《三角形的内角和》教学设计方案

时间:2019-05-15 16:32:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《三角形的内角和》教学设计方案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《三角形的内角和》教学设计方案》。

第一篇:《三角形的内角和》教学设计方案

一、说教材

“三角形的内角和”是义务教育课程标准实验教材(人教版)四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

1、知识目标:知道三角形内角和是180°。

2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。

3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

教学重点:三角形内角和是180°的实际应用。

教学难点:探索三角形的内角和是180°

二、说教法

新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。

三、说学法

学法是学生再生知识的法宝。为了使在整节课的探索活动中,我的设计有独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。

“将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。

四、说教学程序

1、谈话激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我就以前面学过的知识“三角形的分类”为切入点,让学生叫出各类三角形的名称{激趣},随后提出挑战——画一个很特殊的三角形{即含有两个直角的三角形},结果没有没有一个学生能画出来,为什么呢{设疑}?这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。

2、猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。

3、验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——折一折——看一看。

4、巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:设计让学生用所学的知识说一说为什么画不出含有两个直角的三角形的问题,从中培养学生应用意识和解决问题的能力;又如:让学生判断有两个直角三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性。再如:根据三角形两个角或一个角的度数或三角形的特征求出三角形的三个角的度数{具体在练习第一、第二、第三、第四题及游戏中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

5、拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。

第二篇:《三角形的内角和》教学设计方案(推荐)

《三角形的内角和》教学设计方案

【教学内容】

人教版义务教育课程四年级数学下册第五单元第85页《三角形内角和》

【教学目标】

1.在操作实践活动中,使学生理解三角形的内角和性质。

2.会运用三角形的内角和性质,求三角形中未知角的度数。

3.使学生在探究活动中获得积极的情感体验,培养学生主动探究、互助合作的学习习惯。

【教学重点】会运用三角形内角和性质求未知角的度数。

【教学难点】动手证明三角形的内角和性质。

【教具准备】课件、量角器、纸片、三角板、剪刀等。

教学过程:

一、复习铺垫,激趣引课

1.课件出示一个长方形,你知道什么?

长方形内的四个角叫做长方形的内角,四个内角度数的和叫做长方形的内角和。一个内角90度,四个内角多少度?长方形的内角和是多少度?

2.给长方形画一条对角线,移出一个直角三角形。

内角在哪里?什么叫三角形的内角和?讲述:三角形内的三个角叫做三角形的内角,三个内角度数的和叫做三角形的内角和。(板书课题)猜一猜三角形的内角和是多少度?你是怎么猜的?

刚才我猜的这个直角三角形内角和是180度。

课件演示:直角三角形

1.两条直角边一条延长、一条缩短,什么不变?什么变了?怎样变的?内角和是多少?

2.一条直角边往上走,形成锐角三角形,什么不变?什么变了?怎样变的?内角和是多少?

3.一条直角边往下走,形成钝角三角形,什么不变?什么变了?怎样变的?内角和是多少?

小结:三角形的内角和是180度。

这些猜测到底对不对?下面我们来验证一下。

1.加一加三角形的内角和是多少度?

让各小组的学生将自己所画三角形三个内角角度加在一起看看发现了什么?(由于学生测量误差可能一些不同,但大家的结果都接近180度。)

2.动手证明,感知规律。

引导激发学生用折拼、撕拼等方法证明。

①各小组用你们喜欢的方法推算锐角三角形的内角和度数。

分组汇报实验方法,概括结论。

锐角三角形的内角和是180度。

②分组用不同方法探究直角三角形的内角和度数。

分组汇报,概括结论。

直角三角形的内角和是180度。

③分组用不同方法探究钝角三角形的内角和度数。

分组汇报,概括结论。

钝角三角形的内角和是180度。

3.课件演示,概括规律。

①课件直观生动地演示出撕拼法、折拼法的证明过程。

②同学们用形状不同、大小不等的三角形,通过实验证明得出这样三个结论(课件出示以上三个结论),你会把这三句话概括成一句话吗?(小组内说一说)

③课件出示定律:三角形的内角和是180度。

讨论:为什么可以说所有三角形的内角和是180度?

小结:同学们用的画、折、拼的方法都是将三角形的三个内角转化成我们熟悉的角,这种转化方法是我们学习数学的重要方法,希望同学们在今后的学习中大胆应用。

4.反馈训练。

①把一个三角形分成两个形状不同的小三角形,你知道两个小三角形的内角和分别是多少度吗?(教师口述题意,并用课件显示分的过程及分成的三角形,指名学生说出答案及理由。)

②用三个三角形拼成一个大三角形,你知道这个大三角形的内角和是多少度?(口述题意并用课件显示拼合过程。)

二、巩固运用,内化新知

1.运用内角和性质求三角形中未知角的度数。

三角形不论形状、大小如何变化,内角和总是180度。如果知道三角形中两个内角的度数,你能算出第三个内角的度数吗?请大家试一试。

2.流动红旗为等腰三角形,两个底角为70度,求流动红旗的顶角度数?

3.红领巾为等腰三角形,顶角是120度,求红领巾底角的度数?

4.交通警示牌“让”为等边三角形,求其中一个角的度数?

三、小结本课,概括学法

1.说说学习本课你有什么收获?

2.这些本领你是怎样掌握的?

四、课后练习,拓展延伸

试算下面各四边形的内角和(课件演示用三角形拼合的过程)。

第三篇:三角形内角和教学设计

三角形内角和教学设计

一、教学目标:

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境 揭示课题。

师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。

师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °

师:(出示一个很小的三角形)它呢? 生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

第四篇:《三角形内角和》教学设计

《三角形的内角和是180°》教学设计

教学思路:

由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。

学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。

这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。

教学目标:

1、知识技能目标:

(1)理解和掌握三角形的内角和是180°;

(2)运用三角形的内角和知识解决实际问题和拓展性问题;

2、能力技能目标:

(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

(2)知道三角形两个角的度数,能求出第三个角的度数。

(3)发展学生动手操作、观察比较和抽象概括的能力。

3、情感与态度目标:

让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点

重点:理解掌握三角形的内角和是180°。

难点:运用三角形的内角和知识解决实际问题。教具、学具准备:

教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。

教学过程:

一、创设情境 生成问题

(一)课件出示三角形争吵图

在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?

(二)猜想什么是三角形的内角和

师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?

课件演示三角形的内角(内角和)

二、探索交流 解决问题

(一)探究猜想内角和的度数

师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?

生:用量角器进行度量。

师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。

生回答。(回答可能不一样。)

师:同学们通过刚才的汇报你有什么想说的吗?

生:我发现内角和的度数不一样。

师:是啊,什么原因呢?

生:可能是量的时候出现了差错。

师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?

板书课题:三角形的内角和

(二)讨论验证方法

以小组为单位来想一想我们可以怎么样来验证?

小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)

(三)动手验证

生活动,师巡视

(四)汇报

师:哪个小组来汇报你们的验证方法和验证结论?

组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。

师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?

组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。

组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。

哪个小组的同学最想上来展示一下你们的研究成果?

师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?

(动画演示剪拼验证过程)

边演示边解说。

见证奇迹的时刻到了,你发现了什么?

师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。

课件演示独特折法

同学们还有不同的验证方法吗?

组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。

组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。

出示:普通折法

师:还有不同折法吗?

组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。

师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?

组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。

师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?

课件演示长方形推理法。

师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。

看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。

小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。

三、巩固应用 内化提高

同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!

1、根据已知角的度数求出未知角的度数

(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)

2、求等边三角形各内角的度数

3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)

4、放风筝:

同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?

一个等腰三角形的风筝一个底角是70度,求顶角的度数?

5、挑战极限:

同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?

根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?

四、回顾整理反思提升

同学们通过这节的学习你有哪些收获?

第五篇:三角形内角和教学反思

“双主体”教学反思

--《三角形内角和》课后反思

严怀军

为了全面提高教学质量,学校以我们初一数学为启动点,非常有幸的学习了南京东庐中学“讲学稿”模式、高邮赞化中学“导学案”教学,结合我们学生的特点形成了我校的“双主体”特色,我们这些新手是最大的受益者。本学期快结束了,我上了一节汇报课《三角形内角和》,让我真切的感觉到“教育是门带有遗憾的艺术”。

本节课的宗旨是以学案为依托,以教师为主导,以学生为主体,通过学生的自主学习,培养学生的自学能力,实现学生的自学能力、合作能力、创新能力和整体素质共同提高,进而提高教学效益。在设计这节课时我请教了学校的教学能手余老师,请她对教学环节进行了指导。对教学案中涉及三角形外角知识进行了探讨,在学习余老师的课后我们决定在我的课上也可一试。现将我在这节课的思索、认识、体会及迷惑、彷徨总结如下:

一、抓好小组建设及学法指导,是搞好“双主体’的基础。

“小组学习”是“双主体”的主要形式。小组建设要遵循“同组异质,异组同质”的原则,考虑成绩搭配、男女性别平均、学生的意愿;要通过小组文化建设增强小组团结协作的凝聚力;更要做好小组长的培训,明确小组内每位成员的职责。比如在进行例二的探索研究时,小组长并没有组织好组内讨论,你一言我一语的显得无序,最后也没形成一个总结来进行汇报。

二、“双主体”的成功离不开教师的巧妙引导。

以学生为学习的主体,在“双主体”中,教师是学生的得力助手,一方面要相信学生的智慧和能力,绝对不能越俎代庖;另一方面也要注意:学生毕竟是学生,离不开教师必要的引导、指导。初中生是有一定的自我修正能力的,教师必须对学生进行必要的“学法指导”,才能让学生在平时的学习过程中随时掌握解决问题的方法,逐步由“学会”变为“会学”。我在这节课上没有很好的关注全体学生,未能调动部分学生的学习积极性和主动性,特别是在解决利用外角知识解决问题时,学生产生倦怠、迷惑或感到困难时,未能真正实现课堂教学中的“生生互动”、“师生互动”,使教学得以顺利进行,获得成功。

三、实施“双主体”,身上的担子更重了

实施“双主体”后,表面上教师在课堂教学中轻松了,但教师的任务并没有减轻,而是对教师的要求更高了。教师要提高自己的职业修养和道德素养,明确自己的任务,提高业务素质。课下教师要搜集更多适合教材、学生的教学、教育资料和相关信息,供学生参考和学习,要把工作做得更深、更细;努力准备各种材料,使之更适合不同层次学生的需要,使材料更具有逻辑性、趣味性、生活化,只有这样,课堂上利用非智力因素,展现一切课堂机智,调动学生投入的积极性,才能真正组织学生进行有效的学习。才不会只见热闹,没有成效。

四、我的疑惑

1、“双主体”的实施对优秀学生来说的确得到了更多、更快的发展,对于那些基础差、行为习惯不够好的孩子来讲,简单的知识他们是投入进去了,碰到难的,比如现在的几何推理部分,他们就丧失了自学能力,让他们做,那就更是摸不着东南西北了。

2、教学流程要求学生独学、对学、群学(在预习时解决)、展示汇报、点评,对于每节课短短的45分钟来说,即使我们现在每堂课仅仅只安排了一个框题的内容,还是无法完成教学任务,教学成绩如何保障?

3、小组交流学习起不到预期的效果。在实际教学过程中,每个小组内那些基础差的、表达能力弱的、不够大方的同学常常是没有发表自己的观点,没有真正实现参与讨论,长此下去,他们只会越来越没有自信,表达能力也会越来越弱。

感谢学校的课改行动,给了我教学新生命,我必将坚定不移的沿着教改的路走下去,努力向教学能手们学习,提升自身教学修养,提高课堂效率!

下载《三角形的内角和》教学设计方案word格式文档
下载《三角形的内角和》教学设计方案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形内角和教学案例

    《三角形内角和》教学案例 新疆兵团第四师63团中学马莉红 《三角形内角和》的教学内容,以前曾是选学内容,有时是必学内容,无论是选学必学,我应用新的教学理念和已有的经验,使这个......

    三角形内角和教学设计

    冀教版教材小学数学四年级下册 《三角形内角和》4+4N教学模式讲析课 ——承德县上谷学区中心校 一、创设情境 创设情境的目的:是以情境问题的解决为需求,激发学生在情境中发......

    三角形内角和教学设计[★]

    《三角形的内角和》教学设计 沈芸 教学内容 义务教育课程标准实验教科书(苏教版)四年级数学(下)第28-29页 教学目标 认知目标 1. 让学生运用量、拼、摆等方法,主动探索并掌......

    三角形内角和教学设计

    《三角形的内角和》教学设计 新华实验小学安利 教材内容:人教版四年级下册数学第85页例6 教学目标: 1、通过“量一量”“算一算”“拼一拼”“折一折”的方法,让学生推理归纳三......

    《三角形内角和》教学设计

    《三角形内角和》教学设计 【教材内容】 北京市义务教育程改革实验教材(北京版)第九册数学 【教材分析】 《三角形内角和》是北京市义务教育程改革实验教材(北京版)第九册第三单......

    《三角形内角和》 教学设计

    《三角形内角和》 教学设计 【教学内容】四年级下册教科书第24页“探索与发现:三角形内角和。” 【学习目标】 1.让学生亲自动手,通过量、剪、拼等直观操作活动,探索、发现并证......

    三角形内角和教学设计

    三角形内角和教学设计 一、教材分析: 教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。 教材创设了一个有趣的问题情境,以此激发学......

    三角形内角和教学设计

    三角形内角和教学设计 知识目标: 掌握三角形内角和是180度这一规律,并能实际应用。 能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学......