少,淬火后的组织
2
沈阳理工大学热处理工艺课程设计
中未溶碳化物极少,耐磨性差。而T11,T11A远离共析成分,在淬火后组织中的未溶碳 化物较多,降低了钢的韧性。T10A在淬火加热时不易过热,又存适量的未溶碳化物,耐磨性高,且弥补了T11A韧性不足的缺点。
3.3.5
T10A钢化学成分及合金元素作用
T10A 钢的化学成分示于表 3.1
表 3.1 T10A 钢的化学成分 ω/% C 0.15~0.30 Mn 0.15~0.30 Si 0.15~0.30 P ≤0.030 S ≤0.030
[1]
化学元素作用: ①C :保证形成碳化物所需要的碳和保证淬火马氏体能够获得的硬度 ②Si: 能提高钢的淬透性和抗回火性,对钢的综合机械性能,还能增高淬火温度,阻碍碳元素溶于钢中。③Mn:能增加钢的强度和硬度,有脱氧及脱硫的功效(形成 MnS),防止热脆,故 Mn 能改善钢的锻造性和韧性,可增进刚的硬化深度,降低钢的下临界点,增加奥氏 体冷却时的过冷度,细化珠光体组织以改善机械性能。
3.3.6
T10A 钢热处理临界转变温度
T10A 钢热处理的临界转变温度见表 3.2[1]
表 3.2 T10A 钢临界转变温度/℃ 钢号 T10A Ac1 730 Ac3 800 Ar1 700
3.4
T10A 钢量棒加工制造工艺流程 T10A 钢量棒加工制造工艺流程如下:
下料→锻造→调质处理→机加工→不完全淬火→清洗→冷处理→低温回火→时效→ 检验→包装
4
T10A 钢的热处理工艺
3
沈阳理工大学热处理工艺课程设计
4.1 T10A 钢的调质处理工艺
4.1.1 调质处理(淬火+高温回火)目的
进行预备热处理,获得粗大回火索氏体,降低淬火前机加工的表面粗糙度,使淬 火后具有高而且均匀的硬度。如果采用正火加球化退火,则加热周期长,生产效率低。所以选择调质处理作为 T10A 钢的预备热处理,处理后可以获得回火索氏体,减少淬 火变形,提高机械加工的光洁度。4.1.2 淬火工艺(1)淬火目的 淬火是为了获得马氏体(2)淬火温度 加热温度:780±10℃。因为 T10A 是过共析钢,钢中含有碳化物形成元素。为使碳化物溶入奥氏体中,使 奥氏体合金化程度增高,提高淬火回火后的机械性能,因此调质处理加热温度在 730℃(即 Ac1 温度)加 30-50℃。所以最终选择的加热温度为 780±10℃.(3)淬火设备 选用RDM系列埋入式盐浴炉,盐浴炉参数见表 4.1。
表 4.1 RDM-70-8 埋入式盐浴炉 型号 额定功率 电源 相数 RDM-70-8 70(KW)3 电压 380(V)850℃
[7]
额定温度
工作空间尺寸(mm ×mm)450×350×700
说明:炉温均匀,介质流动性好,加热速度,温度均匀,工件变形小,加热质量好,利于提高产品质量,炉膛容积有效利
用率高,产量大,耗电量少,可节省电能与筑炉 材料,电极寿命长,减小停炉时间。适用于中,小型工件成批量生产。
(4)加热方法 采用到温加热的方法,是指当炉温加热到指定的温度时,再将工件装进热处理炉进行 加热。原因是加热速度快,节约时间,便于批量生产。
4
沈阳理工大学热处理工艺课程设计
(5)加热介质 加热介质为 44%NaCl+56%KCl
表 4.2 加热介质与使用温度的关系 盐浴成分(%,按重量计算)28NaCl+72CaCl2 34NaCl+33CaCl2+33BaCl2 50NaCl+50BaCl2 22NaCl+78BaCl2 44NaCl+56KCl 34KCl+66BaCl2 熔点(℃)500 570 600 640 663 657 使用温度范围(℃)540~870 600~870 650~900 675~900 700~870 700~950
(6)保温时间 保温时间:12min 选定的依据: 加热时间可按下列公式进行计算: t=a×K×D,式中 t 为加热时间(min),K 为反映装炉时的修正系数,可根据表 4.4 可得 K 取 1.4,a 为加热系数 min/mm,加热 系数 a 可根据钢种与加热介质、加热温度,参数按照表 4.3 选取,D 为工件有效厚度(mm).可得 t=a×K×D=1.4×20×24=672s
表 4.3 工件加热系数 a 钢号 碳钢 合金钢 高合金钢 高速钢 退火、正火(箱式炉)箱式炉 0.7~0.8min/mm 0.9~1.0min/mm 1.0~1.5min/mm 2~3min/mm 0.7~0.8min/mm 0.9~1.0min/mm 预热 1min/mm 加热 45s/mm 2~2.5min/mm 淬火 盐炉 20~30s/mm 30~45s/mm 预热 30s/mm 加热 16s/mm 预热 15~30s/mm 加热 8~12s/mm
(7)冷却方式 由 T10A 的淬透性曲线可知,要达到所要求的硬度,可选择水淬,且由于 T10A 的淬透 性低,为获得马氏体组织,应选择强烈的淬火介质.所以选择水作为 T10A 的淬火介质。(8)冷却介质 冷却介质:水
5
第四篇:机械工艺工程师
机械工艺工程师
职业概述:
机械工艺工程师主要负责产品机械制造工艺编制及产品设计,通过持续优化生产工艺,解决工艺问题,确保达到工艺和产品质量的要求标准。
工作内容:
根据机械产品要求对设计图纸进行工艺方案、工艺流程的设计,编制工艺手册、质量控制点指导书等工艺文件,并进行机械产品生产成本测算;
建立并维护相关工艺文档,基于现有机械产品设计为车间工作准备所有必需的文件,特别是图纸、BOM和基本的工艺流程;
与机械产品开发部门协作,负责新产品的研发设计支持与试制、试验、评审工作,负责新品或派生产品设计图纸的工艺审查,确保产品的可制造性;
督促、检查岗位操作工执行机械产品工艺流程、工艺参数及产品标准,分析解决加工中的工艺问题;
对现有的机械产品生产技术进行必要的研究并提出改进建议;
负责机械类零部件制造工艺的审查,考察供应商的加工能力;
负责员工生产工艺培训及技能鉴定考核。
职业要求:
教育培训:
通常要求机械制造和设计、工艺设计类专业,大专以上学历。
工作经验:
熟悉机械加工工艺流程、模具加工工艺;熟悉产品性能、产品结构;掌握IE、SPC、FMEA等常用工艺工程方法与工具,熟练使用AutoCAD;能够阅读并解释、运用各类技术文件及说明;具有丰富的项目开展经验,团队意识强;具备解决现场故障的能力,统计调查分析能力,善于发现、寻找并解决问题。
薪资行情:
月薪通常在3000元到6000元之间,在跨国公司可高达8000元。目前根据行业发展,在经济效益好的企业工资可达10000元以上。
职业发展路径:
一方面,生产规模的扩大使市场对机械工艺工程师的需求急剧增加;另一方面,目前机械工艺工程师已出现青黄不接的局面,符合用人企业要求的中青年机械工程师供不应求。优秀的机械工艺工程师因此成为市场上的紧缺人才,薪酬待遇也相对较高。有现场管理经验,定额工时控制经验会为你的职场增添一个砝码。
第五篇:机械原理课程设计
机械原理 课程设计说明书
设计题目:牛头刨床的设计
机构位置编号:11 3
方案号:II
班 级: 姓 名: 学 号:
年 月 日
目录
一、前言………………………………………………1
二、概述
§2.1课程设计任务书…………………………2 §2.2原始数据及设计要求……………………2
三、设计说明书
§3.1画机构的运动简图……………………3 §3.2导杆机构的运动分析…………………4 §3.3导杆机构的动态静力分析3号点……11 §3.4刨头的运动简图………………………15
§3.5飞轮设计………………………………17
§3.6凸轮机构设计…………………………19 §3.7齿轮机构设计…………………………24
四、课程设计心得体会……………………………26
五、参考文献………………………………………27
一〃前言
机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。是培养学生机械运动方案设计、创新设计以及应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。其基本目的在于:
⑴.进一步加深学生所学的理论知识培养学生独立解决有关本课程实际问题的能力。
⑵.使学生对于机械运动学和动力学的分析设计有一较完整的概念。
⑶.使学生得到拟定运动方案的训练并具有初步设计选型与组合以及确定传动方案的能力。
⑷.通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
⑸.培养学生综合运用所学知识,理论联系实际,独立思考与分析问题能力和创新能力。
机械原理课程设计的任务是对机械的主体机构连杆机构、飞轮机构凸轮机构,进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮,或对各机构进行
运动分析。
二、概述
§2.1课程设计任务书
工作原理及工艺动作过程 牛头刨床是一种用于平面切削加工的机床,如图(a)所示,由导杆机构1-2-3-4-5带动刨头5和削刀6作往复切削运动。工作行程时,刨刀速度要平稳,空回行程时,刨刀要快速退回,即要有极回作用。切削阶段刨刀应近似匀速运动,以提高刨刀的使用寿命和工件的表面 加工质量。切削如图所示。
§2.2.原始数据及设计要求
三、设计说明书(详情见A1图纸)
§3.1、画机构的运动简图
以O 4为原点定出坐标系,根据尺寸分别定出O 2点B点,C点。确定机构运动时的左右极限位置。曲柄位置图的作法为,取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3„12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置,如下图:
§3.2 导杆机构的运动分析
11位置的速度与加速度分析 1)速度分析
取曲柄位置“11”进行速度分析。因构件2和3在A处的转动副相连,故VA2=VA3,其大小等于W2lO2A,方向垂直于O2 A线,指向与ω2一致。
曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)
取构件3和4的重合点A进行速度分析。列速度矢量方程,得
υA4= υA3+ υA4A3 大小 ?
√ ? 方向 ⊥O4B ⊥O2A ∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图
由图得
υA4=0.567m/s
υA4A3 =0.208m/s
用速度影响法求得
VB5=VB4=VA4*04B/O4A=1.244m/s 又
ω4=VA4/O4A=2.145rad/s 取5构件为研究对象,列速度矢量方程,得
vC = vB+ vCB 大小
? √ ? 方向 ∥XX ⊥O4B ⊥BC 取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边行如
上图。则图知,vC5= 1.245m/s
Vc5b5=0.111m/s
ω5=0.6350rad/s
2)加速度分析
取曲柄位置“11”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s, aA3n=aA2n=ω22lO2A=6.702×0.09 m/s2=4.0425m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:
aA4 = aA4n + aA4τ
= aA2n
+ aA4A2k
+
aA4A
2大小:
?
ω42lO4A
?
√
2ω4υA4 A2
?
方向: ? A→O4 ⊥O4B A→O2
⊥O4B
∥O4B 取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形如下图所示.由图可知
aA4=2.593m/s2 用加速度影响法求得
aB4= aB5 = aA4* L04B / L04A =5.690 m /s2 又
ac5B5n =0.0701m/s2 取5构件为研究对象,列加速度矢量方程,得
ac5= aB5+ ac5B5n+ a c5B5τ 大小
?
√
w52 Lbc
? 方向
∥XX √
c→b
⊥BC 作加速度多边形如上图,则
″
aC5B5τ= C5´C5·μa =2.176m/s2
aC5 =4.922m/s2
3号位置的速度与加速度分析 1)速度分析
取曲柄位置“3”进行速度分析,因构件2和3在A处的转动副相连,故VA3=VA2,其大小等于w2〃lO2A,方向垂直于O2 A线,指向与w2一致。
曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)取构件3和4的重合点A进行速度分析,列速度矢量方程,得,VA4
=VA3
+ VA4A3
大小
?
√
?
方向
⊥O4B
⊥O2A
∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图
VA4=pa4〃µv= 0.487m/s VA4A3=a3a4〃µv= 0.356 m/s w4=VA4⁄lO4A=1.163rad/s VB=w4×lO4B= 0.675m/s
取5构件作为研究对象,列速度矢量方程,得
υC =
υB
+
υCB
大小
?
√
? 方向 ∥XX(向右)
⊥O4B
⊥BC
取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边形如上,则
Vc5=0.669m/s
Vcb=0.102m/s
W5=0.589rad/s 2).加速度分析
取曲柄位置“3”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s,9 aA2n=aA3n=ω22lO2A=6.702×0.09 m/s2=4.0426m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:
aA4 =aA4n+ aA4τ = aA3n + aA4A3K + aA4A3v 大小: ? ω42lO4A ? √ 2ω4υA4 A3 ? 方向 ? B→A ⊥O4B A→O2 ⊥O4B ∥O4B(沿导路)取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形下图所示:
则由图知:
aA4 =P´a4´〃μa =3.263m/s2 aB4= aB5 = aA4* L04B / L04A =4.052 m/ s2 取5构件为研究对象,列加速度矢量方程,得
ac = aB + acBn+ a cBτ
大小 ? √ ω5l2CB ? 方向 ∥X轴 √ C→B ⊥BC 其加速度多边形如上图,则 ac =p ´c〃μa =4.58m/s2 §3.3 导杆机构的动态静力分析 3号点 取3号位置为研究对象:
①.5-6杆组共受五个力,分别为P、G6、Fi6、R16、R45, 其中R45和R16 方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力R16 均垂直于质心,R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左。选取比例尺μ=(40N)/mm,受力分析和力的多边形如图所示:
已知:
已知P=9000N,G6=800N,又ac=ac5=4.58m/s2 那么我们可以计算 FI6=-G6/g×ac =-800/10×4.5795229205 =-366.361N 又ΣF=P + G6 + FI6 + F45 + FRI6=0,方向 //x轴 → ← B→C ↑ 大小 9000 800 √ ? ? 又
ΣF=P + G6 + Fi6 + R45 + R16=0,方向
//x轴
→
←
B→C
↑ 大小
8000
620
√
?
? 由力多边形可得:F45=8634.495N
N=950.052 N 在上图中,对c点取距,有
ΣMC=-P〃yP-G6XS6+ FR16〃x-FI6〃yS6=0 代入数据得x=1.11907557m ②.以3-4杆组为研究对象(μ=50N/mm)
已知: F54=-F45=8634.495N,G4=220N aB4=aA4〃 lO4S4/lO4A=2.261m/s2 , αS4=α4=7.797ad/s2
可得:
FI4=-G4/g×aS4 =-220/10×2.2610419N=-49.7429218N MS4=-JS4〃aS4=-9.356 对O4点取矩:
MO4= Ms4 + Fi4×X4 + F23×X23-R54×X54-G4×X4 = 0 代入数据,得:
MO4=-9.356-49.742×0.29+F23×0.4185+8634.495×0.574+220×0.0440=0 故:
F23=11810.773N Fx + Fy + G4 + FI4 + F23 + F54 = 0 方向: ? ? √ M4o4 √ √ 大小: √ √ → √ ┴O4B √
解得:
Fx=2991.612N Fy=1414.405N 方向竖直向下
③.对曲柄分析,共受2个力,分别为F32,F12和一个力偶M,由于滑块3为二力杆,所以F32=F34,方向相反,因为曲柄2只受两个力和一个力偶,所以F12与F32等大反力。受力如图:
h2=72.65303694mm,则,对曲柄列平行方程有,ΣMO2=M-F32〃h2=0 即
M=0.0726*11810.773=0,即M=858.088N〃M
§3.4刨头的运动简图
§3.5飞轮设计
1.环取取曲柄AB为等效构件,根据机构位置和切削阻力Fr确定一个运动循的等效阻力矩根据个位置时
值,采用数值积分中的梯形法,计算曲柄处于各的功
。因为驱动力矩可视为
,确定等效驱动力常数,所以按照
矩Md。
2.估算飞轮转动惯量 由
确定等效力矩。
§3.6凸轮机构设计
1.已知:摆杆为等加速等减速运动规律,其推程运动角o=10o,回程运动角0'=70o,摆杆长度=70远休止角001lo9D=135mm,最大摆角max=15o,许用压力角[]=38.2.要求:(1)计算从动件位移、速度、加速度并绘制线图。(2)确定凸轮机构的基本尺寸,选取滚子半径,划出凸轮实际轮廓线,并按比例绘出机构运动简图。
3.设计步骤:
1、取任意一点O2为圆心,以作r0=45mm基圆;
2、再以O2为圆心,以lO2O9/μl=150mm为半径作转轴圆;
3、在转轴圆上O2右下方任取一点O9;
4、以O9为圆心,以lOqD/μl=135mm为半径画弧与基圆交于D点。O9D即为摆动从动件推程起始位置,再以逆时针方向旋转并在转轴圆上分别画出推程、远休、回程、近休,这四个阶段。再以11.6°对推程段等分、11.6°对回程段等分(对应的角位移如下表所示),并用A进行标记,于是得到了转轴圆山的一系列的点,这些点即为摆杆再反转过程中依次占据的点,然后以各个位置为起始位置,把摆杆的相应位置
画出来,这样就得到了凸轮理论廓线上的一系列点的位置,再用光滑曲
线把各个点连接起来即可得到凸轮的外轮廓。
5、凸轮曲线上最小曲率半径的确定及滚子半径的选择
(1)用图解法确定凸轮理论廓线上的最小曲率半径min:先用目测法估计凸轮理论廓线上的min的大致位置(可记为A点);以A点位圆心,任选较小的半径r 作圆交于廓线上的B、C点;分别以B、C为圆心,以同样的半径r画圆,三个小圆分别交于D、E、F、G四个点处,如下图9所示;过D、E两点作直线,再过F、G两点作直线,两直线交于O点,则O点近似为凸轮廓线上A点的曲率中心,曲率半径minOA;此次设计中,凸轮理论廓线的最小曲率半径min 26.7651mm。
凸轮最小曲率半径确定图(2)凸轮滚子半径的选择(rT)
凸轮滚子半径的确定可从两个方向考虑: 几何因素——应保证凸轮在各个点车的实际轮廓曲率半径不小于1~5mm。对于凸轮的凸曲线处CrT,对于凸轮的凹轮廓线CrT(这种情况可以不用考虑,因为它不会发生
失真现象);这次设计的轮廓曲线上,最
小的理论曲率半径所在之处恰为凸轮
上的凸曲线,则应用公式:minrT5rTmin521.7651mm;滚
子的尺寸还受到其强度、结构的限制,不能做的太小,通常取rT(0.10.5)r0
及4.5rT22.5mm。综合这两方面的考虑,选择滚子半径可取rT=15mm。
然后,再选取滚子半径rT,画出凸轮的实际廓线。设计过程 1.凸轮运动规律 推程0≤2φ≤δo /2时:
2max12204max120,0024max2 120
推程δo /2≤φ≤δo时:
2max1max(220)04max1(20)002,04max2120
回程δo+δs01≤φ≤δo+δs+δ'o/2时:
2max1max2'204max1'200,0'24max21'20
回程δo+δs+δ’o/2≤φ≤δo+δs+δ’o时:2max1(0')2'204max1('20')00'2,0'4max21'20
2.依据上述运动方程绘制角位移ψ、角速度ω、及角加速度β的曲线,由公式得出如下数据关系(1)角位移曲线:
(2)角速度ω曲线:
(3)角加速度曲线:
4)、求基圆半径ro及lO9O2
3.由所得数据画出从动杆运动线图
§3.7齿轮机构设计 1、设计要求:
计算该对齿轮传动的各部分尺寸,以2号图纸绘制齿轮传动的啮合图,整理说明书。
2.齿轮副Z1-Z2的变位系数的确定
齿轮2的齿数Z2确定:
io''2=40*Z2/16*13=n0''/no2=7.5
得Z2=39
取x1=-x2=0.5
x1min=17-13/17=0.236 x2min=17-39/17=-1.29
计算两齿轮的几何尺寸:
小齿轮
d1=m*Z1=6*13=78mm
ha1=(ha*+x1)*m=(1+0.5)*6=9mm
hf1=(ha*+c*-x1)*m=(1+0.25-0.5)*6=4.5mm
da1=d1+2*ha1=78+2*9=96
df1=d1-2*h f1=78-9=69
db1=d1*cosɑ=78*cos20˚=73.3
四 心得体会
机械原理课程设计是机械设计制造及其自动化专业教学活动中不可或缺的一个重要环节。作为一名机械设计制造及其自动化大三的学生,我觉得有这样的实训是十分有意义的。在已经度过的生活里我们大多数接触的不是专业课或几门专业基础课。在课堂上掌握的仅仅是专业基础理论面,如何去面对现实中的各种机械设计?如何把我们所学的专业理论知识运用到实践当中呢?我想这样的实训为我们提供了良好的实践平台。
一周的机械原理课程设计就这样结束了,在这次实践的过程中学到了很多东西,既巩固了上课时所学的知识,又学到了一些课堂内学不到的东西,还领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化。
其中在创新设计时感觉到自己的思维有一条线发散出了很多线,想到很多能够达到要求的执行机构,虽然有些设计由于制造工艺要求高等因素难以用于实际,但自己很欣慰能够想到独特之处。这个过程也锻炼了自己运用所学知识对设计的简单评价的技能。
五、参考文献
1、《机械原理教程》第7版
主编:孙桓
高等教育出版社
2.《机械原理课程设计指导书》主编:戴娟
高等教育出版社
3.《理论力学》主编:尹冠生
西北工业大学出版社