初一数学教案6二元一次方程组[大全五篇]

时间:2019-05-15 02:38:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一数学教案6二元一次方程组》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一数学教案6二元一次方程组》。

第一篇:初一数学教案6二元一次方程组

纽威教育6T教材系列 二元一次方程第六讲

时间:2014年7 月 7 日秦老师电话:***

一、兴趣导入(Topic-in): 统计学家的故事-----有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下四个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写着:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次;每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿马路26次;我还要再过这样的星期六0次。”

数学小故事----找零钱:一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱.店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头。顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.”这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元.”请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元.如果这个顾客行骗成功,那么共骗得了多少钱? 学前测试(Testing):

1、有哪些解方程的方法?

2、列方程解应用题一般有哪些步骤? 知识讲解(Teaching): 二元一次方程

含义:把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。

有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:

(1)代入消元法

例:解方程组x+y=5①

6x+13y=89②

解:由①得

x=5-y③

把③带入②,得

6(5-y)+13y=89

y=59/7

把y=59/7带入③,x=5-59/7

即x=-24/7

∴x=-24/7

y=59/7 为方程组的解

我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

加减消元法

例:解方程组x+y=9①

x-y=5②

解:①+②

2x=14

x=7

把x=7带入①

得7+y=9

解得y=-2

∴x=7

y=-2 为方程组的解

像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。二元一次方程组的解有三种情况:

1.有一组解:如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解

2.有无数组解:如方程组x+y=6① 2x+2y=12② ,因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解:如方程组x+y=4① 2x+2y=10②,因为方程②化简后为 x+y=5,这与方程①相矛盾,所以此类方程组无解。

注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。

教科书中没有的几种解法

(一)加减-代入混合使用的方法.例1, 13x+14y=41(1)

14x+13y=40(2)

解:(2)-(1)得

x-y=-1

x=y-1(3)

把(3)代入(1)得

13(y-1)+14y=41

13y-13+14y=41

27y=54

y=2

所以:x=1,y=2

特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法

例2,(x+5)+(y-4)=8

(x+5)-(y-4)=4

令x+5=m,y-4=n

原方程可写为m+n=8

m-n=4

解得m=6,n=2

所以x+5=6,y-4=2

所以x=1,y=6

特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

(三)另类换元

例3,x:y=1:4

5x+6y=29

令x=t, y=4t

方程2可写为:5t+6*4t=29

29t=29

t=1

所以x=1,y=4 二元一次方程组的解

一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

求方程组的解的过程,叫做解方程组。

一般来说,二元一次方程组只有唯一的一个解。注意:

二元一次方程组不一定都是由两个二元一次方程合在一起组成的!

也可以由一个或多个二元一次方程单独组成。

★重点★

一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)

☆内容提要☆

一、基本概念 1.方程、方程的解(根)、方程组的解、解方程(组)

二、解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc(c≠0)

三、解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。

2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

五、可化为一元二次方程的方程

1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法

2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!)②换元法⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二.常用的相等关系

1.行程问题(匀速运动),基本关系:s=vt ⑴相遇问题(同时出发):

⑵追及问题(同时出发)

⑶水中航行:;

2.配料问题:溶质=溶液×浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。三注意语言与解析式的互化

如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、„„

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

四注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。

五、注意单位换算

如,“小时”“分钟”的换算;s、v、t单位的一致等。

四、强化练习(Training)

1.下列方程中,是二元一次方程的是()

A.3x-2y=4z

B.6xy+9=0

C. +4y=6

D.4x=

2.二元一次方程5a-11b=21()

A.有且只有一解

B.有无数解

C.无解

D.有且只有两解

3.下列各式,属于二元一次方程的个数有()

①xy+2x-y=7;②4x+1=x-y;③ +y=5;④x=y;⑤x2-y2=2 ⑥6x-2y

⑦x+y+z=1

⑧y(y-1)=2y2-y2+x

A.1

B.2

C.3

D.4

4.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.

5.在二元一次方程- x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.

6.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.

7.二元一次方程x+y=5的正整数解有______________.

8.根据题意列出方程组:

(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?

(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?

9.甲、乙、丙三个班的学生共植树66棵,甲班植树的棵数是乙班植树棵数的2倍,丙班与乙班植树棵数比为2∶3,求三个班各植树多少棵?

五、训练辅导(Tutor):

1、下列不是二元一次方程组的是()

+ y =4

4x+ 3y =6 x-y =1

2x+ y =4

x+ y= 4

3x+ 5y =25 x-y=1

x+ 10y =25

2、由-=1,可以得到用x表示y的式子()(A)y=(B)y=-(C)y=-2

(D)y=2-3x+2y=7 4x-y=13 x=-1

x=3 y=3

y=-1

x=-3

x=-1

y=-1

y=-3

4、在3x+4y=9中,如果2y=6,那么x=__________ x=1 y=-8 x=1

x=2 y=1

y=-1

7、如果︱x-2y+1︱=︱z+y-5︱=︱x-z-3︱=0,那么x=__,y=________,z=________

六、反思总结(Thinking):

堂堂清落地训练----坚持堂堂清,学习很爽心

(每题20分,共100分)

1、已知梯形的面积是42㎝2,高是6㎝,它的下底比上底的2倍少1㎝,求梯形的上下底?

2、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?

3、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

4、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。问一工多少名学生、多少辆汽车。

5、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

家庭作业

1、在方程3x+4y=16中,当x=3时,y=________,2、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上,树下的鸽子就一样多了。”你知道树上,树下各有多少只鸽子吗?

3.三个数的和是51,第二个数去除第一个数时商2余5,第三个数去除第二个数时商3余2,求这三个数.

4、现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B、C两箱共106个,求每箱各有多少个?

5、甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运? 6、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

第二篇:二元一次方程组练习题

七年级数学〔下〕单元检测题

〔二元一次方程组〕

〔考试时间90分钟,总分值100分〕

姓名:_______________

学号:__________

得分:________________

一、填空〔每题2分,共20分〕

1、x=4,y=-5

满足方程2x+ky=11,那么k=_______。

2、甲、乙两数的和为13,乙数比甲数少5,那么甲数是____,乙数是____。

3、二元一次方程,当时,=

;当时,=。

4、在方程中,用含x的代数式表示y,那么y=,5、在代数式b+at中,当t=2时,它的值是35;当t=5时,它的值是50,那么

a=_________,b=_________。

6、写出方程的两个正整数解:;

7、是方程组的解,那么a=_

___,b=__

__。

8、假设〔2x-y-3)2+│10-3x-4y┃=0,那么x=___,y=___。

9、方程组的解是___________。

10、一个两位数的十位数字与个位数字之和为9,如果这个两位数加27,那么恰好成为个位数字与十位数字对调后组成的两位数,那么这个两位数是。

二、选择题〔每题2分,共20分〕

1、假设2a2s

b3s-2t与-3a3t

b5可以和并,那么〔

A、s=3,t=-2

B、s=-3,t=2

C、s=-3,t=-2

D、s=3,t=22、方程3y+5x=27与以下的方程〔

〕所组成的方程组的解是

A、4x+6y=-6

B、4x+7y-40

0

C、2x-3y=13

D、以上答案都不对

3、在方程

x-

y=4中,用含x的代数式表示主,正确的选项是〔

A、y=0.5(3x+4)

B、y=0.5(3x-24)

C、x=

〔2y+24〕

D、x=

〔2y+4〕

4、一只轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,〔a>b>0〕,那么船在静水中的速度为〔

〕千米/时。

A、a+b

B、C、D、a-b5、在等式y=kx+b中,当x=0时,y=-3;当x=1时,y的值都为0,那么k,b的值分别是〔

A、-2,3

B、3,-3

C、1,2

D、1,36、二元一次方程组的解满足方程

x-2y=5,那么k为〔

A、5

B、-5

C、-1

D、1

7.当今世界杯足球赛的积分如下:赢一场得3分,平一场得1分,输一场得0分,某小组四个队进行单循环赛后,其中一队积7分,假设该队赢了x场,平了y场,那么〔x、y〕是〔

A、〔1,4〕

B、〔2,1〕

C、〔0,7〕

D、〔3,-2〕

8.将代入,可得

A、B、C、D、9.有假设干间宿舍和假设干人,假设每间住1人,有10人无处住;假设每间住3人,那么有10间无人住,那么宿舍的间数为〔

A、20

B、10

C、15

D、12

10.我区某学校原方案向内蒙古地区的学生捐赠3500册图书,实际捐赠了4125册,其中初中学生捐赠了原方案的120%,高中学生捐赠了原方案的115%,问初中学生和高中学生各比原方案多捐赠了图书多少册?

A、400,225

B、300,335

C、400,335

D、225,400

三、解方程组〔每题5分,共30分〕

1、〔用代入法解〕

2、〔用加减法解〕3、4、5、6、四、解答以下各题〔每题6分,共12分〕

1、假设是方程和的公共解,求的值

2、五、列方程组解应用题〔每题6分,共18分〕

1、某商场按定价销售某种商品时,每件可获利45元,按定价八五折销售该商品8件与定价降低35元销售该商品12件所获利润相等,该商品进价、定价分别是多少?

2、有一个两位数,个位上的数比十位上的数的3倍多2,假设把个位数字与十位数字对调,所得的两位数比原来的两位数的3倍少2。求原来的两位数。

3、某中学初一同学去春游,原方案租用45座客车假设干辆,但有15人没有座位;如果租用60座客车,那么坐满后还多一辆,;45座客车日租金为每辆220元,60座客车日租金为每辆300元;

试问:

初一人数是多少?

要使每个同学都有座位,怎样租车更合算?

第三篇:二元一次方程组教案

二元一次方程组教案

二元一次方程组教案1

教学建议

一、重点、难点分析

本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.

解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.

二、知识结构

三、教法建议

1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调

这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.

2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.

3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.

一、素质教育目标

(一)知识教学点

1.掌握用代入法解二元一次方程组的步骤.

2.熟练运用代入法解简单的二元一次方程组.

(二)能力训练点

1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.

2.训练学生的运算技巧,养成检验的习惯.

(三)德育渗透点

消元,化未知为已知的数学思想.

(四)美育渗透点

通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.

二、学法引导

1.教学方法:引导发现法、练习法,尝试指导法.

2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.

三、重点、难点、疑点及解决办法

(-)重点

使学生会用代入法解二元一次方程组.

(二)难点

灵活运用代入法的技巧.

(三)疑点

如何“消元”,把“二元”转化为“一元”.

(四)解决办法

一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.

2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.

3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.

七、教学步骤

(-)明确目标

本节课我们将学习用代入法求二元一次方程组的解.

(二)整体感知

从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.

(三)教学步骤

1.创设情境,复习导入

(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.

(2)选择题:

二元一次方程组 的解是

A. B. C. D.

第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.

通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.

这样导入,可以激发学生的求知欲.

2.探索新知,讲授新课

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.

设买了香蕉 千克,那么苹果买了 千克,根据题意,得

设买了香蕉 千克,买了苹果 千克,得

上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.

解:由①得: ③

把③代入②,得:

把 代入③,得:

解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.

上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?

学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.

例1 解方程组

(1)观察上面的方程组,应该如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .

(3)求出 后代入哪个方程中求 比较简单?(①)

学生活动:依次回答问题后,教师板书

解:把①代入②,得

把 代入①,得

如何检验得到的结果是否正确?

学生活动:口答检验.

教师:要把所得结果分别代入原方程组的每一个方程中.

给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.

例2 解方程组

要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.

学生活动:尝试完成例2.

教师巡视指导,发现并纠正学生的问题,把书写过程规范化.

解:由②,得 ③

把③代入①,得

把 代入③,得

检验后,师生共同讨论:

(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)

学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.

教师板书:

(1)变形( )

(2)代入消元( )

(3)解一元一次方程得( )

(4)把 代入 求解

练习:P13 1.(1)(2);P14 2.(1)(2).

3.变式训练,培养能力

①由 可以得到用 表示 .

②在 中,当 时, ;当 时, ,则 ; .

③选择:若 是方程组 的解,则( )

A. B. C. D.

(四)总结、扩展

1.解二元一次方程组的思想:

2.用代入法解二元一次方程组的步骤.

3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.

通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.

八、布置作业

(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).

(二)选做题:P15 B组1.

二元一次方程组教案2

教学目标

1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;

2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.

教学难点弄懂二元一次方程组解的含义。

知识重点二元一次方程、二元一次方程组及其解的含义。

教学过程(师生活动)

设计理念

创设情境

导入课题幻灯:古老的“鸡兔同笼问题”

“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”

师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?

学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.

方案一:算术方法

把兔子都看成鸡,则多出94-35×2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,

进而鸡有35-12=23只.

或类似的也可以先求鸡的数量.

35×4-94=46,46÷2=23

方案二:列一元一次方程解

设有x只鸡,则有(35-x)只兔.根据题意,得

2x十4(35-x)=94.

(解方程略)

教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情

能用方案本来解的学生算术功底比较好,应给予高度赞赏.

方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。

分析问题(一)讨论二元一次方程、二元一次方程组的概念

师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)

方案三:设有x只鸡,y只兔,依题意得

x+y=35,①

2x+4y=94.②

针对学生列出的这两个方程,提出如下问题:

(1)、你能给这两个方程起个名字吗?

(2)为什么叫二元一次方程呢?

(3)什么样的方程叫二元一次方程呢?

结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.

师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?

定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.

(二)讨论二元一次方程、二元一次方程组的解的概念

探究活动:满足x+y=35的值有哪些?请填入表中:

教师启发:

(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?

(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?

(3)它与一元一次方程的解有什么区别?

定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为

师:那么什么是二元一次方程组的解呢?

学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.

定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.

比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做

的解记为:

注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.

议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢?

引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念

通过探究活动得出结论:

1、二元一次方程的解是成对出现的;2、二元一次方程的解有无

数多个.这与一元一次方程有显

著的区别.

通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.

巩固新知例1下列各对数值中是二元一次方程x+2y=2的解是

ABCD

解法分析:

将A、B,C,D中各对数值逐一代人方程检验是否满足方程,选A,B,C.

变式:其中是二元一次方程组解是()

解法分析:

在例1的基础上,进一步检验A、B、C中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.

例2(教材102页练习)

解答过程略

本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.

目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概

小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.

本节课学习了哪些内容?你有哪些收获?

(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)发挥学生主体意识,培养学生归纳小结的能力。

布置作业1、必做题:教科书102页习题8.1第1、2题.

2、选做题:教科书102页习题8.1第3题.

3、备选题:

(1)根据下列语句,列出二元一次方程:

①甲数的一半与乙数的的和为11

②甲数和乙数的2倍的差为17

(2)方程x+2y=7在自然数范围内的解()

A有无数个B有一个C有两个D有三个

(3)若mx+y=1是关于x,y的二元一次方程,那么m

的值应是()

A.m≠OB.m=0C.m是正有理数D.m是负有理数

(4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?

不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.

本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。

二元一次方程组教案3

教学目标:

1.会用加减消元法解二元一次方程组.

2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.

教学重点:

加减消元法的理解与掌握

教学难点:

加减消元法的灵活运用

教学方法:

引导探索法,学生讨论交流

教学过程:

一、情境创设

买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

设苹果汁、橙汁单价为x元,y元.

我们可以列出方程3x+2y=23

5x+2y=33

问:如何解这个方程组?

二、探索活动

活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

2、这些方法与代入消元法有何异同?

3、这个方程组有何特点?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解这个方程得:y=4

把y=4代入③式

所以原方程组的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解这个方程得:x=5

把x=5代入①式,

3×5+2y=23

解这个方程得y=4

所以原方程组的解是x=5

y=4

把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

三、例题教学:

例1.解方程组x+2y=1①

3x-2y=5②

解:①+②得,4x=6

将代入①,得

解这个方程得:

所以原方程组的解是

巩固练习(一):练一练1.(1)

例2.解方程组5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解这个方程得x=2

将x=2代入①,得

5×2-2y=4

解这个方程得:y=3

所以原方程组的解是x=2

y=3

巩固练习(二):练一练1.(2)(3)(4)2.

四、思维拓展

解方程组:

五、小结:

1、掌握加减消元法解二元一次方程组

2、灵活选用代入消元法和加减消元法解二元一次方程组

六、作业

习题10.31.(3)(4)2.

二元一次方程组教案4

教学目标:

1、会用代入法解二元一次方程组

2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。

此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。

引导性材料:

本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60

Y=2X 观察

2(X+2X)=60与 2(X+Y)=60 ①

Y=2X ② 有没有内在联系?有什么内在联系?

(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)

知识产生和发展过程的教学设计

问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的问题(解一元一次方程)。

解方程组 2(X+Y)=60 ①

Y=2X ②

解:把②代入①得:

2(X+2X)=60,

6X=60,

X=10

把X=10代入②,得

Y=20

因此: X=10

Y=20

问题2:你认为解方程组 2(X+Y)=60 ①

Y=2X ② 的关键是什么?那么解方程组

X=2Y+1

2X—3Y=4 的关键是什么?求出这个方程组的解。

上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。

问题3:对于方程组 2X+5Y=-21 ①

X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?

(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)

例题解析

例:用代入法将下列解二元一次方程组转化为解一元一次方程:

(1)X=1-Y ①

3X+2Y=5 ②

将①代入②(消去X)得:

3(1-Y)+2Y=5

(2)5X+2Y-25.2=0 ①

3X-5=Y ②

将②代入①(消去Y)得:

5X+2(3X-5)-25.2=0

(3)2X+Y=5 ①

3X+4Y=2 ②

由①得Y=5-2X,将Y=5-2X代入②消去Y得:

3X+4(5-2X)=2

(4)2S-T=3 ①

3S+2T=8 ②

由①得T=2S-3,将T=2S-3代入②消去T得:

3S+2(2S-3)=8

课内练习:

解下列方程组。

(1)2X+5Y=-21 (2)3X-Y=2

X+3Y=8 3X=11-2Y

小结:

1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。

2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。

3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。

课后作业:

教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。

二元一次方程组教案5

教学目标:

1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

教学过程:

一、复习

列方程解应用题的步骤是什么?

审题、设未知数、列方程、解方程、检验并答

新课:

看一看课本99页探究1

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

二元一次方程组教案6

教学目标:

1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用

2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性

3体会列方程组比列一元一次方程容易

4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力

重点与难点:

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

课前自主学习

1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的

2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

(1)方程两边表示的是()量

(2)同类量的单位要()

(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )

4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )

新课探究

看一看

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)()

(2)()

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg

根据题意列方程,得

解这个方程组得

答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

小结

用方程组解应用题的一般步骤是什么?

8.3实际问题与二元一次方程组(2)

教学目标:

1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力

重点与难点:

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

课前自主学习

1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。

2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。

3.现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+()=10(2)1米的钢材总长+()=18

二元一次方程组教案7

教学目的

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

难点;了解二元一次方程组的解的含义。

导学提纲:

1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?

2.阅读教材问题1思考下列问题

⑴.能否用我们已经学过的知识来解决这个问题?

用算术法解答

用一元一次方程解答

解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

⑶.对于方程x十y=73x+y=17请思考下列问题

①它们是一元一次方程吗?

②这两个方程有没有共同特点/若有,有河共同特点?

③类比一元一次方程的概念,总结二元一次方程的概念

3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

5.思考讨论在方程组①②③④

⑤⑥中,属于二元一次方程组的有

达标检测:

1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

(1)甲数的比乙数的2倍少7:_____________________________;

(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

2.下列方程是二元一次方程的是()

A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

3.下列不是二元一次方程组的是()

x+3y=5m+3m=152x+3x=0m+n=5

A、B、C、D、

2x-3x=3+=3-5y=02m+n=6

x=2

4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

y=-3

5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

二元一次方程组教案8

一、教材分析

1.教材的地位和作用

本节课是华东师大版七年级数学下册第七章《二元一次方程组》中第二节的第四课时,它是在学习了代入消元法和加减消元法的基础上进行学习的。能够灵活熟练地掌握加减消元法,在解方程组时会更简便准确,也是为以后学习用待定系数法求一次函数、二次函数关系式打下了基础,特别是在联系实际,应用方程组解决问题方面,它会起到事半功倍的效果。

2.教学目标

(1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。

(2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。

(3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。

3.教学重点难点

教学重点:利用加减法解二元一次方程组。

教学难点:二元一次方程组加减消元法的灵活应用。

4.教学准备:多媒体、课件。

二、学情分析

我所任教的初一(2)班学生基础比较好,他们已经具备了一定的探索能力,也初步养成了合作交流的习惯。大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的乡镇中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。

三、教法与学法分析

说教法:启发引导法,任务驱动法,情境教学法,演示法。

说学法:合作探究法,观察比较法。

四.教学设计

(一)复习旧知

1、解二元一次方程组的基本思想是什么?(消元)

2、前面我们学过了哪些消元方法?(“单身”代入法、“朋友”加减法)

下列两题可以用什么方法来求解?

2x3y=16①

X-y=3②3

学生:观察、思考、讨论和交流,然后口述解题方法。

教师:肯定、鼓励、板书。

[设计意图:通过复习,让学生巩固了相关的旧知识,同时也为本节课做了铺垫]

(二)探究新知

1、情境导入

师:我们用代入法来解题第一步是找“单身”,用加减法来解题第一步是找“朋友”,再用同减异加的法则进行解答,那么我们一起来看一下这道题目:

问:这题能否用“单身”代入法或“朋友”加减法来求解?为什么?导入课题,板书课题。[设计意图:利用富有挑战性的问题,激发学生的好奇心和求知欲,可引发学生对问题的思考,并促进学生运用已有的知识去发现和获取新的知识]

2、合作探究

(让学生分组讨论交流,主动探索出解法,教师巡视指导并肯定和鼓励他们。)

总结解题方法:如果一个方程组中x或y的系

数不相同时,也就是说它们不是“朋友”时,先要想办法把“陌生人”变成“朋友”。

方法一:将方程①变形后消去x。

方法二:将方程②变形后消去y。

让学生尝试着写出解题过程,请两位同学上台展示结果,集体订正。请做对的同学举手,全班同学都为自己鼓鼓掌,做对的表示给自己一次祝贺,暂时还没做对的表示给自己一次鼓励。[设计意图:让学生探索这道过渡性的题目,是遵循了学生的认识规律,由浅入深,为学习下面这道例题做好准备,同时通过变“陌生人”为“朋友”这一设想过程,也培养了学生的创新意识。]

3、例题探索例5、解方程组:3x-4y=10①

5x6y=42②

师:这道题的x与y的系数有何特点?如何变成“朋友”?

(让学生思考、分组讨论、交流,教师引导并板书解题过程。)

[设计意图:让学生通过探讨,逐步发现可以用加减消元法去解较为复杂的二元一次方程组,也让他们再次体会了消元化归的数学思想,同时也培养了学生分析问题和解决问题的能力。在整个探讨的过程中也增强了学生的信心,学生有了发现的乐趣和成功的喜悦后,会产生一种想表现自己的欲望。]

4、试一试

学生完成课本第30页的试一试,让学生用本节课的加减消元法和前面例2的代入消元法进行比较,看一看哪种方法更简便?

(小组之间互相交流,写出解答过程,并请一些同学谈谈自己的看法,教师展示两种解题方法让学生们进行比较。)

[设计意图:通过对比两种方法,使学生更清晰地掌握知识,当学生发现本节课的方法比例2的方法更简便时,学生会产生一种用本节课的知识去解题的冲动。]

(三)反馈矫正

解方程组:

(给学生提供展现自我才华的机会,以前后两桌为一个小组进行讨论交流,此时可轻声播放一首钢琴曲,为学生创造一种轻松和谐的学习氛围)

让两个同学上台解题,教师巡视,并每一个组选两名代表检查本组同学的完成情况和及时帮助有困难的同学,待全班同学完成后,让台上这两位同学试着当一下小老师,为全班同学讲解自己所做的题目,教师为评委,进行点评并总结,全班同学为他们鼓掌。

[设计意图:由于学生人数较多,教师不能兼顾每个学生,所以让学生自做自讲,培养了学生综合能力的同时,也活跃了课堂气氛。选代表巡视并帮助有困难的同学,会让学生感受到老师对他们的重视,这样就能让他们主动参与到课堂中来。同时也培养了学生的合作精神和激发了学生的学习热情。]

(四)课堂小结:学完这节课,大家有什么收获?请同学们谈谈对这节课的体会。

[设计意图:加深对本节知识的理解和记忆,培养学生归纳、概括能力。]

(五)布置作业:

必做题:课本第31页的练习。

选做题:

(2)

[设计意图:进一步巩固本节课知识的同时,也给学生留下思考的余地和空间,学生是带着问题走进课堂,现在又带着新的问题走出课堂。]

五、板书设计:二元一次方程组的解法(四)

找“朋友”——变“陌生人”为“朋友”——同减异加

例题分析习题分析

[设计意图:为了更好地突出本节课的教学重点和让学生更明确本节课的教学目标。]

二元一次方程组教案9

一 内容和内容解析

1.内容

二元一次方程, 二元一次方程组概念

2.内容解析

二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.

本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.

本节课的教学重点是:二元一次方程, 二元一次方程组的概念

二、目标和目标解析

1.教学目标

(1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.

(2)理解解二元一次方程, 二元一次方程组的解的概念.

2. 教学目标解析

(1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.

(2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.

三、教学问题诊断分断

1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路

2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.

本节教学难点:

1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.

2.二元一次方程组的解的意义

四、教学过程设计

1.创设情境,提出问题

问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

x=6,则胜6场,负4场

教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?

师生活动:学生回答:能。设胜x场,负场。根据题意,得x+=10 , 2x+=16.

教师归纳:像这样,每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1的方程叫做二元一次方程。

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.

问题2:对比两个方程,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个x,都是这个队的胜,负场

数,它们必须同时满足这两个方程,这样,连在一起写成

就组成了一个方程组 。这个方程组中每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组 。

设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。

问题3 : 探究

满足了方程①,且符合问题的实际意义的x,的值有哪些?把它们填入表中

x

(3) 当 =12时,x的值

师生活动:小组讨论,然后每组各派一名代表上黑板完成.

设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.

3加深认识,巩固提高

练习: 一条船顺流航行,每小时行20 ,逆流航行,每小时行16 .求船在静水中的速度和水的流速。

师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。

设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,

4归纳总结

师生活动:共同回顾本节课的学习过程,并回答以下问题

1.二元一次方程, 二元一次方程组的概念

2.二元一次方程, 二元一次方程组的解的概念.

3.在探究的过程中用到了哪些思想方法?

4.你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

5. 布置作业

教科书第90页第3,4题

五、目标检测设计

1.填表,使上下每对x,的值是方程3x+=5的解

x

2.选择题

二元一次方程组的解为( )

A. B. C. D.

设计意图:考查学生二元一次方程组的解的掌握情况.

二元一次方程组教案10

教学目标知识技能

1、会根据问题情境及条件列出分段计费及盈不足等问题的二元一次方程组,并能检验解的合理性;

2.通过解决实际问题进一步体会方程建模的过程和作用.

数学思考经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.

问题解决让学生进一步经历和体验列方程组解决实际问题的过程,培养学生的数学应用能力.

情感态度通过对问题的解决,进一步认识数学与现实世界的密切联系,培养学生必要的经济意识,增强他们节约成本、有效合理利用资源的意识,培养学生的数学应用意识,提高学习数学的趣味性、现实性、科学性.

教学重点抽象出数学模型,引导学生参与讨论和探究问题.

教学难点将实际问题转化成二元一次方程组的数学模型.

授课类型新授课课时

教具多媒体课件

教学活动

教学步骤师生活动设计意图

活动一:创设情境导入新课

【课堂引入】1.某旅行社在黄金旅游期间为一个旅游团安排住宿,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住了4人,且空两间宿舍,那么该旅游团有多少人?有多少间宿舍?图1-3-72.上节课我们学习了列二元一次方程组解应用题的一般步骤,并学习了行程问题,百分比问题的解决思路,这节课我们一起来学习分段计费、盈不足问题的解决方法.利用同学们熟悉的生活中的问题去激发学生学习本节课的兴趣,导入课题.

活动二:实践探究交流新知

【探究1】分段计费问题某城市规定:出租车起步价所包含的路程为0~3 km,超过3 km的部分按每千米另收费.甲说“我乘这种出租车走了11 km,付了17元.”乙说:“我乘这种出租车走了23 km,付了35元.”请你算一算:出租车的起步价是多少元?超过3 km后,每千米的车费是多少元?阅读后思考回答:问题1:由甲乘车付费可以得到一个什么样的等量关系?由乙乘车付费又可以得到一个什么样的等量关系?问题2:在这两个等量关系中,未知量有几个?各小组成员共同讨论,探讨已知与未知,并探讨设元的方法.问题3:你能通过设元列出二元一次方程组吗?试试看.解:设出租车的起步价是x元,超过3 km后每千米收费y元.根据等量关系,得解得答:这种出租车的起步价是5元,超过3 km后每千米收费1.5元.归纳总结:分段计费的常见等量关系是:总费用=各分段费用之和.

【探究2】盈不足问题把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?问题1:“若每人分3本,则剩余20本”,你怎样理解这句话?如果设这个班有x名学生,根据这句话,你能用含x的代数式表示书本数吗?同样地,“若每人分4本,则还缺25本”又如何理解?你能用含x的代数式表示书本数吗?问题2:你能用列一元一次方程求解这道题吗?试试看.问题3:如果需要列二元一次方程组求解本题,你认为应该如何设元?如何列方程组?小组内合作,共同交流,提出各自的解法,然后讨论.归纳总结:盈不足问题常见的处理方法是:用一个未知数的代数式表示另一个量,再根据同一个量的两种不同表示方法,列一元一次方程求解;也可直接列二元一次方程组求解.解法一:设这个班有x名学生.根据题意,得3x+20=4x-25.解得x=45.答:这个班共有45名学生.解法二:设这个班有x名学生,图书一共有y本.根据题意,得解得答:这个班共有45名学生.通过合作探究,使学生初步学会设计适当的图表,帮助理清题目中的数量关系,从而提高学生分析问题和解决问题的能力.在实际问题的解决过程中,进一步提高学生解方程组的技能.

活动三:开放训练体现应用

【应用举例】例1用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?解:设这根绳子长为x尺,环绕油桶一周需y尺.由题意,得解得答:这根绳子长为25尺,环绕油桶一周需7尺.变式训练1.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.则敬老院有多少位老人?2.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个B.5个C.10个D.12个3.为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每户每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭每户每月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家20xx年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时.(2)若6月份小张家预计用电130千瓦时,请预计小张家6月份应上缴的电费.解:(1)设“基本电价”为x元/千瓦时,“提高电价”为y元/千瓦时.根据题意,得解得答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130-80)×1=98(元).答:预计小张家6月份上缴的电费为98元.通过应用举例,及时反馈学生的学习情况,并及时地查缺补漏,进一步提升教学效果.进一步体会此类问题的解决方法,并能灵活解题.

解:(2)由(1)可列方程组解得3+6=9(千米).答:他家到海滨9千米.除巩固课堂所学知识外,也给学生创造了一个知识迁移及拔高的机会,使学生各抒己见,并培养学生分析问题、解决问题的能力.

活动四:课堂总结反思

【当堂训练】七年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排(C)A.14 B.13 C.12 D.152.若某班购买一筐桃,每人分6个,则少6个,每人分5个,则多5个,则班级人数与桃数各是(B)A.22,120 B.11,60 C.10,54 D.8,423.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”.诗句中谈到的鸦为__20__只,树为__5__棵.练习题的设置一方面加强学生对知识的掌握,从而提高对知识的运用能力;另一方面可以查缺补漏,为以后教师的教和学生的学指明方向.

【课堂总结】布置作业:1.教材P18练习T1,T2.2.教材P18习题1.3A组T3,B组T7. 布置作业,专题突破.

活动四:课堂总结反思

【教学反思】

①[授课流程反思]从生活中常见的事例入手,引起学生的注意,同时也为学生今后的学习做铺垫.

②[讲授效果反思]通过设问的形式,引导学生理解题意,帮助学生分清已知和未知,掌握本课时内容,突破难点.

③[师生互动反思]课堂上教师真正发挥学生的主体地位,特别是遇到较难解决的问题时,可让同学们分组探究、归纳总结,同时,加强学生之间的相互评价.

④[习题反思]好题题号____________________________________________错题题号____________________________________________

二元一次方程组教案11

教学目标

知识与技能

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

过程与方法

能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组

情感、态度与价值观

培养学生分析问题,解决问题的能力,体验学习数学的快乐。

重点:

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

难点:

选择合适的方法解方程组;并能把相应问题转化为解方程组。

教学手段

多媒体,小组评比。

教学过程

一、知识梳理

以小组为单位讨论二元一次方程组已经学了哪些知识?

1、什么是二元一次方程?什么是二元一次方程的解?

2、什么是二元一次方程组?什么是二元一次方程组的解?

3、解二元一次方程组的基本思想是什么?消元的方法有哪些?

设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础

二、基础训练

教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。

设计意图:

基础知识达标训练。

教学手段与方法:

毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。

设计意图:

对二元一次方程组解法的灵活应用。

二元一次方程组教案12

学习目标 :会运用代入消元法解二元一次方程组.

学习重难点:

1、会用代入法解二元一次方程组。

2、灵活运用代入法的技巧.

学习过程:

一、基本概念

1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

3、代入消元法的步骤:

二、自学、合作、探究

1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

3、若 的解,则a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。

6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。

8、当k=______时,方程组 的解中x与y的值相等。

9、用代入法解下列方程组:

⑴ ⑵ ⑶

二、训练

1、方程组 的解是( )

A. B. C. D.

2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )

A. B.2,1 C.-2,1 D.-1,0

5、用代入法解下列方程组

⑴ ⑵

6、如果(5a-7b+3)2+ =0,求a与b的值。

7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m

8、若方程组 与 有公共的解,求a,b.

二元一次方程组教案13

教学目标知识技能

会根据行程问题、百分比问题情境及条件,列出方程组,解行程问题及百分比问题;2.使学生掌握运用方程组解决实际问题的一般步骤.

数学思考

让学生经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型.

问题解决

通过列方程组解应用题,培养学生的数学应用能力,增强列方程解决实际问题的能力,进一步提高学生解二元一次方程组的技能.

情感态度

进一步丰富学生学习数学的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

教学重点

列二元一次方程组解行程问题和百分比问题.

教学难点

根据题意找出等量关系,列出方程.

授课类型新授课课时

教具多媒体课件

(续表)

教学活动

教学步骤师生活动设计意图

回顾问题1:解二元一次方程组的基本思想是________,解法有________.问题2:七年级上册我们学习了列一元一次方程解应用题,那么你还记得它的一般步骤吗?通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.

活动一:创设情境导入新课

【课堂引入】图1-3-3《孙子算经》大约产生于一千五百年前,现在传本的《孙子算经》共三卷,其中卷下第31题,可谓是后世“鸡兔同笼”题的始祖,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问题1:“上有三十五头”的意思是什么?“下有九十四足”呢?问题2:你能解决这个有趣的问题吗?以数学历史故事为背景,激发学生的爱国热情,感受数学在生活中的应用,吸引学生的注意力,激发学生的学习兴趣,同时为本课的学习做好铺垫.

活动二:实践探究交流新知

【探究1】鸡免同笼问题①一元一次方程解法(实物投影).解:设有鸡x只,则有兔(35-x)只.根据题意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有鸡23只,兔12只.②二元一次方程组解法(实物投影).解:设有鸡x只,兔y只.根据题意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有鸡23只,兔12只.你能比较两种解法的优劣吗?

【探究2】行程问题情境:小琴去县城要经过外祖母家,第一天下午她从家走到外祖母家,第二天上午,她从外祖母家出发,匀速前进,走了2小时和5小时后,离她自己家的距离分别为13千米、25千米.你能算出她的速度吗?能算出她家与外祖母家相距多远吗?问题1:你能画线段表示本题的数量关系吗?问题2:填空:(用含s,v的代数式表示)设小琴的速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时的路程是________千米,此时她离家距离是________千米;她走5小时的路程是________千米,此时她离家的距离是________千米.

【探究3】百分比问题情境:两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合得到含金90.6%的新合金25克,计算原来两块合金的重量.问题1:设原来含金95%的合金为x克,含金80%的合金为y克.熔合后新合金中的含金量为25×90.6%,熔合前的总含金量为95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.问题2:两块合金的重量,加上2克纯金的重量等于新合金的重量,据此你能列出什么样的方程呢?引导学生体会两种解法的优点和不足,为学生建立方程组模型做铺垫.对于二元一次方程组的解法,如果学生学习存在困难,可以借助微视频讲解,或者教师设计表格,帮助学生分析等量关系.

活动三:开放训练体现应用

【应用举例】例1甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走0.75小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用0.5小时可追上甲,求两人的速度及AB两地的距离.变式训练1.两码头相距280千米,一船顺流航行需14小时,逆流航行需20小时,求船在静水中的速度和水流的速度.2.从小华家到姥姥家有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,她到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?例2革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元.巩固用列二元一次方程组解应用题的思想,掌握列二元一次方程组解应用题的方法和步骤.

【拓展提升】例3某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min,整列火车完全在桥上的时间共40 s.求火车的速度和长度.例4从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米.那么从甲地到乙地需54分,从乙地到甲地需42分,从甲地到乙地全程是多少千米?通过练习,使学生熟练掌握解决问题的方法,提升解决问题的能力.

活动四:课堂总结反思

【当堂训练】1.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒钟,那么甲跑4秒钟就追上乙.若设甲、乙每秒钟分别跑x米,y米,则列出方程组应为( )A. B.C. D.2.一轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,那么船在静水中的速度为多少千米/时( )A.a+b B.(a-b) C.(a+b) D.a-b3.甲、乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.设甲每小时走x千米,乙每小时走y千米,可列出方程组________________.通过设置当堂训练,进一步巩固所学新知,同时检测学习效果,做到堂堂清.框架图式总结,更容易形成知识网络.

【教学反思】①[授课流程反思]通过古代的“鸡兔同笼”问题,进行列二元一次方程组解决实际问题的训练,这样,一方面在列方程组的建模过程中,强化了方程思想,培养了学生列方程(组)解决实际问题的意识和应用能力.另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.

②[讲授效果反思]通过师生互动,让学生体会数学的实用性,掌握列方程组解应用题的思考方法及解题步骤.

③[师生互动反思]在建立方程思想的过程中采用了循序渐进的思路,由算术方法到一元一次方程再到二元一次方程组,遵循了学生的思维梯度,逐步建立起学生用二元一次方程组解应用题的思想,充分感受它的优点和思维的简化.

④[习题反思]好题题号__________________________________________错题题号__________________________________________ 反思,更进一步提升.

活动四:课堂总结反思

二元一次方程组教案14

知识与技能

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一 次方程组和对应的两条直线之间的 关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法

(1) 教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.

情感与态度

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

教学难点

数形结合和数学转化的思想意识.

教学准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

教学过程

第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)

内容:

1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .

第二环节 自主探索方程组的解与图像之间的关系(10分钟,教师引导学 生解决)

内容:

1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数 的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

第三环节 典型例题 (10分钟,学生独立解决)

探究方程与函数的相互转化

内容:

例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

第四环节 反馈练习(10分钟,学生解决全班交流)

内容:

1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点A(—2, 0),且与 轴分别交于B,C两点,则 的面积为.

(A)4 (B)5 (C)6 (D)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

第五环节 课堂小结(5分钟,师生共同总结)

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一 次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上 的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交 点坐标是对应的方程组的解;

3.解二元一次 方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

第六环节 作业布置

习题7.7A组(优等生)1、 2、3 B组(中等生)1、2 C组1、2

二元一次方程组教案15

【教学目标】

知识目标:

①使学生初步理解二元一次方程与一次函数的关系。

②能根据一次函数的图象求二元一次方程组的近似解。

能力目标:

通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。

情感目标:

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。

重点要求:

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

难点突破:

经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。

【教学过程】

一、学前先思

师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?

生:代入消元法、加减消元法。

师:请你猜测还有其他的解法吗?

生:(小声议论,有人提出图象解法)

师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?

生:二元一次方程组怎么会有图象?它的图象应该怎样画?

生:二元一次方程组的图象解法怎么做?

师:同学们都问得很好!那你有喜欢的.二元一次方程组吗?

生:(比较害羞)

师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。让我们带着同学们提出的问题从二元一次方程开始今天的学习。

二、探究导学

题目:

判断上面几组解中哪些是二元一次方程的解?

生:和不是,其余各组均是方程的解。

师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

生:我发现二元一次方程的解就是相对应的一次函数图象上的点的坐标。

师:很好!反过来,请问:一次函数图象上的点的坐标是否是与其相对应的二元一次方程的解呢?

生:是的。并且二元一次方程的解中的、的值就是相对应的一次函数图象上点的横、纵坐标的值。

三、巩固基础

师:非常好!那下面的题目你会解吗?

(学生读题)题目:方程有一个解是,则一次函数的图象上必有一个点的坐标为______.

生:(2,1)

(学生读题)题目:一次函数的图象上有一个点的坐标为(3,2),则方程必有一个解是_________.

生:

师:你能把下面的二元一次方程转化成相应的一次函数吗?

(学生读题)把下列二元一次方程转化成的形式:

(1)(2)

生:第(1)题利用移项,得到,所以

第(2)题利用移项,得到,两边同时除以2,所以

四、感悟提升

师:如果将和组成二元一次方程组,你能用代入消元法或者加减消元法求出它的解吗?

生:能,我算出

师:很好!你能在同一直角坐标系中画出一次函数与的图象吗?

生:可以。(动手在学案上画图)

师:观察两条直线的位置关系,你有什么发现?

生:我发现这两条直线相交,并且交点坐标是(2,1)。

师:通过以上活动,你能得到什么结论?

生:我发现刚刚求出的二元一次方程的解刚好就是一次函数与的图象的交点坐标(2,1)。

师:很好!你能抽象成一般的结论吗?

生:如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解。

师:非常好!用一次函数的图象解二元一次方程组的方法就是我们今天要学习的二元一次方程组的图象解法。

师:你能学以致用吗?

y=2x-5

y=-x+1

题目:如图,方程组的解是___________.

生:根据图象可知:一次函数与的图象的交点是(2,-1),因此,方程组的解是。

师:回答得真棒!

五、例题教学

例题:利用一次函数的图象解二元一次方程组。

师:请大家在学案的做中感悟栏内上大胆地写出解题过程。

生:(投影展示解题过程)略。

师:很好!让我们一起来看一下老师准备的解题过程(略)

师:你能就此归纳出二元一次方程组的图象解法的一般步骤吗?

生:先将二元一次方程组中的方程化成相应的一次函数,然后画出一次函数的图象,找出它们的交点坐标,就可以得出二元一次方程组的解。

师:非常好!我们可以用12个字的口诀来记住刚才同学的步骤:变函数,画图象,找交点,写结论。

师:接下来请同学们在学案上的巩固强化栏内利用图象解法求出你心里埋你所喜欢的二元一次方程组的解。

生:(各自动手操作,教师展示学生求解过程)

师:观察你作的图象,你有什么发现吗?

生:我发现有些一次函数图象的交点比较容易看出来,而有些一次函数图象的交点不容易看出来是多少。

师:是的,所以在这里老师需要说明的是我们用图象法求解一元二次方程组的解得到的是近似解。

师:请大家比较一下,二元一次方程组的图象解法和我们以前学过的代数解法——代入消元法、加减消元法相比,那种方法简单一些?

生:代入消元法、加减消元法简单。

师:二元一次方程组的图象解法既不比代数解法简单,且得到的解又是近似的,为什么我们还要学习这种解法呢?原因有以下几个方面:一是要让我们学会从多种角度思考问题,用多种方法解决问题;二是说明了“数”与“形”存在着这样或那样的密切联系,有时我们要从“数”的角度去考虑“形”的问题,有时我们又要从“形”的角度去考虑“数”的问题,这里是从“形”的角度来考虑“数”的问题;三是为了以后进一步学习的需要。

师:看来大家都很爱动脑筋,那么接下来我们将例题加以变化。

六、例题变式

题目:用图象法求解二元一次方程组时,两条直线相交于点(2,-4),求一次函数的关系式。

师:请一位同学来分析一下。

生:由两条直线的交点坐标(2,-4)可知,二元一次方程组的解就是,把代入到二元一次方程组中,可得:,解得,所以一次函数的关系式为。

师:非常好!

七、感悟归纳

师:再请同学们思考,如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组的解是什么呢?

生:我想如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组应该无解。

八、拓宽提升

题目:不画函数的图象,判断下列两条直线是否有交点?它们的位置关系如何?每组一次函数中的有什么关系?

(1)与;

(2)与

师:你会怎样分析这道题?

生:我们只要求解一下由这两个一次函数所组成的二元一次方程组的解的情况就可以判断两条直线的位置关系。如果方程组有解,那么相应的两条直线就是相交,如果方程组无解,那么相应的两条直线就是平行的位置关系。

师:很好!抽象成一般结论怎样叙述?

生:对于直线与,当时,两直线平行;当时,两直线相交。

九、例题再探

题目:利用一次函数的图象解二元一次方程组

问:(1)这两条直线有什么特殊的位置关系?

(2)这两个一次函数的有何特殊的关系?

(3)由此,你能得出怎样的结论?

师:哪位同学来尝试一下?

生:(1)这两条直线是垂直的位置关系;

(2)这两个一次函数的相乘的结果等于-1;

(3)仿照刚才的结论,我得出的结论是:对于直线与,当时,两直线垂直。

师:太棒了!那下面的这一题你会做吗?

题目:已知直线和直线

(1)若,求的值;

(2)若,求垂足的坐标。

师:谁来试一下?

生:由前面的结论我们可以得出,如果,则,解得:;如果,则,解得,将代入二元一次方程组,可得,求出方程组的解就可以得出垂足的坐标。

十、学会创新

师:请你根据这节课中的例题(或习题)在学案中编(或出)一道题。看谁出的题新颖、精妙!

生:(畅所欲言,踊跃尝试)

十一、小结与思考

师:(1)这节课你学到了什么?

(2)你还存在哪些疑问?

生:(分组讨论,代表发言总结)

【设计说明】

本节课的两个知识点:二元一次方程和一次函数的关系,二元一次方程组的图象解法对于学生来说都是难点。就本节课而言,前者较为重要,后者难度较大。确定本节课的重点为前者,是因为学生必须首先理解二元一次方程和一次函数在数与形两方面的联系,在此基础上才能解决好后面的难点。在重难点的处理上,为了解决学生对重点的理解,用一组二元一次方程组串起一节课,加以变式,既使得学生理解了重点内容,又为后面的难点突破留下了一定的时间和空间。本节课的教学,主要以问题为线索,注重引导学生仔细观察、独立思考、认真操作、分组讨论、合作交流、师生互动,这对本节课的重难点的突破还是有效的,同时也体现了新课改提倡的学生的“自主、合作、探究”的学习方式的培养。另外,对利用二元一次方程组的解判断直线的位置关系作为补充,渗透数形结合思想,也对教学目标中的情感态度和价值观的又一方面体现。

【教学反思】

这节课以“回顾、先思”为先导,以“操作、思考”为手段,以“数、形结合”为要求,以“引导探究,变式拓宽”为主线,从旧知引入,自然过渡、不落痕迹。首先提出学生所熟知的二元一次方程并讨论其解的情况,为后面探究二元一次方程与一次函数之间的关系作了必要的准备,结构安排自然、紧凑。在操作中,提出问题、深化认识。一切知识来自于实践。只有实践,才能发现问题、提出问题;只有实践,才能把握知识、深化认识。先让学生画出一次函数的图象,在画图的过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图象上。”在应用结论探索一元二次方程组的图象解法时,也是在操作中来发现问题。这样,就给了学生充分体验、自主探索知识的机会;使他们在自主探索、合作交流中找到了快乐,深化了认识。以能力培养为核心,引导探究为主线,数、形结合为要求。能力培养,特别是创新能力的培养是新课程关注的焦点。能力培养是以自主探究为平台。“自主”不是一盘散沙,“探究”不是漫无边际。要提高探究的质量和效益必须在教师的引导下进行。为达到这一目的,教案中设计了“探究导学”、“例题变式”、“例题再探”、“学会创新”和“拓展提升”。新课程理念指出:教师是课程的研究者和开发者。这就要求我们:在新课程标准的指导下,认真研究教材,体会教材的编写意图。在此基础上,设计出既体现课程精神,又适合本班学生实际的教学案例。本节课前半部分时间有些慢,后半部分例题再探和学会创新时间不够。建议有针对性的学生板演多一点,进一步加强双基的落实。

【同伴点评】

本节课教师创设问题情境,引导学生观察、思考、操作、探究、合作交流。问题的设计层层递进,通过问题的逐一解决,师生最终形成共识,达到了揭示二元一次方程组与一次函数的图象关系的目的。(李晓红)

在例题教学及学生动手尝试时,教师在学生大胆尝试之后给出解题过程,强调了解题的规范性,有利于培养学生的严谨认真的学习态度。同时强调了由于二元一次方程组的图象解法得到的解往往是近似的,因此必须检验。教师对学习二元一次方程组的图象解法的必要性的解释,是非常有必要的,这一解释解决了学生的疑惑,同时也渗透了数形结合思想,也是教学目标中的情感态度和价值观的体现。对于这一解释,相当一部分教师在这一节课中并没有很好解决。这一处理方法值得他人借鉴。(丁叶谦)

本节课老师准备充分,教学环节紧紧相扣。授课老师充分体现了课题:“先思后导,变式拓宽教学设计”的精神,不断地创设问题情境,引导学生学习新知,在探索二元一次方程组的图象解法时给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。同时对例题连续的再利用,不断变化,让学生在变式中不断丰富对二元一次方程组图象解法的认识,充分认识二元一次方程组图象解法的实用性,学会创新环节的设计更是极大地调动学生学习的积极性。教师教态亲切,语言生动,娓娓道来。

第四篇:《二元一次方程组》说课稿

《二元一次方程组》说课稿

《二元一次方程组》说课稿1

一、内容分析

1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。

1.2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。

二、学习目标设计

知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解

能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。

情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。

重点 二元一次方程(组)及二元一次方程(组)的解的概念。

难点 理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。

三、课堂结构设计

动手实验,引导学生发现问题(课题)、尝试命名和定义

练习反馈

结合实验,引导学生设计问题并发现方程组

练习反馈

引导学生在小结巩固中更好的理解概念

分层练习,引导学生积极探索

回归实验,学生完善自己的设计

四、教学媒体设计

充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。

五、教学过程设计

5.1动手实验,引导学生发现问题(课题)、尝试命名和定义。

实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)

相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。

(异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)

引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。

二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。

就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,

如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理

解虽有无数个解,但x和y是相互制约的,所以前面要加 , x=1 这

y=19

一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。

这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。

最终用数学知识解释了实验的结论。

设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。

学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。

练习1:下列哪些是二元一次方程,哪些不是?

① ②

③ ④

学生回答,并紧扣定义说明理由。

设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。

请学生小结一元一次方程和二元一次方程的区别和联系。

练习2:写出二元一次方程 y-x=10 的一些解。

设计说明:在讲解解的问题中有三个关键点:1、二元一次方程的解有无数个;2、每一个解由x和y这一对相互制约的值组成;3、解的书写格式。并通过练习反馈掌握情况。

5.2结合实验,引导学生设计问题并发现方程组。

5.2.1二元一次方程组的定义

周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)

从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。

此时长y宽x需要同时满足x+y=20和y-x=10,如何在书写上体现“同时”呢?

x+y=20

前面加上 , 请学生给 y-x=10 命名。(二元一次方程组)并给出定义

像这样,把两个二元一次方程合在一起就组成了二元一次方程组。

设计说明:仍通过原来的实验,自然引出二元一次方程组。

练习3:下列方程组中是二元一次方程组的有

(1) (2) (3) (4)

学生分析前三个,对第(4)个展开讨论

把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一

定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)

练习4:判断下列方程组是否是二元一次方程组:

x=2 x+y=5

y=-1 2y-3z=1

设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。

5.2.2二元一次方程组的解

研究方程组 x+y=20 的解。

y-x=10

在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦, 下课前告诉学生有快速求解的方法。

设计意图:激发学生的好奇心和探索欲望。

5.3学会小结,引导学生在小结巩固中更好的理解概念。

至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。

练习5:方程组 的解是( )

(强调公共解)

练习6:写一个解为 的二元一次方程。

变: 写一个解为 的二元一次方程组。

练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。

设计说明:练习5 巩固二元一次方程组的解的定义;

练习6 锻炼学生逆向思维的能力;

练习7 由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。

5.4课后作业:

必做题:94页 练习、95页1、2。

选做题:95页 综合运用3、4;

探索解二元一次方程组的方法。

六、教学评价设计

考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。

《二元一次方程组》说课稿2

各位专家、领导上午好!我是黄淮学院数学科学系数学与应用数学专业的06级学生,今天的*号选手,很荣幸能站在这里参加本次教学技能大赛。我说课的内容是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》。(板书8.1二元一次方程组)下面我将从以下七个环节对本节课的教学设计进行说明:(幻灯片)

一、教材分析

首先是教材的地位和作用。《二元一次方程组》是九年制义务教育课本七年级数学下册第八章第一节的内容。在此之前,学生已学习了《一元一次方程》,这为过渡到本节的学习起着铺垫作用。本节内容是二元一次方程组的前沿部分,在教材中起着占据承上启下的地位。

其次是教材的编写特点。教材从学生的年龄特征和知识的实际水平出发,让学生用“观察、猜想、操作、验证、归纳”的方法探索二元一次方程。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。

二、教学目标

作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探究、合作创新的意识,使他们会学。因此根据新课标的要求、教材的特点及学生的实际情况,我制定了如下目标:

(1)知识目标:了解二元一次方程概念,会判断一组数是不是某个二元一次方程组的解。

(2)能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型。通过自由思考与小组合作交流,培养学生的探讨能力

(3)情感目标:培养学生的发现意识和探究能力,使其具有强烈的好奇心和求知欲。认识知识的独立性。

三、重点难点

基于以上对教材和教学目标的分析,本着课程标准,在吃透教材基础上,我得出本节课的重点与难点。本节课的重点是:通过与一元一次方程的类比来来认识二元一次方程,通过列表求解、讨论掌握二元一次方程的解。本节课的难点是:引导学生运用“实际问题----数学问题的”建模意识来理解和探索二元一次方程的解。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法学法

在教法方面,结合课程标准的相关理念及七年级学生思维特征,针对本节课的特点,在教学中我主要采用了讲授式教学、合作式教学、探究式教学、自主式教学等教学方法。在教学过程中特别注意创设思维情境,坚持(学生为主体,教师为主导)的二主方针。并在教学中借助多媒体进行演示,以增加课堂容量和教学的直观性。

在学法指导上,教给学生科学的学习方法,培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察猜想、合作交流、抽象概括、总结归纳等方法来解决问题的方法,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法,同时体验到探究的甘苦,领会到成功的喜悦。

下面,我来具体谈一谈这一堂课的教学过程:

五、教学过程

为突出重点、突破难点,达到教学目标,根据学生的认知规律和学习心理,在本节课的教学中我设定教学过程如下:(一)、情境导入(二)、探究新知(三)、跟踪反馈(四)、收获园地(五)、布置作业

(一)、情境导入

创设情境——篮球比赛积分问题,这是学生熟悉和感兴趣的问题,让学生尝试列出二元一次方程。当然本课开始并不是让学生能够熟练列出二元一次方程,而是让学生明白有些问题可以用二元一次方程来解决。为今后学习数学问题解决实际问题作铺垫。对有些学生我们可以直接给他列出方程,让他感知二元一次方程的好处。从而体现新课标下人人学有价值的数学,不同的人在数学上得到不同的发展。由情境得出本课新的知识点是:从问题到方程。自然的过渡到第二个教学环节:探究新知。

(二)、探究新知

“探究一”——生活中的实例问题,“李明和妈妈买苹果和梨各多少千克?”。探究一的设计意图是:从实例中引入二元一次问题,引导学生讨论尝试用数学语言表述现实问题。培养学生的方程思想,在用数学语表述现实问题的过程中,强化学生对方程现实意义的理解,让学生感受到数学与我们生活的密切联系,激发学生的学习热情。

“探究二”例题分析引导学生类比一元一次方程的求解方法,由重量、总重量,价格、花费入手设未知量、列方程。列好方程后,引导学生用等量关系得出二元一次方程组后让学生利用已有知识,采用代入法求解。这一点并不难,让所有的学生都参与其中,体验学习数学的乐趣和成功的喜悦。

“探究三”在例题讲解中,教师要注意讲清楚要怎样解、为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。让学生感受到数学的严谨性、确定性,方程思想的进一步渗透,培养了学生的归纳、概括能力,突出了教学的重点。

(三)、跟踪反馈

新课标指出“在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径”故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,期间适当对题目进行引申,通过“变式延伸、引申重构”加入与概念相关的深层次题目,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。及时的训练能帮助学生巩固新知,自觉运用所学知识与解题思想方法。

(四)收获园地

在此,通过总结结论、强化认识,引导学生认识二元一次方程是刻画现实世界的有效数学模型。提问:“你从上面的学习中体会到解方程组的基本思路是什么吗?主要步骤有那些吗?”以加深学生对代入法的掌握。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(五)、布置作业

在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。

六、板书设计

在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。

七、反思评价

按照“以人为本、以学定教”的教学理念,本节课的重点是如何“引导”学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。

在教学中应始终坚持“注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础”为主旨,同时努力推行“成功教育、快乐教育”的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并“卷入”到“做”数学的活动中,从而更加深刻的认识平行四边形的性质。

以上是我说课的全部内容,请给各评委老师批评指正!

结束:以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了“教什么”和“怎么教”,阐明了“为什么这样教”。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。

《二元一次方程组》说课稿3

一、说教材

首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。

(二)过程与方法

通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。

(三)情感态度价值观

感受数学与生活的密切联系,培养学习数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。

更多真题及资料请加负责老师微信66746005领取

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?

根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》

这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。

(二)新知探索

接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。

活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。

学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。

此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。

教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。

活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。

在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。

师生共同总结出二元一次方程与二元一次方程组的定义。

列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。

活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。

在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。

教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。

得到方程组的解,回归情景得出实际问题的答案。

设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。

(三)课堂练习

接下来是巩固提高环节。

练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。

加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?

设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。

(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:二元一次方程组的定义与二元一次方程组的解。

本节课的课后作业我设计为:

思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。

设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。

七、说板书设计

《二元一次方程组》说课稿4

各位评委、老师:大家好!

我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。

下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。

一、教材分析

教材的地位和作用

本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

2、教学目标

根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

(1) 知识技能目标:1)会用代入法解二元一次方程组

2)初步体会解二元一次方程组的基本思想----消元

(2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

(3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

3、重点、难点

根据学生的认知特点,我确立了本节课的重难点。

重点:用代入消元法解二元一次方程组

难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

二、教学方法

我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

三、学法指导

我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

四、教学设计

1、根据以上分析,我设计了以下六个教学环节:

2、教学过程

下面我就每一个教学环节,具体介绍我对本节课的教学设想。

环节一:创设情境

活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

学生活动:列方程或方程组解决问题

教师关注:学生是否能够多角度地考虑问题.

设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

环节二、尝试发现

活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

活动三:小组展示

学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

活动四:再看转化、把握解题技巧

学生活动:观察转化过程中的技巧,并尝试总结。

设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

环节三、小组闯关

活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

学生活动:做练习题

教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误

设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。

学生活动:独立完成本题。

设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

环节四、拓展升华

活动七:出示例题2.

学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

环节五: 反思小结

活动八:我有哪些收获?

学生活动:学生归纳总结

教师关注:(1)学生是否养成归纳、整理、总结的好习惯;

(2)评价学生是否全面理解并掌握了本节课的知识。

环节六、布置作业

1、必做题:

P103 第2题 ⑵ ⑷, 第4题

2、选做题:

设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

最后我以著名数学家笛卡尔的一句话结束这节课。

五、板书设计

8.2二元一次方程组的解法

----代入消元法

1、二元一次方程组 一元一次方程

2、代入消元法的一般步骤:

3、思想方法:转化思想、消元思想、方程(组)思想.

六、教学感想

在教学过程中,我始终:

坚持一个原则——教为主导,学为主体

坚守一个理念——先学后教,以学定教

贯穿一个思想——享受数学,快乐学习

以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!

我的说课到此结束,谢谢大家!

《二元一次方程组》说课稿5

各位评委老师:

大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。

一、教材分析

1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。

2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:

(1)知识与技能:

①会用代入法解二元一次方程组;

②能初步体会代入法解二元一次方程组的基本思想—“消元”。

(2)过程与方法:

①培养学生基本的运算技巧和能力;

②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。

(3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的'合作交流意识与探索精神。

3、教学重点、难点:

重点:会用代入法解二元一次方程组。

难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。

二、教法与学法

根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。

三、教学过程

第一环节:创设情境,导入新课

引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?

设置问题:

(1)问题中有几个未知数?

(2)若设胜X场,如何列出一元一次方程求解?

(3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?

(4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?

问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。

(通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)

第二环节:师生合作,探究新知

问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?

在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组

x+y=22①

2x+y=40②

能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X

(2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40

问题2:

(1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?

(2)另一个未知数的值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

(通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。

通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方

程的过程,从而明确消元思想——由二元化为一元——由未知化为已知。)

第三环节:师生合作,发现规律

结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。

(这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)

第四环节:典例分析,规范步骤

让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:

①方程组是如何变形的?还有其他变形方法吗?

②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?

③你能先求出的值吗?

③何检验你求出的结果是否正确?

(通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)

第五环节:熟练技能,升华提高

要求学生练习课本98页第一题(再加一问,用含的代数式表示,体会哪一种表示方法更为简便)。第2题采用学生板演,学生自我批改的形式。在掌握了本节课知识点的基础之上,完成当堂达标测试题。

第六环节:归纳小结,布置作业

1。从本节课中你学到了解二元一次方程组的哪种方法?其基本思想是什么?主要步骤有哪些?要求同学之间互相交流讨论。

2。必做题课本103页

选做题课本99页3,4

(作业分必做和选做是为了在巩固本节所学知识的前提下,考虑不同学生的需求。)

四、板书设计

8.2消元——二元一次方程组的解法(一)

Y=4

Y=22—x

变形

设胜了x场,负y场,x+y=22①代入

2x+y=40②

设胜了x场,则负

(22—x)场,则消元

2x+(22—x)=40③x=18(说明:由于此编辑窗口不能插入线条,所以图示中没有带箭头的线条,请谅解。)

五、时间分配

1、创设情景,引入新课(5分)2、师生合作,探求新知(10分)

3、师生合作,发现规律(3分)4、典例分析,规范步骤(10分)

5、熟练技能,升华提高(10分)6、归纳小结,作业布置(2分)

六、设计说明

本节课教学按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的解法(代入消元法)——典型例题——归纳代入法”的思路进行设计。在教学过程中,充分调动学生的学习积极性,重视知识的发生过程,让学生认知内化,形成能力。将设未知数求一元一次方程的过程与解二元一次方程组的过程进行比较,在复习旧知识的同时获的新知,取得了良好的教学效果。

《二元一次方程组》说课稿6

一、教材的地位与作用

在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础 的作用。

二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。

二、教学目标

1、知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。

2、数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。

3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)

4、情感体验:①在列方程组-表示和解决实际问题的过程中,体验到数学的实用性,提

高学习数学的兴趣。

②在探讨解决问题的过程中,敢于发表自己的见解,理解他人的看法并与

他人交流。

三、教学重点、难点

重点:能用二元一次方程(组)来表示一些实际问题的数量关系,弄清二元一次

方程(组)及它们解的含义。

难点:能针对具体问题列出二元一次方程(组),对二元一次方程(组)的解的探

求。

四、教法

(1)启发式教学

(老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)

(2)学案式教学

(让学生自己阅读,自主讨论,探索研究获得知识,得出结论)

五、学法

在老师的引导下,充分发挥学生的主观能动性,通过观察、讨论、分析、探索等步骤,自己发现问题提

出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。

六、教学过程

(一)复述回顾:以二人小组完成学案上的3个问题;

(二)创设情境――引入课题

鸡兔同笼

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?

让学生用一元一次方程解决问题

设一个未知数列一元一次方程来解

就会出现方程: 2x+4(35-x)=94(设鸡x只)...........①

4x+2(35-x)=94(设兔x只)............②

让学生设俩未知数来解,估计大部分同学列不出来,那么无论列出与否,引出正

题--二元一次方程组 。

(三)设问导读与自我检测

同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小

组讨论,与组长核对答案,先组内解决疑难问题,教师下去收集问题,并指导、

生对新知识的探究。

1.对鸡兔同笼问题列方程,设鸡x只,兔y只,

X+y=35........③

2x+4y=94......④

先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让

学生说出二元一次方程的定义)举例说明需要注意的地方,和一些难以分辨的方

程,马上做自我检测第一题,发现问题解决问题。

2.前面的问题同事满足③、④,把他们和在一起就组成二元一次方程组,试着让

学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。

《二元一次方程组》说课稿7

一、关于教材地位和作用的分析

《 二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。

二、关于教学目标的确定

(一) 目标分析

知识和技能目标:

1、会根据具体问题中的数量关系列出二元一次方程组及求解

2、能检验结果是否符合实际意义

过程和方法目标

1、通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性

2、在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。

3、通过解应用题的学习,渗透把未知转化为已知的辨证思想,从而培养学生分析问题和解决问题的能力

情感与态度目标

1、学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。

2、通过列方程组解应用题的学习,认识到数学的价值。

(二) 重难点分析

教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。

教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。

难点突破采取的措施:

1、可多种方法解决的实际问题引入,然后由师生共同寻找两个等量关系,多次体验列二元一次方程组解决实际问题的优越性

2、用填空和选择的多种题型来寻找题目中的等量关系

3、例题中两个问题将它们分列开,将难点分散

三、关于教学方法的说明

从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:

1、遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。

2、创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的作用。

(二)学法分析

这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。

(三)教学手段

通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。

四、关于教学过程的设计。

(一) 导入设计

先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。

(二) 尝试练习

通过导入中的体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。

尝试练习

1、方程探案记: 你知道盗贼如何分赃吗

一帮强盗抢来一批布匹,躲在了树林里分赃,由于傍晚天色太黑,看不清他们有多少人,只听见带头的一个强盗喊着说:“每人分布六匹,还剩5匹,每人分布7匹,又少8匹。“请你根据他的说话声来判断,究竟有多少强盗,多少布匹?

大家一起探讨

(三) 范例设计

通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。

某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。

问:1、该公司应安排几天粗加工,几天精加工, 才能按期完成任务?

2、如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

(四)反馈练习

通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。

(五) 归纳小结

教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。

《二元一次方程组》说课稿8

各位老师:

下午好!今天我说课的内容是人教版初中数学七年级下册第八章第二节二元一次方程组的解法第二课时加减消元法。我主要从教材分析、学情分析、教法学法、教学环境及资源准备、教学过程、评价与反思六个方面向大家汇报我对这节课的认识和理解。

一、说教材分析

1、教材的地位和作用

二元一次方程组安排在学生已经学过整式和一元一次方程的知识之后,它是学习三元一次方程组的重要基础,同时也是以后学习函数、平面解析几何等知识以及物理、化学中的运算等不可缺少的工具。对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,体会代数的一些特点和优越性;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.

2、教学目标

通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:

(一)知识与技能目标:

1、会用加减消元法解简单的二元一次方程组。

2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:

通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:

通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:

由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下

重点:用加减法解二元一次方程组。

难点: 灵活运用加减消元法的技巧,把二元转化为一元

二、学情分析

七年级学生在自学中,通常能掌握表面知识,如具体的一个问题的解题过程,但学生在数学解题能力,运算能力,思维能力等各方面参差不齐,这也导至在学习中,特别是在自学中有的动力不够,有的更是缺乏探索精神,而在总结归纳中又缺乏合作的学习态度。在自学中能说出是什么怎么样,但又还探索不出为什么有什么联系 。

三、说教法与学法

教法:利用导学提纲自主互动学习,根据学情教师适时点拨、归纳、升华。

学法:本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣, 引导学生在自主探究、合作交流、小组积分相结合的学习方式下获得成功的体验。

四、教学环境及资源准备

教学环境:多媒体教室

资源准备:导学提纲 ,多媒体课件制作。

《二元一次方程组》说课稿9

教学目标

知识与技能:

1培养学生利用二元一次方程组解决实际问题的能力

2培养 学生分析问题,归纳问题的能力

情感态度与价值 观

让学生体会到数学 在实际生活中的有用之处

让学生积极投入到数学学习中去。

重点:

1培养学生利用二元一次方程组解决实际问题的能力

2培养学生分析问题,归纳问题的能力

难点:

1培养学生利用二元一次方程 组解决实际问题的能力

2培养学生分析问题,归纳问题的能力

教学方法:讲练结合法

教具准备:幻灯片十张

预习提示

通过预习你能说出利用二元一次方程组解决实际问题的关键和基本步骤吗?

教学过程:试一试

探究一

养牛场原有30只大牛和15只小牛,一天约用饲料675千克,一月后又购进12只大牛和5只小牛,这时一天约用饲料940千克,饲养员李大叔估计每只大牛一天约需饲料18-20千克,每只小牛一天约需饲料7-8千克。你能通过计算检验他的估计?

分析:题中包含的基本等量关系式是 1——

2——

若设每只大牛每天约用饲料x千克,每只小牛每天约用饲料Y千克,根据等量关系可列方程组

解这个方程组可得

这就是说,每只大牛每天约用饲料——千克,每只小牛每天约用饲料——千克, 因此,饲养员李大叔对大牛的食量估计——

对小牛的食量估计——

检测题

1 有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.。求每辆大车与小车每次各运多少吨货物?

2 买10支笔和15个笔记本需35元,买20支笔和40个笔记本需60元,问每只笔和每个笔记本各多少钱?

探究2

据统计资料,甲 ,乙两种 作物的单位面积产量之 比为1:1.5,现要把一块长200 米,宽100米的长方形土地分成两小块长方形土地分别种植这两种 作物,怎样划分这块土地,使甲 ,乙两种 作物的总产量之 比为3:4?﹙结果取整数﹚

分析:甲作物的总产量=甲作物的种植面积 单产量

乙作物的总产量=乙作物的种植面积 单产量

若设AE=x 米, BE= y米,则种植面积分别是——,——基本等 量关系——,——于是可得方程组{

解这个方程组可得{

过长方形土地长端约——米把这块土地分成两块,较大的一块种——,较小的一块种——

检测题

1 用白铁皮作罐头 盒,每张铁皮可做盒身25个或盒底40个,一个盒身与两个盒底配成一套罐头 盒。现有36张铁皮怎样分配可使制成的盒身与盒底正好配套?

2现有10立方米木料 来制桌子,已知1立方米木料可制桌面15个或桌腿40个。一个桌面和4个桌腿配成一张桌子。怎样分配木料可使制 成的桌面与桌腿正好配套?

课堂小结

通过本节课的学习,我们学会了利用二元一次方程组解决实际问题,其关键是找准等量关系,列方程组。

作业

108页 4,9

《二元一次方程组》说课稿10

各位评委、老师大家好:

我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。

(二) 课程学习目标

1、会用代入法解二元一次方程组。

2、初步体会解二元一次方程组的基本思想——“消元”。

3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。

(三)教学重、难点:

用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

二、说教法

针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组评价来克服解题时的错误,必要时教师给予规范矫正。

四、说教学流程

(一)简单复习

学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听

(二)自主学习:

出示学习目标:学生齐读一下,对本课学习有一个大体了解。

学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)

1.什么叫消元思想 2.代入消元法

学习完成之后学生举手回答,教师总结。

(三)合作探究

电子白板出示问题:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

1.师友合作交流,探究新知

在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组

学生活动:分别列出一元一次方程和二元一次方程组,

设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40

设胜的场数是x,负的场数是y,列方程组得

x+y=22

2x+y=40

2.自主探究,师友讨论

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

3.学生归纳,教师作补充:

上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

把下列方程写成用含x的式子表示y的形式

(1)2x-y=5(2)4x+3y-1=0

学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?

4、教师来说方法:(2)用代入法解方程组

x-y=3

3x-8y=14

思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。

解:由变形得 X=y+3

把代入,得3(y+3)-8y=14

解这个方程,得 y=-1

把y=-1代入,得X=2

所以这个方程组的解是 X=2

y=-1

如何检验得到的结果是否正确? 学生活动:口答检验。

总结步骤:变 代 求 写

(四)小试牛刀(给你一个展示的舞台)

解二元一次方程组

1、2、

两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)

完成后,教师总结:解二元一次方程组的方法步骤:

变 代 求 写

(五)归纳总结,知识回顾

1、通过这节课的学习活动,你有什么收获?

2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

(六)布置作业

作业:中午:课本 第二题1、2小题

晚上:《作业与测试》。

《二元一次方程组》说课稿11

一、教学设计的理念

1.树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。

2.通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。

3.通过本节课教学,加强对学生思维方法的训练,增强小组合作意识

二、教学内容的重组加工

1.学生分析

认知起点,学生已初步掌握了本章知识,他们已经能比较熟练得求出二元一次方程组的解,知道用二元一次方程组表示等量关系。七年级学生活泼好动,乐于展示、表现自我,求知欲较强,他们的逻辑思维以开始处于优势地位,

2.教材分析

本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。

3.教学重点、难点分析

难点:已知一组解,如何构造二元一次方程组使解相同

重点:解二元一次方程组

4.教学目标

(1)知识与技能:进一步体会列二元一次方程组解决实际问题的优越性,熟练用消元法解二元一次方程组

(2)过程与方法:通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。

(3)情感与态度:引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。

5.教学方法分析

本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。

三、教学过程及反思

我的教学过程可分为三个环节一、探索只用二元一次方程也能解决实际问题,但答案不唯一。二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的转化思想。第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。

我对自己的设计思路比较满意,因为我一直以为学数学就是领悟数学思想方法,训练思维,提高推理分析的能力。在平时的教学中我一直比较注重发散思维的训练,和逆向思维的训练,注重引导学生从多个角度两个方向分析问题。引导学生在课堂活动中感悟知识的生成、发展与变化过程

我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;

一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。

二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。

三解方程组 因为时间不够用处理非常仓促我原本的意图是想通过对比让他们体会代入消元源自于实际问题。因为这章知识点是解在前用在后

而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。

大家都知道凯慕柏莉奥立佛近日当选为20xx-年美国教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师,以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。

《二元一次方程组》说课稿12

一、说教材

本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。

二、说教学目标

(知识与技能)

1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;

2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

(过程与方法)

学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答

(情感态度与价值观)

培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

三、说教学重、难点

(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题

(教学难点)确定解题策略,比较估算与精确计算

四、说教法

教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。

教法设计意图

1.回顾练习

内容:

用适当的方法解方程组

(2)既是方程的解,又是方程的解是

A.B.C.D.设计意图:巩固二元一次方程组的解法

2.自主探究

出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?

为了解决这个问题,请认真看P.105页的内容.

思考:判断李大叔的估计是否正确的方法有2种:

(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.

(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.

5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?

学生按照自学指导看书,教师巡视,确保人人学得紧张高效.

设计意图:引导学生独立思考,培养自主学习的能力

3.小组交流

组内成员讨论各自的探究成果,对不足和错误进行补充与更正

最终提炼出最佳方法.

设计意图:培养合作学习的习惯

4.成果展示

各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.

设计意图:培养分析与解决问题能力

5.疑难点拨

(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组

(2)方法的多样——2种解法

设计意图:突破难点,打开思考路线,指导规范解题

6.课堂运用

实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.

捐款(元)

5

10

20

50

人数

6

7

设计意图:巩固解决实际问题的方法与步骤

7.小结发言

谈出本节课的收获与困惑

设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.

五、说作业安排

作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)

设计意图:从不同层次有效的提高学生对知识的掌握程度

《二元一次方程组》说课稿13

一、教材分析

1.教材的地位与作用

二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

2.教学目标

[知识技能]

掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。

[数学思考]

体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。

[解决问题]

通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。

[情感态度]

引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

3.教学重点与难点

按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。

通过学生亲身体验,理解二元一次方程(组)解的个数的确定。

二、学情分析

七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。

三、教法与学法

1.教法

数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。

2.学法

学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。

四、教学过程与课堂活动

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:

1。创设情境,引入概念

NBA篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。

2。观察归纳,形成概念

概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。

3拓展延伸,深入概念

知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。

4.当堂检测,强化概念

通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。

5.反思小结,回归概念

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。

五、教后反思

美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:

一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;

二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;

三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。

《二元一次方程组》说课稿14

各位老师、同学:

大家好!

今天我说课的内容是人教版义务教育课程标准实验教科书初中数学七年级下册第八章《二元一次方程组》第一节内容。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识与理解。

一、教材分析

1、教材的地位

二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2、教学目标

使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。

3、重点、难点

重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。

难点:理解二元一次方程组的解的含义。

二、教法

启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。

2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。

3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。

4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。

五、教学反思

生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。

附:板书设计

8、1二元一次方程组

xy=222xy=40

二元一次方程二元一次方程组

二元一次方程的解二元一次方程组的解

《二元一次方程组》说课稿15

各位评委、老师大家好:

我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

一、说教材

(一)地位和作用

本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。

(二)课程目标

1、知识目标

(1)、了解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。

(2)、了解代入法的概念,掌握代入法的基本步骤。

(3)、会用代入法求二元一次方程组的解。

2、能力目标

培养学生动手操作、探索、观察、分析、划归获得数学思想的能力;培养学生转化独立获取知识的方法并解决问题的能力。

3、情感目标

(1)、在学生了解二元一次方程组的“消元”思想,从初步理解化“未知”为“已知和化复杂问题为简单问题的划归思想中,享受学习数学的兴趣、提高学习数学的信心。

(三)教学重点、难点

重点:用代入消元法解二元一次方程组。

难点:探索如何用代入消元法将“二元”转化为“一元”的过程。

二、说教法

针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要合理创设问题情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

三、说学法

本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。

四、说教学程序

本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:

1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。

2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的过程予以归纳。

3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。

4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:解二元一次方程组的主要思路是“消元”;解二元一次方程组的一般步骤是:“一变、二代、三求、四代、五定”。

5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。

五、说应用

《数学课程标准》指出:“数学来源于生活”“数学服务于生活”“数学问题要生活化”,“让数学走进生活”已是一种全新的教育理念,它有利于实现“不同人在数学上得到不同的发展。”为此,在数学课堂教学中,教师要善于创设教学情境,为学生创造一个轻松、愉悦的学习氛围,集中学生的注意力,把学生思绪带进特定的学习情境中去,激发他们浓厚的学习兴趣和强烈的求知欲望。同时,教师设计教学活动时,要充分利用现代远程教育资源结合本班的实际和知识水平,精心为学生创设贴进生活的学习情境,让学生有身临其境的感觉,从而激发学生的学习兴趣和求知欲。

总之,在数学教学中合理运用多媒体教学平台,能极大地方便教学,减轻教师的负担,更好地优化课堂结构,促进教学质量的提高。学生的学习方式不再单一,学习兴趣明显提高,能自主地学习,真正成为学习的主体。

第五篇:二元一次方程组教案

二元一次方程组教案

阜康市第四中学 方海艳

一、教学目标:

1.明确二元一次方程(组)的概念 2.正确掌握二元一次方程组的解法 3.运用二元一次方程组解决实际问题

4.进一步体会转化思想在解二元一次方程组及实际应用中运用

二、情感目标:

1.通过类比分析解二元一次方程组的不同方法,使学生树立最优解题的思想意识 2.通过建立方程模型解决实际问题,使学生深刻体会数学来源于生活,服务于生活,进一步培养学生的数学应用意识,体会数学的美。

三、教学重难点

(一)教学重点: 1.正确选择最优方法解二元一次方程组

2.建立二元一次方程组模型解决实际问题

(二)教学难点:

能根据实际问题提供的信息准确找出等量关系,列出二元一次方程组。

四、教学过程

(一)情境引入

师:同学们你们喜欢看电视吗?在电视上我们最多看到的是什么?(广告)如果你是这个电视台的台长,你会如何安排这两种广告呢?

考考你:某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告,若要求每种广告播放不少于两次,问:两种广告的播放次数有几种安排方式?

师:观察这个式子,你有什么发现? 考点一:概念 知识点回顾1:二元一次方程的概念

定义:含有两个未知数,并且未知数所在项的次数均为1的整式方程叫做二元一次方程。

1.下列方程中,是二元一次方程的是()

1y2

2x A.3x+4y=1 B.2x-3y=5 C.5xy+1=8 D.2.若5xy 与4xy 是同类项,如何求m与n?

师:观察这个式子,和上面的有什么区别?你发现了什么? 知识点回顾2:二元一次方程组的概念

定义:由2个或2个以上的二元一次方程组成的方程组叫做二元一次方程组 练习: 判断下列方程组是否为二元一次方程组

111x1xy1xy B. C. A.xy3y21x2x2y1x3x2y1 E2 DF2y25yz8x2y4师:现在我们已经掌握了二元一次方程组的基本概念,那你们会解二元一次方程组吗?现在我们就来练一练

考点二:解法 请你在下列方程中选择两个组合出你喜欢的方程组,并求出方程组的解

(1)3x+2y=13(2)x-2y=-1(3)3x-y =-2(4)2x+y=2 师:看来大家对于解方程组已经掌握的很好了,那我们就一起来看看历年中考是怎么靠考解方程组的?

真题演练1.(2015凉山州)已知方程组2xy5,则x+y的值为()

x3y5A.-1 B.0 C.2 D.3 2.(2014·广安)如果a3xby与-a2ybx1是同类项,则()A.x2x2x2x2 B. C. D.

y3y3y3y3归纳总结:(1)在二元一次方程组中,若一个未知数能很好地表示出另一个未知数时,一般采用代入法;

(2)当两个方程中的某个未知数的系数相等或互为相反数时,或者系数均不为1时,一般采用加减消元法。

mxny7x2变式训练:已知 是二元一次方程组的解,则m+3n为——

nxmy1y1师:方程是解决实际生活的模型,我们已经会解二元一次方程组了,那开头我们所提出的问题你能解决吗?

考点三:应用

考考你:某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告,15秒广告每播一次收费0.6万元,30秒广告每插播一次收费1万元,若要求每种广告播放不少于两次,问:

(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益较大?

解:(1)设播放15秒广告x次,播放30秒广告y次 15 X +30y=120,化简得 x+2y=8 ∵x,y为整数,x≥2,y ≥ 2

x2x4∴  y3y2(2)设播放收益为W元,当x=2,y=3时,W=4.2万元;当x=4,y=2时,W=4.4万元,所以15秒4次,30秒2次收益较大

师:对于单个一个二元一次方程求整数解我们已经掌握,那么二元一次方程组的实际问题你可以解决吗?

真题演练1.(2015江苏南通)甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲、乙种电影票各买了多少张?

动动脑:小龙在拼图时,发现8个一样大的小长方形,恰好可以拼成一个大长方形,如图甲所示,陈晔 看见了说“我来试一试”,结果陈晔七拼八凑,拼成一 个如图乙的正方形,中间留下一个洞,恰好是边长2mm的小正方形,你能算出小长方形的长和宽吗?

甲 乙

真题演练:(2015新疆内高班)某小区准备新建50个停车位,以解决小区停车难的问题。已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元。

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)若该小区预计投资金额不超过11万元且地上停车位不超过33个,则共有几种建造方案?

中考热点:全民戒烟已经成为共识,为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,列出的方程组

师:通过练习,你能总结出列二元一次方程组解应用题的一般步骤吗? 列二元一次方程组解应用题的一般步骤: 审 审清题意,找出题目中的两个数量关系 设 用两个字母表示问题中的两个未知数 列 根据题意,列出方程组 解 解方程组,求出未知数的值

验 检验求得的值是否正确和符合实际情形 答 写出答案

五、课堂小结

本节课你收获了什么?

六、作业布置

下载初一数学教案6二元一次方程组[大全五篇]word格式文档
下载初一数学教案6二元一次方程组[大全五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    “二元一次方程组”简介

    《义务教育课程标准实验教科书·数学》七年级下册第八章“二元一次方程组”简介 一、本章主要内容和课程学习目标 (一)本章主要内容 本章属于《课程标准》中的“数与代数”部......

    《二元一次方程组》说课稿

    《二元一次方程组》说课稿 《二元一次方程组》说课稿1 各位评委老师:大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。一、......

    二元一次方程组教案

    二元一次方程(组) 一.二元一次方程的概念 含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: 1.方程两边的代......

    二元一次方程组教案

    二元一次方程组教案1 学习目标 :会运用代入消元法解二元一次方程组.学习重难点:1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧.学习过程:一、基本概念1、二元一次......

    《二元一次方程组》说课稿

    《二元一次方程组》说课稿 各位评委老师们: 大家下午好!今天我说课的内容是人教版初中数学七年级下册第八章第一节二元一次方程组。我主要从教材分析、教法、学法、教学过程四......

    二元一次方程组教案

    名师传方法.有效提分授课老师:李老师 考点一:判断二元一次方程 考点二:二元一次方程组的解的应用 若x、y互为相反数,且x+3y=4,,3x-2y=___________ 4x3yk方程组的解与x与y的值相等,则......

    二元一次方程组教案

    二元一次方程组 一、基本定义: 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。二元一次方程组定义:两个结合在一起的共含有两个未知数......

    二元一次方程组教案

    《4.2二元一次方程组》教学设计 一、教学目标: 1.认知目标:1)了解二元一次方程组的概念。2)理解二元一次方程组的解的概念。 3)会用列表尝试的方法找二元一次方程组的解。 2.能力......