等差数列前n项和作业5则范文

时间:2019-05-15 02:47:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列前n项和作业》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列前n项和作业》。

第一篇:等差数列前n项和作业

家长签名:

学之导教育中心作业

———————————————————————————————学生: 伍家濠 授课时间:________年级: 高三

教师:

1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()A.5 B.4 C.3 D.2 2.在等差数列an中,若a4a612,Sn是数列an的前n项和,则S9的值为()(A)48(B)54(C)60(D)66 3.设Sn是等差数列an的前n项和,若(A)

S31S,则6()S63S12311(B)

(C)8(D)

39104.已知数列{an}、其首项分别为a1、且a1b15,设b1,a1,b1N*.{bn}都是公差为1的等差数列,则数列{cn}的前10项和等于()cnabn(nN*)A.55

B.70

C.85

D.100 5.设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13()

A. 120 B. 105 C. 90 D.75 6.an是首项a1=1,公差为d=3的等差数列,如果an=2005,则序号n等于()(A)667(B)668(C)669(D)670 7.若等差数列an的前三项和S39且a11,则a2等于()A.3 B.4 C.5 D.6 8.等差数列an的前n项和为Sn若a21,a33,则S4=()[来源:学科网] A.12 B.10 C.8 D.6 9.设等差数列{an}的前n项和为Sn,若S39,S636,则a7a8a9()A.63 B.45 C.36 D.27 10.等差数列an的公差是正数,且a3a712,a4a64,求它的前20项的和.11.已知数列an为等差数列,前30项的和为50,前50项的和为30,求前80项的和。

12.在等差数列an中,已知a2a5a12a1536,求S1613、若a1>0,S15=S20,它的前几项和最大?

第二篇:等差数列前n项和教案

等差数列前n项和教案

一、教材分析

1、教材内容:等差数列前n项求和过程以及等差数列前n项和公式。

2.教材所处的地位和作用:本节课的教学内容是等差数列前n项和,与前面学过

的等差数列的定义、性质等内容有着密切的联系,又能为后面等比数列前n

项和以及数列求和做铺垫。

3、教学目标

(1)知识与技能:掌握等差数列前n项和公式,理解公式的推导方法。同时能

熟练、灵活地应用等差数列前n项和公式解决问题。

(2)过程与方法:经历公式的推导过程,体验倒序相加进行求和的过程,学会

观察、归纳、反思。体验从特殊到一般的研究方法。

(3)情感、态度、价值观:通过具体、生动的现实问题的引入,激发学生探

究求和方法的兴趣,树立学生求知意识,产生热爱数学的情感,逐步养

成科学、严谨的学习态度,提高一般公式推理的能力。

4、重点与难点

重点:等差数列前n项和公式的掌握与应用。

难点:等差数列前n项和公式的推导以及其中蕴含的数学思想的掌握。

二、学情分析

学生前几节已经学过一些数列的概念及简单表示法,还学了等差数列的定

义以及性质,对等差数列已经有了一定程度的认识。这些知识也为这节的等差数列前n项和公式做准备,让学生能更容易理解等差数列前n项和公式的推导过程。同时也为后面的等比数列前n项和公式做铺垫。但由于数列形式多样,因此仅仅掌握等差数列前n项和公式还是不够的,更应该学会灵活应用。

三、教学方法:启发引导,探索发现

四、教学过程

1.教学环节:创设情境

教学过程:200多年前,高斯的算术老师提出了下面的问题: 123100?。据说,当其他同学忙于把100个数逐项相加时,10岁的高斯迅速得出5050这个答案。让同学思考并讨论高斯是怎么算的。

设计意图:由著名的德国数学家高斯的例子引发同学们的思考,为下面引入倒序相加法求和做准备。2.教学环节:介绍倒序相加法

教学过程:请同学将自己的计算方法在课上发表,老师接着介绍倒序相加

法。记S123100981S10099,从而发现每一列相加都得101。

则2S(1100)(299)(398)(1001)101*100

S101*10025050

类似地,用同样的方法计算1,2,3,,n,的前n项和,可以得到 123n(n1)n。2 设计意图:介绍倒序相加法,并用这个方法计算1,2,3,,n,的前n 项和,从而为下面推导等差数列前n项和公式做铺垫。

3.教学环节:推导公式

教学过程:首先介绍数列an的前n项和,用Sn来表示,即

Sna1a2a3an。对于公差为d的等差数列,我们用两种方法表示Sn。Sna1(a1d)(a12d)[a1(n1)d]Snan(and)(an2d)[an(n1)d]

则两式相加得:

2Sn(a1an)(a1an)(a1an)(a1an)n(a1an)

n个n(a1an),将等差数列的通项公2n(n1)d。式ana1(n1)d代入,得到公式Snna12 推导出等差数列前n项和的公式为Sn 设计意图:用倒序相加法推导得到等差数列前n项和公式,由于有前面的铺垫让学生更容易理解等差数列前n项和公式的推导过程,对后面的应用也有帮助。

4、教学环节:例题讲解

教学过程:例1:用等差数列前n项和的公式计算1+3+5++99的值。

例2:a11,a86,求这个等差数列的前8项和S8以及公

差d。例3:已知数列an的前n项和Snn2n,求这个数列 的通项公式。这个数列是等差数列吗?如果是,它的首项与公差分别是什么?

设计意图:巩固等差数列前n项和公式,加深学生对该公式的印象。6.教学环节:回顾总结

教学过程:

1、倒序相加法进行求和的思想

2、复习等差数列前n项和公式Sn Snna1n(a1an)和 2n(n1)强调要根据条件选用适当的公式进 d,行求解。以及公式的适用范围。7.教学环节:布置作业

七、板书设计

1、问题的提出

2、倒序相加法

3、等差数列前n项和公式

4、例题

5、回顾总结

6、布置作业

第三篇:等差数列前n项和公式说课稿

大家好!今天我说课的题目是《等差数列的前n项和》,所选用的教材为中等职业教育规划教材。

一、教材分析:

1、教材的地位和作用

《等差数列的前n项和》是第一册第五章第二节的内容,本节内容在日常生活中有着广泛的应用,同时与函数、三角、不等式等内容有着密切的联系。它既是等差数列的概念的延续,又为后续研究等差数列的应用提供理论依据。鉴于这种认识,我认为,本节课对于进一步探索、研究等比数列无论在知识上,还是方法上都有很强的启发与示范作用。

2、学情分析

学生在认知方面基本掌握等差数列的通项公式,初步具备运用所学知识解决问题的能力,但数形结合的意识和思维的深刻性需要进一步加强培养,多数学生有积极的学习态度,能主动参与探究,少数学生的主动性,还需要通过营造一定的学习氛围带动。

3、教学重难点

根据以上对教材的地位与作用,以及学情的分析,结合本节内容的特点,我将本节课的重点确定为:等差数列前n项和公式的理解、推导与应用;

难点确定为:获得等差数列前n项和公式推导的思路及公式的简单应用。

二、教学目标分析

在教学中应以知识与技能为主线,渗透情感态度价值观,并把前两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

1.掌握等差数列求和公式,能较熟练应用等差数列前n项和公式; 2.经历公式的推导,体会数形结合的思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;

3.通过合作交流、主动探究,体会数学的合理性和严谨性,使学生养成积极思考、独立思考的习惯,培养学生团队合作的精神。

三、教学方法分析

学生是学习的主体,教师是学习的组织者,教学的一切活动都必须围绕学生展开。根据这一教学理念,本节课我采用引导发现法、问题驱动教学法,以问题的提出及解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式分析和解决问题,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

在学法方面,主要采用联系学习法,探究式学习法,自主性学习,真正体现学生为主体的教学理念。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:(一)创设情境,提出问题

给出历史上有名的实例,提出问题,学生进行观察分析,进入思考状态。设计意图:以问题的形式创设情境,激发学生探究新知的欲望,为学习新内容做好准备。

(通过这一环节,学生已经产生强烈的求知欲望,此时将学生带入下一个环节。)

(二)探究讨论,发现问题(本节课的重点)

首先给出探索发现1,在教师的启发引导下,学生通过合作交流的方式,逐步明确解决问题的方法和思路。

设计意图:通过这一环节,让学生体会数形结合的数学思想,同时培养学生的探究及归纳能力。

接着给出探索发现2,由学生通过主动探究和合作交流的方式解决问题2,从而归纳整理出求和公式1。

设计意图:学生通过探索1的解决,已经积累了解决此类问题的经验,此时给出探索2,充分发掘学生的兴趣点,同时顺利解决问题。

最后给出探索发现3,此时提出问题3,学生结合前两个问题的解决方法,从而归纳出求和公式一和二。

设计意图:在本环节中采用问题驱动的教学方法,以循序渐进、层层深入的方式,运用特殊到一般的研究方法,降低了知识的梯度,从而突出重点。(通过前面的学习,学生已经基本把握了本节课所学习的内容,此时他们急于展示自我,体验成功,于是我把学生带入第三个阶段。)

(三)公式应用,加深理解

本环节主要是等差数列求和公式的应用,是本节课的难点。解决引入时候设置的问题,处理方法是引导学生从首项、末项及项数出发,使用公式

(一)求和;(2)引导学生从首项、项数及公差出发,使用公式

(二)求和。通过两种方法的比较,提示学生应根据信息选择合适的公式。

设计意图:反馈体验,解决引入时候设置的问题,使得学生体会到等差数列前n项和的实用性,突破本节课的难点。

(五)小结归纳,感知深化

为发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了三个问题。

设计意图:通过三个问题的处理,让学生从整体上把握课堂结构,从而优化认知结构,充分发挥学生的主体作用。

(六)布置作业,拓展升华

以作业的巩固性和发展性为出发点,设计了A和B两种题目,作业A是对本节课内容的一个反馈,作业B是对本节知识的一个延伸。总的设计意图是反馈教学,巩固提高。

板书设计:这样安排版面,使得本节课内容重难点突出,层次分明。

五、教学评价:

这节课的设计体现了以学生为主体,教师为指导的理念,以上几个环节环环相扣,层层深入,充分体现教师与学生的互动,在教师的整体调控下,学生通过动脑思考,对知识的理解逐步深入,使课堂学习效果最优化。

第四篇:等差数列前n项和教学设计说明

《等差数列前n项和》的教学设计说明

本课的教学设计反映了等差数列求和公式推导过程中数学思想方法——倒序相加法的生成过程,这是本节课教学设计的重中之重;设计中结合本班学生学习的实际情况,从而确定了教学活动的环节并以此来确定教学目标。下面从以下几个方面进行详细说明。

一、教学内容的本质、地位及作用分析

等差数列前n项和S n

 a 1 

a 2 

 a

,这是教材给出的前n项和的定n1an义,但需要说明的是这只是一个形式定义,表示求和是一般意义的加法运算,而本节课的数学本质是倒序相加法及其生成过程(即变不同“数”的求和为相同“数”的求和),进而推导和掌握等差数列的求和公式。

本节内容是必修五第二章第三节的第一课时,本节课对“等差数列前n 项和”的推导,是在学生学习了等差数列通项公式及性质的基础上进一步研究等差数列,其学习的平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用.

对求和公式的认识中,将公式1与公式2与梯形的面积公式建立了联系,从而起到延伸知识,提示事物间内在联系,更能激发学生学习兴趣,感受思考的魅力。

二、教学目标分析

本节课是等差数列的前n项和的第一课时,从知识点来说,掌握求和公式对每个学生来说并不困难,而难点是在于如何从求和公式的推导过程中体会倒序相加求和的思想方法及生成过程,渗透新课标理念,根据学情进行了具体分析,并结合学情制定本节课的教学目标。

学情分析:

1、学生已学习了函数、数列等有关基础知识,并且高二学生的抽象逻辑推理能力基本形成,能在教师的引导下独立地解决问题。

2、学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题。

3、学生对新知识很有兴趣,对用多媒体进行教学非常热爱,思维活跃。结合以上的学情分析,确定知识技能目标是:(1)理解等差数列前n项和的概念(2)掌握等差数列的前n项和公式的推导过程(3)会灵活运用等差数列的前n项和公式。过程与方法的目标是:(1)通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学思想且自然生成的过程(2)通过灵活运用公式的过程,提高学生类比化归的能力及掌握方程的思想和方法。并且从教学过程渗透本课的情感态度目标:结合具体情景,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

三、教学问题诊断

1、根据教学经验,在本课的学习中,学生对公式的掌握及简单应用并不困难,而难点在于在推导等差数列前n项和的过程中如何自然地生成倒序相加求和法,是本课教学环节中的一个重点内容。首先让学生回顾高斯求和法,学生容易进行类比,将首末两项进行配对相加,但是很快遇到问题,当项数为奇数的前n项和时配不成对,这里引导学生意识到奇数项与偶数项的问题影响了首尾配对法。为了改进首尾配对法的局限性,设计了两个探索与发现,分别对应项数为奇数和偶数时,根据动画引导学生发现颠倒顺序再相加变为上下配对,体现了倒序相加法自然的生成过程,避免了对项数是奇与偶的讨论,从而实现变不同“数”的求和为相同“数”的求和。

2、在对两个求和公式的认识中,学生不容易想到将两个公式与梯形面积公式建立联系,此时教师可做适当的动画来提示,学生便能迅速找到二者的关系。认识过程中再次强调倒序相加的思想方法且强化了对公式的记忆和理解。

3、本节课充分利用了多媒体技术的强大功能,多次设计动画帮助学生观察和思考,形象直观且高效地提升了课堂的效益和效率,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去。

4、等差数列求和的两个公式中涉及的量比较多,有a1、n,sn,d,an五个量,通过公式应用及练习引导学生体会方程的思想方法,具体来说就是熟练掌握“知三求二”的问题和方法。

四、教法特点及预期效果分析 根据教学内容和学生的学习状况、认知特点,本课采用“探究——发现”教学模式.引导学生在活动中进行探究,在师生互动交流中,发现等差数列前n项和的推导方法,教师的教法突出活动的组织设计与方法的引导,学生的学法突出探究与发现,通过创设情景激发兴趣,在与教师的互动交流中,获得本节课的知识与方法。

根据学生具体情况,我力求达到:1、形成学生主动参与,自主探究的课堂气氛。

2、掌握求和公式的方法特点,并能从梯形面积的角度认识和牢记公式。3、提高学生类比化归及方程的思想方法。由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标。

第五篇:等差数列前n项和教案设计

《等差数列前n项和》教学设计一

设计人:杨峰烁

【背景分析】

本节课教学内容是高中课程标准实验教科书必修5(人教B版)中第二章的第二节第二课时的内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法.

【学情分析】

学生已经学习了等差数列的定义及通项公式,有了一定的准备知识,但对等差数列的求和的方法和公式还是一无所知。针对学生的认知规律,本节课采取了自主、合作、探究的教学方式,以问题解答的形式,通过分析、讨论、归纳、探索而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的使用范围.【设计理念】

让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求

法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.

【教学目标分析】

1.理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n项和公式;了解倒序相加法的原理;

2.通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养观察、归纳、反思的能力;通过小组讨论学习,培养合作交流、独立思考等良好的个性品质.【教学重点和难点】

本节教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;难点是等差数列前n项和公式推导思路的获得.【教学过程】

一、【古文共赏】

让学生们猜测问题与本节课的联系,此问题如果不能解决,学完本节后,看是否能解决。

[设计意图]:

引入一个中国古代的数列求和问题,通过悬疑的方式调动学生的好奇心,激发学生的学习兴趣。

[简要实录]:

学生思考这个问题与这节课学习内容的联系,教师简略介绍一下

北朝张丘建。引导同学们可先粗略发言发表自己的意见。

二、【温故知新】

学生准备好作业本,让两个学生在黑板上板演,教师说检测内容。①等差数列的通项公式②等差中项③等差数列的性质 [设计意图]:

检查学生上节知识的掌握情况,为新课的学习做好铺垫.[简要实录]:

2分钟后,一起批阅黑板同学的默写情况,下面的小组成员间互相检查、更正。老师视情况指正。

三、【高斯王子】

讲述数学王子高斯的故事,并自然提出高斯九岁时做出的题目。让同学们思考解决这个题目的方法有哪些?那个是最简便的呢?

[设计意图]:

用伟人的故事,让他们积极参与到课堂中来,同时培养他们的发散思维,培养他们一题多解的解题习惯。

[简要实录]:

学生们踊跃回答这个问题,并给出了两种解决这个问题的方法。老师再深入问学生哪种方法更简便呢?然后再引导学生,这个数列是不是我们刚学习的等差数列呢?学生经过观察发现,这是一个首项为1,公差为1,末项为100的等差数列。于是老师提出下一个问题。

四、【自主尝试】

求下面的这些钢管的数量总数,让同学们用刚才的计算方法来求

解。让学生先做好充足的准备,然后到黑板叙述板演计算过程。

[设计意图]:

进一步熟悉首尾相加的方法,慢慢为引入倒序相加作更进一步的准备。

[简要实录]:

学生先思考3分钟。然后让学生上黑板板演,然后和下面学生一起讲解自己的思考和计算思路。后一起评价,更正。鼓励学生,大胆面对成功和失败,大胆上台表现自己。

五、【知识迁移】

通过以上两个题目的解答,先让学生自己思考求等差数列前n项和的方法。并说明本节的一个重点学习内容倒序相加法。

[设计意图]:

独立推导等差数列的前n项和,加强对公式的记忆,熟练倒序相加的方法,让同学们在独立,讨论中提升自己。

[简要实录]如果有同学不能独立思考出,过3分钟后,可小组讨论。后让学生到黑板板演过程。并等同学们基本解决完毕,一起由学生解析讲解该问题。同学们提出自己的意见并对黑板学生作出更正。老师可视情况作出更精确的评价。

六、【公式记忆】

对比梯形公式,记忆等差数列的前n项和公式。通过联系的方法,用熟悉的旧知识快速记住新内容。

[设计意图]:

用新旧知识的联系来达到记忆公式的目的。通过图形的直观性来加强公式记忆。

[简要实录]:

同学们推导完等差数列的前n项和公式后,再仔细观察,引导他们察看公式的形式,引出梯形的面积公式与其所有的异曲同工之妙。并再书写公式,记住公式。老师作重点符号,强调两公式的重要性。

七、【始题释疑】

回头将最开始引入的问题再来解决。看看是否能用刚学习的知识来解答出来。并鼓励学生向古代的人学习,要善于观察生活,用数学解决生活中出现的问题。

[设计意图]:

这样做到首尾回应,整个课堂不偏离且围绕教学的主要内容,但又具有故事性和创造性。

[简要实录]:

先给学生3分钟时间考虑,然后由学生说出解答的思路,后学生在作业本上写出整个问题的步骤,后再师生一起更正修订。让学生思考,就得给学生时间,然后课下,再上交作业本,看学生在课上的习题完成情况。

八、【公式小结】

让学生自主完成等差数列前n项和sn的第二个公式的推导。观察这两个公式的相同点和不同点。找出相关量。弄明白这两公式之间的联系。并记住和能应用该公式。

[设计意图]:

通过联系的记忆方法,帮助同学们达到快速记忆的效果。找到相关量,面对不同的已知条件选择不同的公式。达到公式的熟练记忆和应用。

[简要实录]:

同学们已经学了等差数列的通项公式。可是,在通项中,我们的书已知条件是首项,公差或是其中的某一项。那么在这个公式中,只有末项,如何将其变形,然后直接运用公式求解呢?学生会想通项公式与些数列的联系,自然地将另一求和公式推导出来。并且看到了这两个公式的区别。

由同学们自己在作业本上推导,并找一同学黑板板演。在3分钟的时间内,仔细观察出现的四个量。对黑板的同学更正修订。老师再作小结,记忆公式。

九、【习题设计】

本课习题设计分了三等。是课本习题的精选。

一是基本知识。通过直接套用公式,来熟悉和使用公式。这里设计了两个题目,分别用了两个公式求和法。

二是自主尝试。这是对公式有个大致应用后的一个针对练习。这里加了与通项相联系的题目,达到对这三个公式间的互换和选择。

三是问题提升。这里综合考查学生对数列的整体把握情况。对求通项、项数、数列和的能力的训练。

[设计意图]:

1、通过不同梯度的习题,让学生有一个掌握问题的逐步适应过程,也能够从习题中更明白两个求和公式的应用。

2、通过解决问题,学会方程思想解决数列问题。

3、培养学生通过给出的问题,来观察问题中的已知条件并能快速判断选择哪个公式的能力。

[简要实录]:

先由学生在作业本上自行解出合作探究部分。做完后小给间讨论然后学生起来说出正确答案。老师给予指正和评价。并要注意具体的详解步骤。然后再由学生板演自主尝试部分的习题。下面的学生在作业本上一并做出。教师在教室内环转,以发现学生的不足和优点。并在给指正时,给予重点指出或是鼓励。然后学生下台,一起更正。最后的问题升华,给学生的时间要多一些,同学们先读题目,然后再自己思考3分钟,然后再讨论,再可以自行解决,在作业本上写上详细过程。后再将学生的作业投影,发现问题,解决问题。发现优点,放大优点。

教师小结这些题中存在的问题。并再由学生叙述解决这类问题的规律。帮他们确定知三求二的规律。

十、【课堂小结】

用框架的形式整理本节内容,重点突出,关系明确。[设计意图]:

将本节内容整理:将厚书读薄,将问题梳理,将知识联系。[简要实录]:

学生回忆本节内容作大致阐述。然后精抓问题实质,突出本节重

点。力求不累赘,不拖沓,力求明明白白,清清楚楚。

十一、【课后作业】

课后作业分选做和必做两种。针对学生的学习差异而设计。[设计意图]:

加上了趣味小故事,让学生在思考中学习,在学习中成长,在成长中,树立正确的学习观和对数学史的认识。思考题目,是为了下节课的学习而做的准备。让他们大致了解老师下节要讲的内容主向。

【教学反思】

“等差数列前n项和”的推导不只一种方法,本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.该方法反映了等差数列的本质,可以进一步促进学生对等差数列性质的理解,而且该推导过程体现了人类研究、解决问题的一般思路.本节课教学过程的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了.

《等差数列前n项和》教学设计二

设计人:杨峰烁

教材分析

等差数列的前n项和是数列的重要内容,也是数列研究的基本问题.在现实生活中,等差数列的求和是经常遇到的一类问题.等差数列的求和公式,为我们求等差数列的前n项和提供了一种重要方法. 教材首先通过具体的事例,探索归纳出等差数列前n项和的求法,接着推广到一般情况,推导出等差数列的前n项和公式.为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前n项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前n项和公式解决问题.这节内容重点是探索掌握等差数列的前n项和公式,并能应用公式解决一些实际问题,难点是前n项和公式推导思路的形成. 教学目标

1.通过等差数列前n项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力.

2.理解和掌握等差数列的前n项和公式,体会等差数列的前n项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力.

3.在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法. 任务分析

这节内容主要涉及等差数列的前n项公式及其应用.

对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子1+2+3+……+100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第k项与倒数第k项的和等于首项与末项的和这个规律,进而发现求等差数列前n项和的一般方法,这样自然地过渡到一般等差数列的求和问题.对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前n项和与等差数列的项、项数、公差之间的关系.为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法.特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式.对于等差数列前n项和公式和二次函数之间的联系,可引导学生拓展延伸. 教学设计

一、问题情景

1.在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“1+2+3+…+100=?”时,很快地就算出了结果.他是怎么算出来的呢?他发现1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=101×50=5050.

2.受高斯算法启发,你能否求出1+2+3+…+n的和. 3.高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前n项和?

二、建立模型

1.数列的前n项和定义

对于数列{an},我们称a1+a2+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+…+an. 2.等差数列的求和公式

(1)如何用高斯算法来推导等差数列的前n项和公式? 对于公差为d的等差数列{an}:

Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①

依据高斯算法,将Sn表示为Sn=an+(an—d)+(an—2d)+…+[an—(n—1)d].

由此得到等差数列的前n项和公式

小结:这种方法称为反序相加法,是数列求和的一种常用方法.(2)结合通项公式an=a1+(n—1)d,又能得怎样的公式?

(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质?

学生讨论后,教师总结:相同点是利用二者求和都须知道首项a1和项数n;不同点是前者还须要知道an,后者还须要知道d.因此,在应用时要依据已知条件合适地选取公式.公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第k项与倒数第k项的和都等于首、末两项之和,后者反映了等差数的前n项和是关于n的没有常数项的“二次函数”.

三、解释应用 [例 题]

1.根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn.

(1)a1= —4,a8= —18,n=8.(2)a1=14.5,d=0.7,an=32. 注:恰当选用公式进行计算.

2.已知一个等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗? 分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于a1与d的关系式,它们都是关于a1与d的二元一次方程,由此可以求得a1与d,从而得到所求前n项和的公式. 解:由题意知

注:(1)教师引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或者a1,n,d的方程,使学生能把方程思想和前n项和公式相结合,再结合通项公式,对a1,d,n,an及Sn这五个量知其三便可求其二.

(2)本题的解法还有很多,教学时可鼓励学生探索其他的解法.例如,3.2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少? 教师引学生分析:每年“校校通”工程的经费数构成公差为50的等差数列.问题实质是求该数列的前10项的和.

解:根据题意,从2001~2010年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列{an},表示从2001年起各年投入的资金,其中,a1=500,d=50. 那么,到2010年(n=10),投入的资金总额为

答:从2001~2010年,该市在“校校通”工程中的总投入是7250万元.

注:教师引导学生规范应用题的解题步骤.

4.已知数列{an}的前n项和Sn=n2+n,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么? 解:根据

由此可知,数列{an}是一个首项为,公差为2的等差数列.

思考:一般地,数列{an}前n项和Sn=An2+Bn(A≠0),这时{an}是等差数列吗?为什么? [练习]

1.一名技术人员计划用下面的办法测试一种赛车:从时速10km/h开始,每隔2s速度提高20km/h.如果测试时间是30s,测试距离是多长?

n2+2.已知数列{an}的前n项的和为Sn=个数列的通项公式.

n+4,求这3.求集合M={m|m=2n—1,n∈N*,且m<60}的元素个数,并求这些元素的和.

四、拓展延伸

1.数列{an}前n项和Sn为Sn=pn2+qn+r(p,q,r为常数且p≠0),则{an}成等差数列的条件是什么?

2.已知等差数列5,4,3,…的前n项和为Sn,求使Sn最大的序号n的值.

分析1:等差数列的前n项和公式可以写成Sn=n2+(a1-)n,所以Sn可以看成函数y=x2+(a1-)x(x∈N*).当x=n时的函数值.另一方面,容易知道Sn关于n的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值.

解:由题意知,等差数列5,4,3,…的公差为-,所以

于是,当n取与最接近的整数即7或8时,Sn取最大值. 分析2:因为公差d= -<0,所以此数列为递减数列,如果知道从哪一项开始它后边的项全为负的,而它之前的项是正的或者是零,那么就知道前多少项的和最大了.即使点 评

然后从中求出n.

这篇案例从具体的实例出发,引出等差数列的求和问题,在设计上,设计者注意激发学生的学习兴趣和探究欲望,通过等差数列求和公式的探索过程,培养学生观察、探索、发现规律、解决问题的能力. 对例题、练习的安排,这篇案例注意由浅入深,完整,全面.拓展延伸的设计有新意,有深度,符合学生的认识规律,有利于学生理解、掌握这节内容.

就总体而言,这篇案例体现了新课程的基本理念,尤其关注培养学生的数学思维能力和创新能力.另外,这篇案例对于继承传统教学设计注重“双基”、关注学生的落实,同时注意着眼于学生的全面发展,有比较好的体现。

下载等差数列前n项和作业5则范文word格式文档
下载等差数列前n项和作业5则范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列前n项和基础练习题

    等差数列前n项和基础练习题 1..等差数列-10,-6,-2,2,…前___项的和是54 2.正整数前n个数的和是___________ 3.数列an的前n项和Sn=3nn,则an=___________ 24. 在等差数列an中,前15项的......

    《等差数列前n项和》教学反思

    《等差数列前n项和》教学反思身为一名刚到岗的人民教师,教学是重要的任务之一,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?下面是小编收集整理的《等差数......

    等差数列的前n项和教案

    等差数列的前n项和 一:教材分析 本节课内容位于高中人教版必修五第二章第三节。它是在学习了等差数列的基础上来研究和讨论的,是继等差数列之后的又一重要的概念。主要利用......

    等差数列的前n项和公式教案

    2.3等差数列的前n项和公式(教案) 一.教学目标: 1. 知识与技能目标 了解等差数列前n项和公式,理解等差数列前n项和公式的几何意义,并且能够灵活运用其求和。 2. 过程与方法目标 学......

    《等差数列的前n项和》教学设计

    《等差数列的前n项和》 教学设计 教学内容分析 本节课教学内容是《普通高中课程标准实验教科书·数学(5)》(人教A版)中第二章的第三节“等差数列的前n项和”(第一课时).本节课主要......

    等差数列前n项和教案(共5篇)

    等差数列前n项和(第一课时)教案 【课题】等差数列前n项和第一课时 【教学内容】等差数列前n项和的公式推导和练习【教学目的】 (1)探索等差数列的前项和公式的推导方法; (2)掌......

    课时30 等差数列及其前n项和

    提升训练30等差数列及其前n项和 一、选择题 1.等差数列{an}的前n项和为Sn,且S7=7,则a2+a6=. 7911A.2B.C.D. 224 2.等差数列{an}的前n项和为Sn(n=1,2,3,„),若当首项a1和公差d变化时,a5+a......

    等差数列的前n项和(推荐五篇)

    1 努力奋斗 等差数列前n项和 一.选择题: 1.已知等差数列{an}中,a1=1,d=1,则该数列前9项和S9等于 A.55B.45C.35D.25 2.已知等差数列{an}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为 A.180B.-18......