第一篇:《二次函数的应用》教学反思
《二次函数的应用》教学反思
《二次函数的应用教学反思》教学反思
二次函数的应用是在学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。
由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
不足之处:《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。
教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。
第二篇:二次函数教学反思
二次函数教学反思
二次函数是初中阶段研究重要的函数,在历年来的中考中题中都占有较大的分值。二次函数不仅和学生以前学过的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想具有重要作用。而二次函数的概念是以后学习二次函数的基础,在整个教材体系中起着承上启下的作用。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导” 出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax²+bx+c(a,b,c是常数,a≠ 0)。最后,通过“一题多练”巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处有以下几点。一是在教学设计上“步步为营”、学生的思维能力“层层提高”。在教学设计上,根据内容的发展,我合理设计了具有针对性的问题,借助学生已有的知识背景展开教学,同时,在解决“老”问题的过程中巧妙地“埋设”新问题,环环相扣、引人入胜,充分激发学生的求知欲、调动学生学习的主动性。
二是在总结中不仅注重对知识的梳理和巩固,而且注重提炼出让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。
三是学生的能力得到发展。常言道:尺有所短、寸有所长。不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到“吃不饱”,久而久之就会失去主动思考、主动探究的兴趣。在本节课的最后,我补充的练习题,对这部分学生开阔视野、提高探究能力,都很有好处。
本节课的不足是,一是细节上还有待完善,比如在二次函数的表示上,强调按自变量的降幂排列进行整理还不够突出;再如,课堂放得很开,但有时在该收回的时候收得不够,等等。在今后的教学中,我会特别注意这些方面的问题。
九年级数学
杨晓珍
第三篇:二次函数教学反思
二次函数单元教学反思
第二十六章《二次函数》是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
下面是我通过本单元的的教学后的的几点反思: “二次函数概念”教学反思
关于“二次函数概念”教后做如下反思:我的成功之处是:教学时,通过实例引入二次函数的概念, 让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。
不足之处表现在:少数学生不能正确判定一个函数是否是二次函数。“二次函数的图像及性质”教学反思
关于“二次函数的图象和性质”教后做如下反思:我的成功之处是:在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。
通过引导学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生观察图像自主探讨当a>0时函数y=ax2的性质。当a<0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。通过观察自己画出的两个图象,它们代表函数y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。绝大多数学生通过观察图像理解并掌握了y=ax2图像的性质,紧接着,我引导学生通过坐标平移作出y=ax2+c、y=a(x-h)
2、y=a(x-h)2+c 的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质。达到了学习目标中的要求。
不足之处表现在:
1、课堂上讲的太多。让学生自主观察总结的机会少,学生还是被动的接受。
2、学生作图能力差。简单的列表、描点、连线。学生做起来就比较困难。作图中单位长度不准确,描点不正确,连线时不会用光滑的曲线,而是画出很难看的图形。
3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,没能培养学生的创新能力。
4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。
“求二次函数解析式”教学反思
关于“求二次函数解析式”教后做如下反思:我的成功之处是:教学中,我设计从求一次函数的解析式入手,引出求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。接着我改变条件,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快球出了顶点式的二次函数解析式。接下来,我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式,学生很快就学会了用交点式求二次函数解析式的方法。在整个教学中,教学内容、教学环节、教学方法的设计都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,调动学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。
不足之处表现在:
1、学生对新学知识理解了,但一部分学生不会解三元一次方程组。
2、少数学生对求顶点式和交点式的二次函数解析式有困难。
3、由于对学生估计不足,引导学生探究三种不同形式的函数解析式的方法用时较多,导致教学时间紧张。
“二次函数应用题”教学反思
关于“二次函数应用题”教后做如下反思:我的成功之处是:一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题,对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导学生建立平面直角坐标系,分析解决问题的方法。学生从直角坐标系中发现了抛物线上的点,我进一步引导学生找抛物线的顶点坐标,在老师的引导下,学生设出了二次函数的解析式,并将找到的已知点代入,求出了二次函数的解析式。接着我引导学生就同一问题建立不同的直角坐标系,再去找抛物线上的已知点,这是学生找到了已知点,就能判断用哪种解析式,试着求出函数的解析式。接下来,再出示例题,引导学生分析解答。学生从上面的解题过程中得到了启示,学到了解题方法。教学中,我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。所以教学方法的设计较完美,并且教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以较好的达到教学目标。
不足之处表现在:
1、少数学生对于建立平面直角坐标系有困难。不会根据抛物线正确建立坐标系
2、少数学生不会分析题意,不能正确列式求出二次函数的解析式
3、学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。
4、少数学生不会将二次函数的一般式配方转化为顶点式;不会利用顶点式求函数的最大值或最小值。
总之,本单元的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。
第四篇:二次函数教学反思
二次函数教学反思15篇
二次函数教学反思1
新人教版九年级数学第二十二章《二次函数》是学生学习了正比例函数、一次函数进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数单元教学反思。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
下面是我通过本单元对《二次函数》教学内容的分类后的几点反思:
“二次函数概念”教学反思
关于“二次函数概念”教学中我的成功之处是:教学时,通过实例引入二次函数的概念, 让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。
不足之处表现在:少数学生不能从函数本身的实际意义去正确判定一个函数是否是二次函数。
“二次函数的图像及性质”教学反思
关于“二次函数的图象和性质”在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。通过引导学生在坐标纸上画出二次函数y=ax的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。在性质的探究中我让学生观察图像自主探讨当a>0时函数y=ax的性质。当a<0时函数y=ax的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。通过观察自己画出的两个图象,它们代表函数y=ax的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。绝大多数学生通过观察图像理解并掌握了y=ax图像的性质,紧接着,我用了三节课时间引导学生通过坐标平移探究了y=ax+k、y=a(x-h)、y=a(x-h)+k的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质,教学反思《二次函数单元教学反思》。达到了学习目标中的要求。
不足之处表现在:
1.课堂上时间安排欠合理。学生说的多,动手不够
2. 学生作图速度慢。简单的列表、描点、连线。学生做起来就比较困难,作图中单位长度不准确,描点不准确,图象中的平滑曲线不够平滑
3.合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,学生的创新能力的培养不够。
4.少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。
“求二次函数解析式”教学反思
关于“求二次函数解析式”教学中,我通过创设有关待定系数法的问题情境出发,导入求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。然后我通过变式,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快理解了用顶点式求的二次函数解析式的方法。再通过变式我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式求二次函数解析式的方法。在整个教学中,环环相扣,充分调动了学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。
不足之处表现在:
1.一般式的应用中学生的难度在于解三元一次方程组上。
2.学生对求顶点式和交点式的二次函数解析式方法欠灵活
3.变式训练的习题太少导致学生掌握知识不够牢固
“实际问题与二次函数”教学反思
关于“实际问题与二次函数”教学中我通过引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式的表达形式,以及二次函数的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题1,即最大面积问题。教材中的三个探究我分别安排了三节课进行分类教学。我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。教学每一类实际问题,我都搜集了大量的实例,所以教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以这部分内容学生掌握的比较好。
不足之处表现在:
1.“探究1”中少数学生对于用配方法或公式法求函数的极值容易出错
2.少数学生不会分析题意,不能正确列式求出二次函数的解析式
3.“探究2”少数学生对最大利润问题中的涨价和定价理解有偏差
4.“探究3”少数学生不会灵活建立直角坐标系把实际问题转化为数学问题
以上就是我在教学本单元的感受、体会。因为二次函数知识是函数中的重点也是中考的重点考点,所以针对教学中的不足和学生暴露出的问题,在期末复习中还要制定详实有效的复习计划,通过精选习题再进行最后的强化训练。
二次函数教学反思2
今天讲授二次函数y=ax2+bx+c的图像与性质,首先提供了一系列的情境,使学生体会建立二次函数的重要性,然后以例题的形式通过配方研究具体的一个二次函数y=ax2+bx+c的对称轴和顶点坐标,从而得出它的性质和图象,并进行针对性练习。再由特殊到一般,以例题的形式通过配方推导出二次函数y=ax2+bx+c的对称轴和顶点坐标的公式,再进行针对性练习.
在完成上述的教学内容后,结合本班级的学生实际,我感觉对学生的学习不能只停留在给定一个二次函数如何用配方法或者是用公式去求这个函数的顶点坐标和对称轴。应该可以对学生提出更高的要求,于是我通过设置游戏进行拔高练习,最后通过设置几个小问题,对整堂课进行总结。
一一审视这堂课的教学全过程,我带着遗憾带着疲惫,当然更多的是沉甸甸的收获。教学有法,但无定法,贵在得法。教学的最终目的是为了实现教学目标,在所有教学内容的确定,教学情景的创设及课堂教学结构的安排,通过上课我认为还需更加注重实效,注重我们学生的实际情况,更重要的是注重学生个体差异方面做得还很不够。比如在游戏环节中,抢答的总是好学生,作为差生,可能连思考的机会都失去了。
教学应该是一个连续的,环环相扣的动态过程,在这节课中,我个人认为在这个内容的连接上,还不够自然。
新课标指出,数学应源于生活并用于生活,但在这方面我觉得在这堂课中体现得还不够,也许是受到这个教学内容的束缚,因为这是二次函数图象与性质是二次函数的起步阶段,所以很难与生活实际联系。但这也是一个很大的遗憾,还有就是在教学基本功上,我也存在很大不足,特别是在板书方面,不够工整,这些都需在以后的教学中,不断改进的。
记得有人说过:“教学永远是一门遗憾的艺术。”而教学艺术水平是在不断解决不足和遗憾的过程中得到提升,我相信只有我们的真挚追求,不懈努力,教学业务水平一定会不断提高。
二次函数教学反思3
在“一次函数”一章时已经了解了一次函数与一元一次方程,一元一次不等式(组),二元一次方程组的联系。本章专门设一节,通过探讨二次函数与一元二次方程的关系,再次展示函数与方程的联系。一方面可以深化我们对一元二次方程的认识,另一方面又可以运用一元二次方程解决二次函数的有关问题。
利用二次函数图像求一元二次方程的实数根。
本节通过画图,看图,分析图,列表对比,抽象概括进行教学,让每个学生动手,动口,动脑,积极参与,提高教学效率和教学质量(此文来自优秀),使学生进一步理解数形结合和从特殊到一般的思想方法。不足之处是:有少部分学生对函数与方程之间的关系有点费解。通过了解发现:这部分同学对一次函数和方程的关系也不熟悉,也就是数学基础不扎实,还有就是数形结合能力差,也就是不能建立数与形之间的联系。他们为什么不能很好的做到这些呢?我想,这正是本节课的要点所在。在今后的教学中,一定关注这一点,解决之。
二次函数教学反思4
这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。依我看,这节课的重点该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上。一上完这节课后就有所感触:
1、二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。
2、教学要重视概念的形成和建构,在概念的学习过程中,从丰富的现实背景和学生感兴趣的问题出发,通过学生之间的合作与交流的探究性活动,引导分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。
3、课堂教学要求老师除了深入备好课外,还要懂得根据学生反馈来适时变通,组织学生讨论时该放则放,该收则收,合理使用好课堂45分钟,尽可能把课堂还给学生。
我觉得在教学中,只光热情还不够,没有积极调动学生的学习热情,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,激发学生的学习热情,同时要加强学生自学能力的培养,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
二次函数教学反思5
对于二次函数总体复习的时间定为三个课时。1、基本知识与性质,2、待定系数法,3、应用。
一、本章主要内容有:
1、概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数;可以化掉二次项的函数;以及二次项系数可能为零的函数。
2、待定系数法求解析式。设解析式有三种形式,一般形式,双根式,顶点式。
另外还有根据实际问题求解析式。特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。
3、图文信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。
4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是“上加下减,左加右减”。
5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和-1时的函数值来确定。
二、成功之处:
(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点P(2,3),求这个二次函数的表达式中,设计了两个问题:
1、通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?
2、在不改变已知条件的前提下,你能选用“一般式”吗?
设计意图是:
1、由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。
2、挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点P(2,3)关于对称轴x=-1对称点P’的坐标是(-4,3);(2)用点A、点P和对称轴;(3)用点A、点P和顶点的纵坐标等。
3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。
(二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。
三、遗憾之处:在课题引入后,由于对学生估计不足,复习中学生还习惯有老师引着做,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。
二次函数教学反思6
《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数形结合的方法解决问题,这是本节课的难点。一方面学生要能够根据二次函数y=ax2+bx+c(a≠0)图像得到一元二次方程ax2+bx+c=0(a≠0)的根,即基本的读图能力;另一方面要能够根据一元二次方程ax2+bx+c=0(a≠0)来判断二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数,即会依据条件画图的能力。
这两方面对于函数知识的学习都尤其重要,所以我将此作为本节课的重要任务,渗透在探究二次函数与一元二次方程的关系的过程中,并通过训练使学生进一步理解数形结合的思想,掌握运用的方法。作为新授课,尤其要注重知识生成过程的设计。
数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。因此,本节课的教学中,我借助学生已有的判断一元二次方程ax2+bx+c=0根的情况(a≠0)和二次函数y=ax2+bx+c(a≠0)图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。由“图”过渡到“数”,直观形象,学生易于理解。通过学生自己的思维方式进行自主探索、交流,去发现二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数和一元二次方程ax2+bx+c=0(a≠0)的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的主人的教育教学理念。知识生成过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。这就需要认真研读教材,设计合理有效的问题或是问题串,帮助学生“再创造”。
问题的设计要注意前后的呼应和连贯。比如本节课的知识生成是:直接借助根的判别式b2-4ac,来判断二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的情况。这就需要在讲解图象与x轴交点的横坐标即是对应一元二次方程的根后,设计以下的问题有效过渡:(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有几种情况?(2)一元二次方程ax2+bx+c=0(a≠0)的根有几种情况,借助什么方法来判断呢?这就为后续的归纳做了有效的铺垫,使得新知的生成水到渠成。本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破。
看过九年级数学二次函数与一元二次方程教学反思的还看了:
1.九年级数学二次函数与一元二次方程同步练习题
2.九年级数学教学工作反思
3.九年级数学实际问题与二次函数同步练习题
4.一元二次方程初三数学单元试题附答案详解
二次函数教学反思7
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。《人教版九年级数学下册。
二次函数教学反思8
这节课我是采用先让学生按照学案的提示,自主预习课本,受到课本所给出的分析过程的思维限制,很容易把问题解决了,但没有放手让学生从不同角度去尝试建立坐标系,体会各种情况下所建立的坐标系是否有利于点的表示,没有激发学生学习的热情,没有给予学生以启迪。用二次函数知识解决实际问题是本章学习的一大难点,遇到实际问题学生往往无从下手,学生在解题过程中遇到一个新的问题该如何去联想?联想什么?怎样联想?这与课堂教学过程中老师解题方法的讲授至关重要,老师在课堂教学过程中应如何引导学生判断、分析、归类。为此我在另一个班采取了以下的教学过程,突出以学生为主体,教师只是引导学生经历分析——观察——抽象——概括——发现新知——解决新知的过程。为了让学生发现方法、领悟方法、运用方法,同时我特意给学生留有一定的思考和交流讨论的时间。
通过两节课的对比,我发现数学的自主学习,不能千遍一律,应针对具体内容采取灵活多变的方法。例如一些简单的计算的课堂可以先让学生自主预习,独立进行探究,完成课本上的填空,发现规律;然后小组共同归纳,总结规律,应用规律学习例题,解决问题。一些需要思维的课堂活需要探讨的课堂,我认为应该利用学案,不让学生看课本,教师引导学生进行探究活动,让学生自己发现关系、规律。总之数学的自主学习课应根据课程内容的不同,采取不同的方法,才会收到较好的效果。
二次函数教学反思9
1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图象时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图象和性质的影响,在学生画完三个图象后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图象,培养了学生动手动脑的习惯和综合分析归纳的能力。
2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图象后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。
3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。
4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。
不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。
二次函数教学反思10
昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的方法在学生预习自学的基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。
总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。
二次函数教学反思11
教学目标的设定:
一、 教学知识点:
(1)、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
(2)、 理解二次函数与 x 轴交点的个数与一元二次方程的.根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.
(3)、 理解一元二次方程的根就是二次函数与y =h 交点的横坐标.
二、 能力训练要求:
(1)、经历探索二次函数与一元二次方程的关系的过程,培养学生的探 索能力和创新精神。
(2)、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想.
(3)、通过学生共同观察和讨论,培养合作交流意识.
三、 情感与价值观要求
(1)、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
(2)、 具有初步的创新精神和实践能力.
教学重点:(1).体会方程与函数之间的联系.
(2).理解何 时方程有两个不等的实根、两个相等的实根和没有实根.
(3).理解一元二次方程的根就是二次函数与y =h 交点的横坐标.
教学难点(1)、探索方程与函数之间的联系的过程.
(2)、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系. 解决重难点的方法1、 设问题情境,引入新课
我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?
它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转
化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索这个问题.
二次函数教学反思12
二次函数的图像是教学的重点,也是教学的难点。学会并理解了函数的图像,可以说就掌握了函数的性质。如何进行函数图像的教学呢?
1、学习图像之前,让学生正确画平面直角坐标系,准备不同颜色的彩笔。
2、每节课基本都是学生自己画图、比较、讨论、总结。本节画出的图像比较,和上节学习的图像比较,和小组其他同学比较,看形状、看开口、看对称轴、看顶点有什么相同点和不同的地方,尽可能自己总结函数的图像。
3、小组展示成果,其他小组听、评和补充。总结出顶点形式的图像性质。
4、画出函数的图像,根据图像确定ahk的数值。
5、注意二次函数的对称性,步骤是列表、描点、连线。取值时从对称轴开始取,注意左右对称取值。
二次函数教学反思13
二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处是:
教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。
二次函数教学反思14
根据市骨干教师交流学习的安排,我在九年四班上了《2.1二次函数所描述的关系》这节课。这节课我首先让学生思考了列两个函数关系式的生活实际问题,然后又对函数的定义和分类进行了巩固。接着在学生探究两个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。
课后,组内的老师认真地评析了本节课。结合组内老师的评课,我自己也进行了认真反思。
成功之处:
1、对二次函数的学习,本节课通过丰富的现实背景,通过学生感兴趣的问题,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动(经历数学化的过程),通过学生之间的合作与交流,通过分析实际问题,如探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系、
2、设计大量的可以表示为二次函数、利用所学的二次函数知识可以解决的实际问题,发展学生的数学应用能力;利用“想一想”,提出进一步的最大产量的问题;用统计的方法得到关于最大产量的一种猜想,问题的最后让学生初步感受二次函数能解决最优化的实际问题。在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数;在以上两例的基础上,给出二次函数的定义,并举出以前所见到的一些二次函数关系式,为新知的理解做好了铺垫。
3、在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。
4、本节课我注重训练学生书写的规范性,让学生养成良好的答题规范习惯。
不足之处:
1、在分组教学时,对用统计的方法得到关于最大产量的一种猜想,课堂上有一部分学生没有充分参加计算,此处给学生的时间少一些。
2、在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数的过程中,没有让学生有更多的交流和互相评价,有些学生对列函数关系式不是完全理解;
总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
二次函数教学反思15
求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。下面谈谈本人在教学和复习求函数解析式的具体做法:
一、使学生掌握待定系数法。
待定系数法是初中数学的一种重要解题方法,对于每位学生都必须掌握,并能熟练应用此法来求函数的解析式。待定系数法的基本步骤是:假设所求函数的解析式;把已知的量代入函数关系式,联列方程(组);求出方程(组)的解。
二、让学生明确二次函数两种关系式。
(1)、二次函数一般关系式:y=ax2+bx+c(a≠0)
(2)二次函数顶点式:y=a(x—h)2+k
对于以上这两种函数,要求学生理解关系式,及其性质和图象。
y=ax2+bx+c(a≠0)这是一个二元二次方程,若要求a、b、c,必须知道三个不同的解,然后联立方程组,从而求出a、b、c的值。
三、本节课自己的感想
曾听过这样的一个比喻,说“教师就象用以识别地图的图例”。教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。
第五篇:二次函数教学反思
二次函数最值的应用教学反思
本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:
1.精心设计问题,引发学生思考建立数模 在《二次函数的应用》的教学过程中,复习旧知后,主要安排了一道例1,以此题为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。设计小问题,铺设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模解决问题。
2.数学来源于生活并运用于生活 例题2有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。
3、不足之处 在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。