第一篇:大功率LED透镜基础知识详解
大功率LED透镜/反光杯主要用于大功率LED冷光源系列产品的聚光,导光等。大功率LED透镜根据不同LED出射光的角度设计配光曲线,通过增加光学反射,减少光损,提高光效(而设定的非球面光学透镜)。下面着重讲解PMMA材料的二次聚光大功率LED透镜。
一、LED透镜的材料种类
1.硅胶透镜
a.因为硅胶耐温高(也可以过回流焊),因此常用直接封装在LED芯片上;
b.一般硅胶透镜体积较小,直径3-10mm;
本部分设定了隐藏,您已回复过了,以下是隐藏的内容 2.PMMA透镜
a.光学级PMMA(聚甲 基丙烯酸甲酯,俗称:亚克力)
b.塑胶类材料,优点:生产效率高(可以通过注塑完成);透光率高(3mm厚度时穿透率93%左右);缺点:耐温70%(热变形温度90度);
3.PC透镜
a.光学级尼龙料Polycarbonate(简称PC)聚碳酸酯
b.塑胶类材料,优点:生产效率高(可以通过注塑完成);耐温高(130度以上);缺点:透光率稍底(87%);
4.玻璃透镜
光学玻璃材料,具有透光率高(97%)耐温高等特点,缺点:易碎、非球面精度不易实现、生产效率低、成本高等。
二、LED透镜的应用分类
1.一次透镜
a.一次透镜是直接封装(或粘合)在LED芯片支架上,与LED成为一个整体;
b.LED芯片(chip)按理论发光是360度,但实际上芯片在放置于LED支架上得以固定及封装,所以芯片最大发光角度是180度,另外芯片还会有一些杂散光线,这样通过一次透镜就可以有效收集chip的所有光线并可得到如160度、140度、120度、90度甚至60度(不同需要)的出光角度;
c.一次透镜多用PMMA或硅胶材料。
2.二次透镜
a.二次透镜与LED是两个独立的物体,但它们在应用时确密不可分;
b.二次透镜的功能是将LED的大角度光(一般为90-120度)再次聚光成5度至80度任意想要得到的角度;
c.二次透镜材料大都用PMMA或玻璃。
三、LED透镜规格分类
1.穿透式(凸透镜)
a.当LED光线经过透镜的一个曲面(双凸有个曲面)时光线会反生折射而聚光,而且当调整透镜与LED之间的距离时角度也会变化(成反比),经过非球面技术设计的曲面光斑将会非常均匀,但因为透镜直径的局限性,透镜侧面的光线得不到利用(漏光);
b.一般应用在大角度(40-80度)聚光,如台灯,路灯,室内灯具等;
2.全反射式(锥型或叫杯型)
a.透镜的设计在正前方用穿透式聚光,而锥形面又可以将侧光全部收集并反射出去,而这两种光线的重叠(角度相同)就可得到最完善的光线利用与漂亮的光斑效果;
b.也可在锥形透镜表面做些改变,可设计成镜面、磨砂面、珠面、条纹面、螺纹面、凸或凹面等而得到不同光斑效果。
3.LED透镜模组
a.是将多个单颗透镜通过注塑完成一个整体的多头透镜,按不同需求可以设计成3合1、5合1甚至几十颗合一的透镜模组;
b.此设计有效节省生产成本,实现产品品质的一致性,节省灯具机构空间,更容易实现“大功率”等特点。
四、LED透镜的设计与模具加工
1.首先取决于光源(大功率LED),不同品牌的大功率LED(例如CREE、lumileds、首尔、欧司朗、艾笛森、长森源等),其芯片结构与封装方式、光线特性等均会有所区别,从而造成同样的透镜搭配不同规格品牌LED时会所差异;所以要求有针对性开发(以主流品牌为导向),才能达成实际需要;
2.利用光学设计软件(如Tracepro、CodeV、Zemax等)设计并进行模拟光学跑光,设计得到相应的光学非球面曲面;
3.LED透镜本身属于精密光学配件,故其对模具的精度要求极高,特别是透镜光学曲面的加工精度要达到0.1μm、镜片偏心度要达到3μm以内。一般对此类高精度模具的加工必须具有以下设备:超精密加工机(例如:PRECITECHNANOFORM350)、CNC综合加工机、平面磨床、铣床、CNC放电加工机、表面轮廓仪等。
4.模具最精密的部件在于光学模仁,首先选用专用模仁钢材,完成初胚,镀镍后再用超精密加工机进行非球面技术加工曲面。
五、LED透镜的用料及生产
1.LED透镜作为光学级的产品,对透光性、缩水性要求极高。原材料一般采用高档光学级PMMA。目前为日本三菱PMMA材料为最好(现在的VH5与VH001质量更高),同样是三菱的南通料就会稍逊一些;
2.必须配备万级甚至更高级别的无尘车间,作业人员必须着防静电服装,以及戴手指套、戴口罩等防静电防尘措施,并且定期对车间做检验与清理;
3.须有专业的光学注塑机(电动)如法拉克,东洋,海天,佳明等品牌功率在35T以上,并严格控制注塑温度、时间,降低产品缩水率,绝不能添加水口料重复利用,才能保证产品更符合设计方案;
4.产品必须用防静电防尘PVC包装,并且须完全密封包装,存放必须注意控制温度与湿度,并且最好不要存放超过一年以上。
第二篇:大功率LED灯散热器介绍
大功率LED灯散热器介绍
所谓led(Light-emitting Diode的缩写)灯是指采用半导体发光二极管技术做为发光源的一种新型环保照明产品。LED 灯具有省电节能,易控制、免维护、安全环保、使用寿命长等特点,其使用寿命可达50,000-100,000小时,远超过传统钨丝灯泡的 1,000 小时及萤光灯管的10,000 小时。LED作为一种新型的节能、环保绿色光源产品,必然是未来发展的趋势。
不过目前LED灯具产品尚有不足,除价格较高外,发光效率偏低,工作时会产生较多的热量,需要散热器将热量导出并散发到环境中,否则将会影响LED的寿命甚至无法工作。
一.普通照明大功率LED灯具(1W以上)介绍
1.常见类型——球泡灯、射灯、蜡烛灯、管灯、吸顶灯、路灯、车灯等,并根据接口的规格不同有很多型号(部分灯具样品如下图):
2.构成——通常包括灯罩、LED灯板、散热器、驱动电源、接口、绝缘胶或套(一般用
于金属散热器)等(如下图示):
二.LED散热器的作用及工作原理介绍
散热器的主要作用是将LED芯片工作中产生的热量不断导出并散发到环境中,使芯片的温度保持在所要求的范围内,从而保证LED灯能够正常工作。散热器的好坏主要取决于散热器的热阻,热阻越小,相同条件下LED灯结温越低,LED结温越低,芯片使用寿命就会越长。散热器的热阻应该包括导热热阻和散热热阻两部分。对于一定形状的散热器,导热热阻主要与散热器材料的导热系数有关,导热系数越大,导热热阻越小,导热效果越好;在一定环境条件下,散热热阻主要取决于散热器的散热面积以及散热器表面材料的辐射系数,散热面积越大、辐射系数越高,散热热阻越小,散热效果越好。因此,LED灯具散热器必须具有一定的散热面积,同时制作散热器的材料必须具有一定的的导热性和较高的热辐射系数;另外,导热材料本身还应具有重量轻、易加工、价格低等特点。
三.常见LED散热器不同材质介绍
所谓LED散热器就是能够将LED芯片工作中产生的热量快速地导出并散发到环境中的一个元件,因此作为散热器仅具有一定的散热面积是不行的,制作散热器的材料必须具有一定的导热性,也就是要具有较高的热导率,才能将芯片产生的热量不断导出,并最终散到环境中;当然对于导热材料,除了导热性外,还应当具有比重小、价格低、强度高、容易加工等
特点。
常用材料通常包括金属材料,无机非金属材料和高分子材料三大类,其中高分子材料又包括塑料、橡胶、化学纤维等。导热材料一般为金属和部分无机非金属材料。在常见金属中,铝和铜的导热系数比较高,但铜的价格高,比重大,加工性不如铝,而铝质散热器完全能满足LED散热的要求,因此在LED金属散热器中以铝质散热器为主,铜质散热器并不多见,另外也有少量散热器是铁质的。导热性好的无机非金属材料加工前一般多为粉末状,需要经过特种工艺加工成型,加工成散热器后基本为陶瓷状;有些无机非金属材料导热系数很高又非常绝缘,但价格很高,如金刚石、氮化硼、氮化铝等;有些虽然导热系数高但不绝缘,类似金属,如石墨、碳纤维等;并且将无机非金属粉末加工成形状复杂的陶瓷散热器是非常困难的,因此,虽然陶瓷LED散热器是有应用的,但存在很大的局限性,需要进一步完善和提高。高分子材料本身导热性是比较差的,但如果将导热性好的金属粉末或非金属粉末添加到塑料或橡胶中,制成导热塑料或橡胶等,其导热性会大幅提高。导热橡胶因其特有的弹性,是其它导热材料无法替代的,因此在某些领域已经广泛应用,但因其刚性较差,作为散热器材料可能不太合适,目前尚未见相关报道;导热塑料单独或配以金属嵌件做成的LED散热器是最近开发成功的新一代LED散热产品,如果设计得当,可以达到压铸铝散热器的散热效果,并且外表面绝缘,使用更加安全,是今后LED散热器发展的方向。下面就几种常见不同材质的LED散热器简单作一介绍。
1.铝质散热器——目前较常见的LED散热器主要是铝质散热器,一般包括压铸铝和拉伸铝散热器两种。主要原因是金属铝的导热系数较高,比重小,易加工,价格便宜等。其中压铸铝散热器是目前最常用的,其导热系数70-90W/m.K,外形较美观,形状可多变,价格适中;缺点是本身不绝缘,为了安全需要增加绝缘胶或套,而绝缘胶或套一般导热较差,对散热是不利的,同时成本也会增加。另外,压铸铝散热器模具成本高,不利于新品的开发;生产过程需要消耗较多的能源,并且二次加工成本偏大。拉伸铝散热器导热系数200W/m.K左右,导热很好,一次加工成本较低,但往往需要二次加工,二次加工成本较高,而且形式较单一,同样需要增加绝缘处理,目前主要用于路灯及较大功率的室内LED照明。
2.导热塑料散热器——由国外几家大公司开发出的导热塑料LED灯具散热器,不仅解决了铝质散热器本身不绝缘的问题,而且散热器的重量也有所减轻。目前生产LED散热器导热塑料的公司主要有荷兰的帝斯曼,美国的SABIC,日本的 东丽公司等。导热塑料主要是由尼龙、PBT等耐热性好的塑料加入高导热的无机填料,如氮化铝、氮化硼等组成;其本身导热系数并不是很高,一般只有1-6W/m.K左右,用导热塑料单独制成的LED散热器散热性也不是很好,只能用于较小功率的LED产品,因此实际上导热塑料散热器一般是由导热塑料和内嵌铝件两部分组成。铝件采用冲压铝材,导热系数200W/m.K以上,这种铝塑复合散热器的散热性甚至可以与压铸铝散热器的散热效果接近或相当,加工也相对容易。但是,现有导热塑料的售价是相当高的,约合200-300元人民币/Kg,制成散热器的价格也比压铸铝散热器高,虽然在一些生产LED灯具的大公司如飞利浦公司等有一定应用,但近期是无法大量替
代铝质散热器的。
3.Thertrans导热塑料散热器——最近由上海合复新材料科技有限公司独立开发完成的导热塑料散热器Thertrans是由该公司开发的导热塑料Therpoxy(已申请专利)和内嵌铝件(铝件材质同热塑性LED散热器)构成。Therpoxy导热塑料是由树脂加入部分导热填料及其它相关材料混合而成的一种导热塑料,其导热系数3.6W/m.K,价格每公斤100元人民币左右。该材料具有导热、绝缘、阻燃、耐热、环保、耐老化、易成型、重量轻、价格较低等特点。其中阻燃可达到UL94V01.3mm,环保已完成ROHS认证,表面耐击穿电压4000V以上。Thertrans导热塑料散热器外形美观,试样多变,可用注塑机加工成型,其重量比相同形状压铸铝散热器低三分之一左右,而且不必另外增加绝缘处理,甚至可以将螺纹口等与散热器一起成型,有效减少了LED灯具生产厂家的组装工序及成本。从测试结果看,Thertrans导热塑料散热器的散热效果可以和相同形状压铸铝散热器接近、相当甚至略好,说明Thertrans散热器的综合导热系数与压铸铝相差不大,或者说相同形状的Thertrans导热塑料散热器和压铸铝散热器的热阻基本一致。
Thertrans导热塑料散热器的导热机理是LED产生的热量首先通过铝基板迅速传导给内嵌铝件,再由铝件通过导热塑料传导到散热器外表面,最后散热器外表面的热量通过对流和热辐射等方式散发到环境中。另外一般塑料的热辐射系数都高于金属铝,因此导热塑料散热器表面到环境辐射散热的效果应该好于相同外形的铝质散热器,即导热塑料散热器的辐射散
这种Therpoxy导热塑料还可以通过加工设备快速封装LED驱动电源,或将散热器与驱动电源一体成型,这样一方面可以有效地改善电源本身的散热问题,另一方面封装好的驱动电源可方便拆卸、更换。导热塑料Therpoxy也可用于其它需要散热的场合。
四.LED散热器热阻分析
通常所说的热阻一般是指反映阻止热量传递能力的一个综合参数。热阻的大小是反应LED散热器散热性好坏的关键,热阻越小,散热器导热、散热效果越好。
散热器的热阻是指散热器到环境的总热阻,它由散热器内部热量传导过程中的导热热阻和散热器外表面向周围环境通过对流和辐射方式散热过程的散热热阻两部分组成。下面就LED散热器各部分热阻及其影响因素分别加以讨论:
1.散热器本身导热热阻
散热器导热热阻可用以下公式计算:
R导=(T1-T2)/W(热阻单位为 ℃/W)⑴
式中
R导——散热器本身导热热阻
T1——与铝基板接触点处散热器的温度
T2——散热器外表面平均温度
W——LED灯功率
另外,根据能量守恒定律,热平衡后LED灯产生的热量与散热器自身导出的热量是相等的,用公式表示为:Q产=Q导+Q罩(热量从灯罩散出的很少,为便于分析,在此忽略不计),其中
Q产=a.W ⑵
Q导=b.s.(T1-T2)/L ⑶
式中
Q产——LED工作时产生的热量
Q导——散热器本身导出的热量
T1——与铝基板接触点处散热器的温度
T2——散热器外表面平均温度
a——LED产热系数
W——为LED灯实际功率
b——散热器材料综合导热系数
s——散热器平均传热面积
L——散热器热传导平均距离
对于特定散热器b、s、L是一定的,因此公式⑶可简化为Q导=m.(T1-T2),其中m=b.s/L,经推导可知m.(T1-T2)=a.W,因此(T1-T2)=a.W/m,带入公式⑴可知R导=a/m,由此公式可以看出对于特定散热器,在LED灯源一定的情况下,散热器的热阻是一个定值。另外,在热阻计算公式中W代表的是LED的总功率,而LED在工作中一部分功率用于发光,一部分功率转变为热能,因此既然是计算热阻,公式中的W换成产热功率(a.W)更为科学,这样R导=1/m=L/(b.s),就是说散热器本身热阻与电阻一样,是一个仅跟散热器本身参数有关的常数,它与散热器平均传热距离成正比,与散热器平均传热面积、散热器材料导热系数成反比。
2.散热器表面到环境的散热热阻
散热器表面到环境空气的散热热阻可用下式计算:
R散=(T2-T3)/a.W ⑷
式中
R散——散热器表面到环境的散热热阻
T2——散热器外表面平均温度
T3——环境温度
W——LED灯功率
a——LED产热系数
散热器外表面向环境散热的方式主要以对流为主,其次为热辐射,热传导很小可以忽略不计。散热器的对流及辐射散热公式如下:
Q流=c.(T2-T3).S散 ⑸
Q辐=d.(T42-T43).S散(此式中T为绝对温度)⑹
式中
Q流——散热器表面到环境的对流散热
Q辐——散热器表面到环境的辐射散热
c——散热器周围环境的自然对流系数
d——散热器表面材料的辐射系数
S散——散热器外表面积
T2——散热器表面平均温度
T3——环境温度
根据能量守恒定律,LED灯热平衡后Q产=Q导+Q罩=Q散+Q罩=Q流+Q辐+Q罩(热量从灯罩散出的很少,为便于分析,在此忽略不计),即a.W=c.(T2-T3).S散+d.(T42-T43).S散。
在一定环境条件下,对于特定散热器而言,对流系数、辐射系数是恒定的,散热面积也是一定的;对于恒定电源,产热功率是一定的,那么由以上公式可知(T2-T3)是一定的,因此散热器到表面环境的散热热阻是一定的。但如果灯源的产热功率(a.W)增大(或减小),散热器外表面温度也会升高(或降低),分析一下辐射散热公式可以知道,散热器外表面温度T2升高(或降低)的比例小于产热功率增加(或减小)的比例;因此散热器外表面到环境空气的热阻与产热功率有关,产热功率增加,散热器表面到环境的热阻应该略减小,相反,产热功率降低,散热器表面到环境的热阻会略升高。
对于不同散热器,在产热一定的情况下,由公式⑸、⑹可知散热面积、对流系数、辐射系数越大,(T2-T3)就越小,那么散热器热阻也越小。也就是说,散热器的散热热阻不仅与其本身的散热面积以及散热器表面材料的辐射系数有关,还与LED灯所处环境的通风情况也就是周围空气的自然对流系数有关,是一个可变量。
3.散热器(到环境)的总热阻
散热器的总热阻等于散热器本身导热热阻加上散热器表面到环境的散热热阻,散热器到
环境的热阻可通过以下公式计算:
R3=R1+R2=(T1-T3)/a.W ⑺
通过前面的分析可以知道,影响散热器总热阻的因素可以概括如下:
⑴.散热器本身参数的影响:散热器平均传热距离越短,散热器热阻越小;散热器平均传热面积越大,散热器热阻越小;散热器材料导热系数越大,散热器热阻越小;散热器散热面积越大,散热器热阻越小;散热器表面材料的辐射系数越大,散热器热阻越小
⑵.对流系数的影响:散热器周围环境通风越好,自然对流系数越大,散热器热阻越小
⑶.产热功率的影响:同一散热器,同样环境下,实际产热功率越大,散热器的热阻反
而略有减小。
所以散热器的总热阻不仅与散热器的散热面积、几何尺寸、表面材料的辐射系数等自身因素有关,还受LED的产热功率以及周围环境的对流系数等外部因素的影响,并不是一个恒定的数值。但一般来说,在自然对流情况下对流系数变化并不大,正常情况下LED产热功率的变化也不会太大,对热阻的影响应该很小。为便于分析和计算,我们在应用时可近似认为
散热器的总热阻是一定的。
五.散热器散热性测试方法介绍
在此选择形状相近的压铸铝和Thertrans导热塑料两款散热器进行测试,并对测试结果
进行分析、对比。
1.实验设备
四通道温度测试仪——精度0.1℃
感温线
数显温度计
电脑
2.测试样品
⑴ A19压铸铝散热器——市购(表面喷白漆)
⑵ TR-E101W Thertrans导热塑散热器(内置铝套)——上海合复复合材料科技公司(表
面喷白漆)
以上两款散热器尺寸基本相同,散热面积相当,如下图示
3.测试灯源——六颗灯珠(串联)LED(发光效率20%左右)
4.测试电源——5W直流驱动电源(测试时置于散热器外部)
5.温度计量点
* LED灯角温度——感温线与灯角锡焊(近似等同于结温)
* 铝基板下端面温度——感温线与铝基板螺丝连接(近似与铝基板接触点散热器温度)
* 散热器外表面叶片温度——感温线与叶片铁夹固定(位置固定)
* 环境温度——感温线自然放置
6.测量方法
首先,将测温仪、LED灯板、电源、散热器、电脑、感温线等按要求连接好,接通电源并开始测温,每组实验,待温度曲线相对稳定一定时间后,保存测试曲线和数据,并做好记录。每组实验至少测量三组数据,最后取平均值。
7.测试结果
A.压铸铝散热器测试结果及曲线(纵轴为温度,横轴为时间):
B.Thertrans导热塑料测试结果及曲线(纵轴为温度,横轴为时间):
8.结果分析
从以上测试结果可以看出,A19压铸铝散热器灯角温度63.1℃,环境温度27.1℃;TR-E101W Thertrans导热塑散热器灯角温度62.4℃,环境温度27.9℃。下面我们再用公式 ⑺ 计算一下两款散热器的热阻,压铸铝散热器的热阻R1=(63.1—27.1)/(5×0.8)=9℃/W,Thertrans导热塑料散热器的热R2=(62.4—27.9)/(5×0.8)=8.6 ℃/W(由于散热器表面平均温度很难测定,在此无法准确计算散热器的导热热阻和散热热阻)。通过以上分析可以说明,相同形状的导热塑Thertrans料散热器与压铸铝散热器散热效果可以做到相当或略好。另外,从散热器图片可以看出压铸铝散热器因为本身不绝缘,需要另外增加绝缘塑料套,而导热塑料散热器因为本身绝缘可以不用另外绝缘处理,因此更便于使用,也更安全。
六.LED散热器的选型及设计要点介绍
要想设计或选择一款合适的散热器产品,不但要保证散热器的外型美观、易加工、价格低,更重要的是要满足LED芯片的散热要求,使LED工作温度保持在规定的范围内。
首先我们了解一下影响LED灯结温的因素。根据我们的经验,对影响LED结温的因素进
行了如下归纳,供大家参考:
1.LED灯板——
LED灯功率:功率越大结温越高
芯片发光效率:同样功率,芯片发光效率越高,产热越少,结温越低
灯珠数量及分布:同样功率,铝基板越大,灯珠越多,分布越均匀,结温越低
2.LED铝基板与散热器的连接(铝基板与散热器之间的热阻)——
铝板:铝基板与散热器直接相连比铝基板加铝板(如铝基板太小,无法与散热器直接相连,需外加铝板)再与散热器相连的LED结温低;铝板、铝基板表面平整度越好一般结温越低
连接方式:在机械连接情况下涂少量导热硅脂,LED结温一般要低
3.散热器——散热器热阻越小LED结温越低
4.环境温度——环境温度越低LED结温也越低
从以上影响因素可以看出要想降低LED灯的结温,首先要选择合适的灯板,在功率一定的情况下,LED芯片发光效率越高,工作时产生的热量越少,因此尽量选用发光效率高的芯片制作的灯板。在灯板和驱动功率确定的情况下,除优化连接方式外,影响LED结温最主要的因素就是所选散热器的热阻大小,散热器的热阻越小,LED的结温越低,灯具的使用寿命越长。关于散热器热阻的影响因素前文已经进行了详细的介绍,用户可以根据自己的实际要求并与散热器厂家进行沟通,应用散热器热阻的知识经过合理的分析及自身的经验,最好建立一套合理的数理模型,选择或设计出一款比较合适的LED散热器产品。
第三篇:LED基础知识大集合 (104)
本文由luguled贡献
doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。洗墙灯、推动 LED 洗墙灯、投光灯发展的战略选择
(信息提供:绿谷光电刘小姐)信息提供:绿谷光电刘小姐)节约能源和开发新能源已成为 21 世纪世界各国能源发展的基本选择。我国是世界照明产品生产、消 费和出口大国,照明用电占全国总发电量的 12%,并以每年 5%的速度增长。照明节电是我国解决电力短 缺矛盾和实现可持续发展的一个突破口,而照明领域节能最具有革命性的技术突破就是半导体(即 LED)照 明。
一、LED 照明正在引发电光源产品的一场革命 1879 年美国发明家爱迪生成功研制出第一只实用白炽灯,人类社会告别明火照明进入电光源照明时 代,标志着人类文明的一大进步。在电光源照明产业百多年的发展进程中,相继辉煌了白炽灯、钨丝灯和 荧光灯等三代电光源产品。那么 21 世纪的照明新光源是什么呢?科技界普遍认为是半导体发光二极管(英文 全称 LightEmittingDiode,缩写“LED”,下同),即第四代电光源产品。作为新型高效固体光源,LED 照明是以半导体芯片为材料,利用电子移动来发光,直接把电能转化为 光能,而非灯丝加灯泡的“老面孔”。所谓大功率 LED,则是指在电流为 350mA、电压平均值在 3.4V 左 右、功率超过 1W 条件下工作的 LED。从产业链角度看,LED 照明产业分为上游、中游和下游。其中,LED 衬底材料、外延晶片、芯片等的制造是上游产业,LED 的封装是中游产业,基于 LED 光源的灯具制 造是下游产业。显然,上游产业是技术资本密集型产业,投资额度和工艺控制技术难度大;下游是劳动密集 型 产 业,行 业 进 入 门 槛 低;中 游 产 业 则 居 于 二 者 之 间。
作为光源,大功率 LED 优势体现在节能、寿命长、绿色环保等三个方面。LED 不依靠灯丝发热获取 光源,能量转化效率高,理论上只有白炽灯能耗的 10%、荧光灯能耗的 50%,使用寿命却 100 倍于传统灯 泡。普通节能灯寿命在 5000 个小时以上,是白炽灯的 5 倍,而大功率 LED 光源寿命达 5 万小时以上,几
乎不存在维修成本(详见附表 1)。据统计,2008 年我国的用电量达 3.43 万亿千瓦时,其中照明占 12%。若 LED 的发光效率继续以目前速度提升且其应用程度占到照明市场的 30%,则到 2020 年中国每年可节电 2000 多亿千瓦时,按每度电 0.8 元折算,可节约 1600 亿元;按现有电力能源结构估算,相当于减排 1.994 亿吨二氧化碳。与传统节能灯不同,LED 照明用的是冷光源,无需充气,无需玻璃外壳,无需添加汞、铅 等有害金属物质,且具显色性好、无频闪、光线柔和等特性,有助于改善少年儿童的近视问题,因而从生 产到使用直至报废可谓全程无污染,被誉为“绿色照明”。专家和业内人士认为,半导体照明产业将是 21 世纪最大、最活跃的高科技产业之一,在经济竞争及国家安全方面具有极其重要的意义。并预言:大功率 LED 照明正在世界范围内引发电光源产品的一场革命,将成为人类照明史上的又一次飞跃。
LED 照明符合节能减排、绿色环保、安全、可持续的产业发展方向,是当今世界上最先进的照明技术。作为 21 世纪的高新技术产业,LED 照明产业已引起世界各国,尤其是欧美发达国家产业界和政府的高度 重视。近年来,美国的 GE、荷兰的 PHILIP、德国的 OSRAM 和日本的日亚化工(号称国际 LED 照明领域 的“四大龙头企业”)等国际著名的电光源公司都投入巨资研发 LED 照明技术并将其产业化。美国、日本、韩国和欧盟等相继推出了国家 LED 照明计划,以抢夺技术与产业制高点。我国于 2003 年 6 月也成立了 “国 家半导体照明工程协调领导小组”,国务院批复了科技部会同有关部门组织实施“国家半导体照明工程”。可以坚信,我国政府推出的各项相关建设规划及鼓励措施,势必惠及 LED 照明行业,也将会对 LED 照明 产品的民用化起到积极的推动作用。
第四篇:LED户外广告牌基础知识
LED
户外广告牌基础知识
LED屏幕(户外广告牌,显示屏)按应用场所不同,大致可以分外户外广告牌和室外屏幕两类。由于LED户外广告牌的应用环境不同于室内屏幕,并且环境条件比较恶劣,自然对LED的发光材料和箱体有着较高的要求。一般来说户外广告牌的LED须采用超高亮发光材料,亮高度(UHB)是指发光强度达到或超过100mcd的LED,又称坎德拉(cd)级LED。高亮度A1GaInP和InGaN LED的研制进展十分迅速,现已达到常规材料GaA1As、GaAsP、GaP不可能达到的性能水准。
目前,彩色显示所需的三基色红、绿、蓝以及橙、黄多种颜色的LED都达到了坎德拉级的发光强度,实现了超高亮度化、全色化,使发光管的户外全色显示成为现实。发光亮度已高于1000mcd,可满足室外全天候、全色显示的需要,用LED彩色大屏幕可以表现天空和海洋,实现3D动画。新一代红绿、蓝超高亮度LED 达到了前所未有的性能。
户外广告牌像素目前均由红/绿/蓝三种原色(基色)的许多单管LED构成,常用成品有像素筒和像素模组两种结构。像素尺寸多为12-26毫米,像素组成:单色以2R/3R/4R、伪彩以1R2YG/1R3YG/1R4YG、真彩以2R1G1B等组成形式居多。
一、户外广告牌系统方案设计原则
1.结构设计原则
2.亮度与配色依据
3.可靠性设计原则
4.安全性设计原则
5.易管理及可操作性设计原则
二、屏体安装方式
墙挂式:即显示幕背靠墙面,并固定在墙面上。此方式为常见方式,而且较易实现。
坐立式:即显示幕坐立在平台上。此方式最易实现,在条件许可的场合应优先采用这种安装方式。
镶嵌式:即显示幕镶嵌在一个墙框内。此方式不多见,如果墙面凹陷深度不够,须考虑其维护性。
侧挂式:即显示幕两侧受力,侧挂在两建筑物或立柱之间。此方式常用于空旷场地的屏体悬挂,两立柱依据屏体的悬挂要求搭建。
三、结构设计
1、材料选择
采用角钢作为屏体框架的主要材料,进行防腐、耐火处理。
2、箱体结构
采用大箱体结构,箱体材料进行打磨、镀锌、喷塑处理、具有防水/耐腐蚀功能。箱体具有厚度薄、重量轻、强度高,采用定位柱技术保证安装精度等特点。
3、框架结构
由于采用标准的箱体结构,使得屏体框架结构简单,定位精度及屏体的安装工艺容易控制,保证了整屏的平整度。
4、联接结构
采用焊接和连接件并用的联接方式,简单易行,可以确保联接强度,同时提高屏体的安装效率。
四、系统防护功能设计
1、安全配电系统
a.上电系统 b.防静电设计 c.防雷设计
2、屏体结构安全设计
a.防风设计 b.防震设计 c.防水设计 d.防潮/防结露设计 e.防尘设计
f.防氧化/防腐蚀设计
3、温度控制系统设计
A.屏体的散热系统及防高温设计
a.优良的驱动器选择 b.完善的工艺设计 c.完备的系统防护设备 d.先进的系统防护技术:即“动态散热”技术,密封式对流散热,空调冷却式内部对流散热
B.屏体的防低温设计
第五篇:LED封装材料基础知识(精)
LED 封装材料基础知识
LED 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED 封装材料的封装方向之一。下面将主要介绍有机硅封装材料。
提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。
一、胶水基础特性
1.1有机硅化合物--聚硅氧烷简介
有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-O 键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。
1.1.1结构
其结构是一类以重复的Si-O 键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’---(Si R R ’---O)n---R ”,其中,R、R ’、R ”代表基团,如甲基,苯基,羟基,H,乙烯基等;n
为重复的Si-O 键个数(n 不小于2)。有机硅材料结构的独特性:
(1)Si原子上充足的基团将高能量的聚硅氧烷主链屏蔽起来;(2)C-H无极性,使分子间相互作用力十分微弱;(3)Si-O键长较长,Si-O-Si 键键角大。
(4)Si-O键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。
1.1.2性能
由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性。
耐温特性:有机硅产品是以硅-氧(Si -O)键为主链结构的,C -C 键的键能为347kJ/mol,Si -O 键的键能在有机硅中为462kJ/mol,所以有机硅产品的热稳定性高,高温下(或辐射照射)分子的化学键不断裂、不分解。有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。无论是化学性能还是物理机械性能,随温度的变化都很小。
耐候性:有机硅产品的主链为-Si -O -,无双键存在,因此不易被紫外光和臭氧所分解。有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。有机硅中自然环境下的使用寿命可达几十年。
电气绝缘性能:有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数等均在绝缘材料中名列前茅,而且
它们的电气性能受温度和频率的影响很小。因此,它们是一种稳定的电绝缘材料,被广泛应用于电子、电气工业上。有机硅除了具有优良的
耐热性外,还具有优异的拒水性,这是电气设备在湿态条件下使用具有高可靠性的保障。
生理惰性:聚硅氧烷类化合物是已知的最无活性的化合物中的一种。它们十分耐生物老化,与动物体无排异反应,并具有较好的抗凝血性能。
低表面张力和低表面能:有机硅的主链十分柔顺,其分子间的作用力比碳氢化合物要弱得多,因此,比同分子量的碳氢化合物粘度低,表面张力弱,表面能小,成膜能力强。这种低表面张力和低表面能是它获得多方面应用的主要原因:疏水、消泡、泡沫稳定、防粘、润滑、上光等各项优异性能。
1.1.3有机硅化合物的用途
由于有机硅具有上述这些优异的性能,因此它的应用范围非常广泛。它不仅作为航空、尖端技术、军事技术部门的特种材料使用,而且也用于国民经济各行业,其应用范围已扩到:建筑、电子电气、半导体、纺织、汽车、机械、皮革造纸、化工轻工、金属和油漆、医药医疗等行业。
其中有机硅主要起到密封、粘合、润滑、绝缘、脱模、消泡、抑泡、防水、防潮、惰性填充等功能。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。
1.2 LED封装用有机硅材料特性简介
LED 封装用有机硅材料的要求:光学应用材料具有透光率高,热稳定性好,应力小,吸湿性低等特殊要求,一般甲基类型的硅树脂25℃时折射率为1.41左右,而苯基类型的硅树脂折射率要高,可以做到1.54以上,450 nm 波长的透光率
要求大于95%。在固化前有适当的流动性,成形好;固化后透明、硬度、强度高,在高湿环境下加热后能保持透明性。
主要技术指标有:折射率、粘度、透光率、无机离子含量、固化后硬度、线性膨胀系数等等。
1.2.1 材料光学透过率特性
石英玻璃、硅树脂和环氧树脂的透过率如图1 所示。硅树脂和环氧树脂先注入模具, 高温固化后脱模, 形成厚度均匀为5 mm 的样品。可以看到, 环氧树脂在可见光范围具有很高的透过率, 某些波长的透过率甚至超过了95% , 但环氧树脂在紫外光范围的吸收损耗较大, 波长小于380 nm 时, 透过率迅速下降。硅树脂在可见光范围透过率接近92%, 在紫外光范围内要稍低一些, 但在320 nm时仍然高于88%, 表现出很好的紫外光透射性质;石英玻璃在可见光和紫外
光范围的透过率都接近95%, 是所有材料里面紫外光透过率最高的。对于紫外LED 封装, 石英玻璃具有最高的透过率, 有机硅树脂次之, 环氧树脂较差。然而尽管石英玻璃紫外光透过率高, 但是其热加工温度高, 并不适用于LED 芯区的密封, 因此在LED 封装工艺中石英玻璃一般仅作为透镜材料使用。由于石英玻璃的耐紫外光辐射和耐热性能已经有很多报道 , 仅对常用于密封LED 芯区的环氧树脂和有机硅树脂的耐紫外光辐射和耐热性能进行研究。
1.2.2耐紫外光特性
研究了环氧树脂A 和B 以及有机硅树脂A 和B 在封装波长为395 nm和375 nm 的LED 芯片时的老化情况, 如图2所示。实验中, 每个LED 的树脂涂层厚度均为2 mm。可以看到, 环氧树脂材料耐紫外光辐射性能都较差, 连续工作时, 紫外LED 输出光功率迅速衰减, 100 h 后输出光功率均下降到初始的50% 以下;200 h 后, LED 的输出光功率已经非常微弱。对于脂环族的环氧树脂B, 在375 nm 的紫外光照射下衰减比395 nm时要快, 说明对紫外光波长较为敏感, 由于375 nm的紫外光光子能量较大, 破坏也更为严重。双酚类的环氧树脂A 在375 nm 和395 nm 的紫外光
照射下都迅速衰减, 衰减速度基本一致。尽管双酚类的环氧树脂A 在375 nm 和395 nm 时的光透过率要略高于脂环族类的环氧树脂B, 但是由于环氧树脂A 含有苯环结构, 因此在紫外光持续照射时, 衰减要比环氧树脂B 要快。
尽管双酚类的环氧树脂A 在375 nm和395 nm时的光透过率要略高于脂环族类的环氧树脂B, 但
是由于环氧树脂A 含有苯环结构, 因此在紫外光持续照射时, 衰减要比环氧树脂B 要快。测量老化前后LED 芯片的光功率, 发现老化后LED 的光功率基本上没有衰减。这说明, 光功率的衰减主要是由紫外光对环氧树脂的破坏引起的。环氧树脂是高分子材料, 在紫外线的照射下, 高分子吸收紫外光子, 紫外光子光子能量较大, 能够打开高分子间的键链。因此, 在持续的紫外光照射下, 环氧树脂的主链慢慢被破坏, 导致主链降解, 发生了光降解反应, 性质发生了变化。实验表明, 环氧树脂不适合用于波长小于380 nm的紫外LED 芯片的封装。相对环氧树脂, 硅树脂表现出了良好的耐紫外光特性。经过近1 500 h 老化后, LED 输出光功率虽然有不同程度的衰减, 但是仍维持在85%以上, 衰减低于15%。这可能与硅树脂和环氧树脂间的结构差异有关。硅树脂的主要结构包括Si 和O, 主链Si-O-Si 是无机的, 而且具有较高的键能;而环氧树脂的主链主要是C-C 或C-O, 键能低于Si-O。由于键能较高, 硅树脂的性能相对要稳定。因此, 硅树脂具有良好的耐紫外光特性。
1.2.3 耐热性
LED 封装对材料的耐热性提出了更高的要求。从图3可以看出, 环氧树脂和硅树脂具有较好的承受紫外光辐照的能力。因此, 对其热稳定性进行了研究。图3 表示这两种材料在高温老化后mm-1厚度时透过率随时间的变化情况。可以看到, 环氧树脂的耐热性较差, 经过连续6天 的高温老化后, 各个波长的透过率都发生了较大的衰减, 紫外光范围的衰减尤其严重, 环氧树脂样品颜色从最初的清澈透明变成了黄褐色。
硅树脂表现出了优异的耐热性能。在150 e 的高温环境下, 经过14 days 的老化后, 可见光范围的样品mm-1厚度时透过率只有稍微的衰减, 在紫外光范围也仅有
少量的衰减, 颜色仍然保持着最初的清澈透明。与环氧树脂不同, 硅树脂以Si-O-Si 键为主链, 由于Si-O 键具有较高的键能和离子化倾向, 因此具有优良的耐热性。
1.2.4光衰特性
传统封装的超高亮度白光L ED ,配粉胶一般采用环氧树脂或有机硅材料。如图4所示, 分别用环氧树
脂和有机硅材料配粉进行光衰实验的结果。可以看出, 用有机硅材料配粉的白光L ED 的寿命明显比环氧树脂的长很多。原因之一是用有机硅材料和环氧树脂配粉的封装工艺不一样, 有机硅材料烘烤温度较低, 时间较短, 对芯片的损伤也小;另外, 有机硅材料比环氧树脂更具有弹性, 更能对芯片起到保护作用。
1.2.5 苯基含量的影响
提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。硅树脂中苯基含量越大,就越硬,折射率越高(合成的几乎全苯基的硅树脂折射率可达1.57),但因热塑性太大,无实际使用价值,苯基含量一般以20%~50%(质量分数)为宜。实验发现苯基含量为40%时(质量分数)硅树脂的折射率约1.51,苯基含量为50%时硅树脂的折射率大于1.54,如图5所示。所合成的都是高苯基硅树脂,苯基含量都在45%以上,其折射率都在1.53以上,其中一些可以达到1.54以上。
1.3有机硅封装材料应用原理及分析
有机硅封装材料一般是双组分无色透明的液体状物质,使用时按A :B=1:1的比例称量准确,使用专用设备行星式重力搅拌机搅拌,混合均匀,脱除气泡即可用于点胶封装,然后将封装后的部件按产品要求加热固化即可。
有机硅封装材料的固化原理一般是以含乙烯基的硅树脂做基础聚合物,含SiH 基硅烷低聚物作交联剂,铂配合物作催化剂配成封装料,利用有机硅聚合物的Si —CH =CH 2与Si —H 在催化剂的作用下,发生硅氢化加成反应而交联固化。我
们可以用仪器设备来分析表征一些技术指标有如折射率、粘度、透光率、无机离子含量、固化后硬度、线性膨胀系数等等。
1.3.1 红外光谱分析
有机硅聚合物的Si —CH =CH 2与Si —H 在催化剂的作用下,发生硅氢化加成反应而交联。随着反
应的进行,乙烯基含量和硅氢基的浓度会逐渐减少,直到稳定于一定的量,甚至消失。
可采用红外光谱仪测量其固化前后不同阶段的乙烯基和硅氢基的红外光谱吸收变化情况[2]。我们只列举合成的高苯基乙烯基氢基硅树脂固化前和固化后的红外光谱为例:如图6所示,固化前:3071,3050 cm -1是苯环和CH 2=CH-不饱和氢的伸缩振动,2960 cm-1是-CH 3的C-H 伸缩振动,2130 cm-1是Si —H 的吸收峰,1590 cm -1是—CH =CH2不饱和碳的吸收峰,1488 cm -1是苯环的骨架振动,1430,1120 cm -1 是Si -Ph 的吸收峰,1250 cm -1是Si -CH 3的吸收峰,1060 cm -1是Si-O-Si 的吸收峰;固化后:2130 cm -1处的Si —H 的吸收峰和1590 cm-1处的—CH =CH2不饱和碳的吸收峰均消失。
1.3.2 热失重分析
有机硅主链si-0-si 属于“无机结构”,si-0键的键能为462kJ/mol,远远高于C-C 键的键能347kJ/mol,单纯的热运动很难使si-0键均裂,因而有机硅聚合物具有良好的热稳定性,同时对所连烃基起到了屏蔽作用,提高了氧化稳定性。有机硅聚合物在燃烧时会生成不燃的二氧化硅灰烬而自熄。为了分析封装材料的耐热性,及硅树脂对体系耐热性的影响,我们进行了热失重分析,如图7图8所示,样品起始分
解温度大约在400℃,800℃的残留量在65%以上。封装材料在400℃范围内不降解耐热性好,非常适用于大功率LED 器件的封装。
1.3.3 DSC分析
我们采用DSC(差示热量扫描法)分析了硅树脂固化后的玻璃化转变温度Tg。一般,Tg 的大小取决于分子链的柔性及化学结构中的自由体积,即交联密度,Tg 随交联密度的增加而升高,可以提供一个表征固化程度的参数。我们采用DSC 分析了所制备的凝胶体、弹性体、树脂体的Tg,如表1所示,显然随着凝胶体、弹性体、树脂体的交联密度的增加,玻璃化转变温度Tg 升高。同样也列举合成的高苯基乙烯基氢基硅树脂固化后的差示热量扫描分析图谱,如图9所示,玻璃化转变温度Tg 约72℃。封装应用应根据封装实际的需求,选用不同的形态。
表1 有机硅树脂的玻璃化转变温度Tg
图9 高苯基乙烯基氢基硅树脂DSC 分析图谱 1.4有机硅封装材料的分类及与国外同类产品的对比
为了提高LED 产品封装的取光效率,必须提高封装材料的折射率,以提高产品的临界角,从而提高产品的封装取光效率。根据实验结果,比起荧光胶和外封胶折射率都为1.4时,当荧光胶的折射率比外封胶高时,能显著提高LED 产品的出光效率,提升LED 产品光通量。目前业内的混荧光粉胶折射率一般为1.5左右,外封胶的折射率一般为1.4左右,故大功率白光LED 灌封胶应选取透光率高(可见光透光率大于99%)、折射率高(1.4-1.5)、耐热性较好(能耐受200℃的高温)的双组分有机硅封装材料
LED 有机硅封装材料,固化后按弹性模量划分,可分为凝胶体,弹性体及树脂等三大类;按折射率划分,可分为标准折射率型与高折射率两大类,见表2:
表2 LED有机硅封装材料的分类
与国外同类产品进行了对比,其参数如表3表4所示,可知各项性能参数较接近,经部分客户试用反映良好。
表3自制低折色率产品与国外同类产品的比较
表4自制高折色率产品与国外同类产品的比较
针对LED 封装行业的不同部位的具体要求开发五个应用系列的有机硅材料,不同的封装要求,在封装材料的粘度,固化条件,固化后的硬度(或弹性),外观,折光率等方面有差异。具体分类介绍如下:
1.4.1混荧光粉有机硅系列
传统封装的超高亮度白光L ED ,配粉胶一般采用环氧树脂或有机硅材料。如图9所示, 分别用环氧树脂和有机硅材料配粉进行光衰实验的结果。可以看出, 用有机硅材料配粉的白光L ED 的寿命明显比环氧树脂的长很多。原因之一是用有机硅材料和环氧树脂配粉的封装工艺不一样, 有机硅材料烘烤温度较低, 时间较短, 对芯片的损伤也小;另外, 有机硅材料比环氧树脂更具有弹性, 更能对芯片起到保护作用。
1.4.2 MODING封装材料有机硅系列
1.4.3TOP 贴片封装材料有机硅系列
1.4.4透镜填充有机硅系列
1.4.5集成大功率LED 有机硅系列
二、胶水与其它材料之间的关联性(含固晶胶)
有机硅材料对其他材料没有腐蚀性,但某些材料会影响封装材料的固化。固晶胶一般为环氧树脂材料,它的固化剂种类很多,如果其中含有N,P,S 等元素,会导致封装材料与固晶胶接触部分不固化。如果对某一种基材或材料是否会抑制固化存在疑问,建议先做一个相容性实验来测试某一种特定应用的合适性。如果在有疑问的基材和固化了的弹性体材料界面之间存在未固化的封装料,说明不相容,会抑制固化。
这些最值得注意的物质包括:
1、有机锡和其它有机金属化合物
2、硫、聚硫化物、聚砜类物或其它含硫物品
3、胺、聚氨酯橡胶或者含氨的物品
4、亚磷或者含亚磷的物品
5、某些助焊剂残留物
有机硅封装材料有很好的耐湿气,耐水性及耐油性,但对浓硫酸,浓硝酸等强酸,氨水,氢氧化钠等强碱,以及甲苯等芳香烃溶剂的抵抗能力差。下表定性的列出有机硅封装材料耐化学品性。
有机硅封装材料耐化学品性表
三、胶水的应用与风险防范 3.1使用:
A、B 两组分1:1称量,用行星式重力搅拌机(自公转搅拌脱泡机)搅拌均匀即可点胶。或者在一定温度下,于10mmHg 的真空度下脱除气泡即可使用。建议在干燥无尘环境中操作生产。
3.2注意事项
A、有机硅封装材料在称量,混合,转移,点胶,封装,固化过程中使用专用设备,避免与其他物质混杂带来不确定的影响。
B、某些材料、化学制剂、固化剂和增塑剂可以抑制弹性体材料的固化。这些最值得注意的物质包括: B-
1、有机锡和其它有机金属化合物
B-
2、硫、聚硫化物、聚砜类物或其它含硫物品 B-
3、胺、聚氨酯橡胶或者含氨的物品 B-
4、亚磷或者含亚磷的物品 B-
5、某些助焊剂残留物
如果对某一种基材或材料是否会抑制固化存在疑问,建议先做一个相容性实验来测试某一种特定应用的合适性。如果在有疑问的基材和固化了的弹性体材料界面之间存在未固化的封装料,说明不相容,会抑制固化。
C、在使用封装材料时避免进入口眼等部位;接触封装材料后进食前需要清洗手;封装材料不会腐蚀皮肤,因个人的生理特征有差异,如果感觉不适应暂停相关工作或就医。
D、在LED 生产中很可能会产生的问题是芯片封装时,杯内汽泡占有很大的不良比重,但是产品在制作过程中如果汽泡问题没有得到很好的解决或防治,就会造成产品衰减加快的一个因素。影响气泡产生的因素比较多, 但是多做一些工程评估,即可逐步解决。一般情况下,工艺成熟后,气泡的不良比重不会太高。以下是相关因素:
(1)环境的温度和湿度对气泡产生有较大的影响。(2)模条的温度也是产生气泡的一个因素。(3)气泡的产生与工艺的调整有很大关系。
例如,有些工厂没有抽真空也没有气泡,而有些即使抽了真空也有气泡,从这一点看不是抽不抽真空的问题,而是操作速度的快慢、熟练程度的问题。同时与环境温度也是分不开的。环境温度变化了,可以采取相应的措施加以控制。若常温是15℃,如让胶水的温度达到60℃,这样做杯内气泡就不会出现。同时要注意很多细节问题,如在滚筒预沾胶时产生微小气泡,肉眼和细微镜下看不到,但一进入烤箱体内,热胀气泡扩涨。如果此时温度太高,气体还没有跃出就固化所以产生气泡现象。LED 表面有气泡但没破,此为打胶时产生气泡。LED 表面有气泡已破,原因是温度太高。手工预灌胶前,支架必须预热。预热预灌的AB 组分进行2小时调换一次。只要你保持AB 料、支架都是热的,气泡问题不难解。因为AB 组分冷时流动性差, 遇到冷支架容易把气泡带入。操作时要注意以下问题:
(1)操作人员的操作技巧不熟练(整条里面有一边出现气泡);(2)点胶机的快慢和胶量没有控制好(很容易出现气泡的地方);(3)机器是否清洁(此点不一定会引起气泡,但很容易产生类似冰块一样的东西,尤其是环已酮);
(4)往支架点胶时,速度不能快,太快带入的空气将难以排出;
(5)胶要常换、胶筒清洗干净,一次混胶量不能太多,A,B 组分混合就会开始反应,时间越长胶越稠,气泡越难排出;
E、大多数封装客户都发现做好的产品在初期做点亮测试老化之后都有不错的表现,但是随着时间的推移,明明在抽检都不错的产品,到了应用客户开始应用的时候或者不久之后,就发现有胶层和PPA 支架剥离、LED 变色(镀银层变黄发黑)的情况发生。那这到底是什么原因引起的?是在制程的过程中工艺把握不好导
致封装胶固化不好吗?当然有可能,但是随着客户工艺的不断成熟,这种情况发生的机率会越来越少。有以下因素供大家参考;
(1)PPA 与支架剥离的原因是:PPA 中所添加的二氧化钛因晶片所发出的蓝光造成其引起的光触媒作用、PPA 本身慢慢老化所造成的,硅胶本身没老化的情况下,由于PPA 老化也会导致剥离想象的发生;二氧化钛吸收太阳光或照明光中的紫外线,产生光触媒作用,会产生分解力与亲水性的能力。特別具有分解有机物的能力。
(2 以LED 变色问题为例、现阶段大致分三类: ?硫磺造成镀银层生硫化银而变色 ?卤素造成镀银层生卤化银而变色 ?镀银层附近存在无机碳。
• 有机硅封装材料、固晶材料并不含有S 化合物、卤素化合物, 硫化及卤化物的发生取决于使用的环境。
• 无机碳的存在为环氧树脂等的有机物因热及光的分解后的残渣。在镀银层以环氧等固晶胶作为蓝光晶片接合的场合频繁发生。
•有机硅封装材料即使被热及光分解也不会变成黑色的碳。
• 若是沒有使用环氧等的有几物的场合有发现无机碳存在的话有可能是由外部所带入。
• 上述的3种变色现象是因蓝光、镀银、氧气及湿气使其加速催化所造成 综上所述,我们发现,以上的主要原因是由于有氧气,湿气侵入到LED 内部以及有无机碳的存在
而带来的一系列的问题,那么我们应该如何解决呢。
(1)在封装过程中避免使用环氧类的有机物,比如固晶胶;
(2 选择低透气性的封装材料,尽量避免使用橡胶系的硅材料,尽量选用树脂型的硅材料;
(3 在制程的过程中尽量采用清洗支架,尽可能的增加烘烤流程。如何解决隔层问题?出现隔层,一般是胶水沾接性能不好,先膨胀后收缩所致。也有粉胶与外封胶膨胀系数差异太大产生较大内应力,在金线部位撕裂。故升温太快 有裂层或固化不好,而分段固化,反应没那么剧烈,消除一些内应力。
3.3贮存及运输:
1、阴凉干燥处贮存,贮存期为6个月(25℃)。3-
2、此类产品属于非危险品,可按一般化学品运输。
3、胶体的A、B 组分均须密封保存,在运输,贮存过程中防止泄漏。3.4封装工艺 A.LED 的封装的任务
是将外引线连接到LED 芯片的电极上,同时保护好LED 芯片,并且起到提高光取出效率的作用。关键工序有装架、压焊、封装。
B.LED 封装形式
LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。LED 按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED 等。
C.LED 封装工艺流程 1.芯片检验
镜检:材料表面是否有机械损伤及麻点麻坑(lockhill);芯片尺寸及电极大小是否符合工艺
要求 ;电极图案是否完整。2.扩片
由于LED 芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED 芯片的间距拉伸到约0.6mm。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。
3.点胶
在LED 支架的相应位置点上银胶或绝缘胶。(对于GaAs、SiC 导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、绿光LED 芯片,采用绝缘胶来固定芯片。)工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。
4.备胶
和点胶相反,备胶是用备胶机先把银胶涂在LED 背面电极上,然后把背部带银胶的LED 安装在LED 支架上。备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。
5.手工刺片
将扩张后LED 芯片(备胶或未备胶)安置在刺片台的夹具上,LED 支架放在夹具底下,在显微镜下用针将LED 芯片一个一个刺到相应的位置上。手工刺片和自动装架相比有一个好处,便于随时更换不同的芯片,适用于需要安装多种芯片的产品。
6.自动装架
自动装架其实是结合了沾胶(点胶)和安装芯片两大步骤,先在LED 支架上点上银胶(绝缘胶),然后用真空吸嘴将LED 芯片吸起移动位置,再安置在相应的支架位置上。自动装架在工艺上主要要熟悉设备操作编程,同时对设备的沾胶及安装精度进行调整。在吸嘴的选用上尽量选用胶木吸嘴,防止对LED 芯片表面的损伤,特别是兰、绿色芯片必须用胶木的。因为钢嘴会划伤芯片表面的电流扩散层。
7.烧结
烧结的目的是使银胶固化,烧结要求对温度进行监控,防止批次性不良。银胶烧结的温度一般控制在 150℃,烧结时间 2 小时。根据实际情况可以调整到 170℃,1 小时。绝 缘胶一般 150℃,1 小时。银胶烧结烘箱的必须按工艺要求隔 2 小时(或 1 小时)打开更换烧结的产 品,中间不得随意打开。烧结烘箱不得再其他用途,防止污染。8.压焊 压焊的目的将电极引到 LED 芯片上,完成产品内外引线的连接工作。LED 的压焊工艺有金丝球焊和铝丝压焊两种。9.点胶封装 LED 的封装主要有点胶、灌封、模压三种。基本上工艺控制的难点是气泡、多缺料、黑点。设计 上主要是对材料的选型,选用结合良好的胶水和支架。(一般的 LED 无法通过气密性试验)TOP-LED 和 Side-LED 适用点胶封装。手动点胶封装对操作水平要求很高(特别是白光 LED),主要难点是对点 胶量的控制,因为胶水在使用过程中会变稠。白光 LED 的点胶还存在荧光粉沉淀导致出光色差的问题。10.灌胶封装 Lamp-LED 的封装采用灌封的形式。灌封的过程是先在 LED 成型模腔内注入胶水,然后插入压焊 好的 LED 支架,放入烘箱让胶水固化后,将 LED 从模腔中脱出即成型。11.模压封装 将压焊好的 LED 支架放入模具中,将上下两副模具用液压机合模并抽真空,将固态环氧放入注胶 道的入口加热用液压顶杆压入模具胶道中,环氧顺着胶道进入各个 LED 成型槽中并固化。12.固化与后固化 固化是指封装胶水的固化。13.后固化 后固化是为了让胶水充分固化,同时对 LED 进行热老化。后固化对于提高胶水与支架(PCB)的粘接 强度非常重要。14.切筋和划片
由于 LED 在生产中是连在一起的(不是单个)Lamp 封装 LED 采用切筋切断 LED 支架的连筋。,SMD-LED 则是在一片 PCB 板上,需要划片机来完成分离工作。15.测试 测试 LED 的光电参数、检验外形尺寸,同时根据客户要求对 LED 产品进行分选。16.包装 将成品进行计数包装。超高亮 LED 需要防静电包装。