第一篇:高中数学教学常规
高中数学教学常规
一、备课
1、首先脑中要有“纲”,手中要有“本”。教学大纲、考试大纲和教材是教学的依据,备课的首要任务就是钻研大纲和教材。
(1)确定教学目的和要求。
(2)明确教材的系统和主次。
(3)突出重点,抓住关键。
(4)研究和解决难点。
2、做到心中有“数”、目中有人。
学生是教学的对象,教学必须结合学生实际,课前不了解学生情况,就难保证课堂教学有好的效果。
3、备好作业。
习题作业要由浅入深,逐步提高要求,要包括适当数量的复习题和综合题。习题的分量和难易要适当,避免造成学生负担过重。
4、编写好教案。
教学过程千差万别,没有一个统一的教案模式,但每一教案必须包括下列两项基本内容。
(1)明确的目标要求。
(2)合理的教学策略、结构。(见教案的书写要求)
二、上课
教师在课堂教学中处于主导地位,课堂教学的成败决定于教师的工作质量。
1、注重课堂教学中的几个环节。
(1)重视课题引入,情景设置,巧妙设问。
(2)授课方式、分析问题、解决问题的途径,启发式、参与式贯彻始终。
(3)善于小结,对学过的知识进行归纳整理。
(4)抓好课堂反馈。
2、认真上好四种主要类型的课。
(1)新授课:强调三个环节,复习一讲授一巩固。
(2)练习课:复习一练习一小结一布置作业。
(3)复习课:复习提纲一重点讲述一总结一布置作业。毕业班常用的复习课„专题讲座。
(4)讲评课:对作业、小测验、考试结果进行分析,做到有练必批、有批必评、有评必补。分析错误的原因和改正的方法,介绍讨论最优解法,最终解决其问题。
3、注重教师课堂教学基本功。
(1)语言和板书。语言方面要求做到用词准确,叙述精练,前后连贯,逻辑性强,语音、语调有起伏,针对学生年龄特点追求丰富和生动形象的语汇,激发学生兴趣。板书要求字迹工整,条理分明,绘图正确,美观大方,布局合理,主次分明,色彩和谐,使板书真正起到便于理解教学内容,促使学生思考记忆的作用。
(2)教科书的作用。上课既要以本为“本”,又不能“照本宣科”,既立足于教材,又不局限于教材。
(3)教具的使用。三角尺、圆规、模型有利于教学的直观,投影仪、多媒体等电教手段能有助于理解和掌握平几和立几等知识,帮助提高教学效益。
(4)通过个性化的形象、教态、语言、情感、人格来影响学生的个性,做到言传身教、为人师表。
三、作业与批改
1、学生作业:
(1)课堂作业,用少量时间课内完成,当堂检查,即时反馈。
(2)课后作业,要求强调作业格式,书写工整、清晰、规范,代数和几何有不同的要求。
2、教师批改提倡:(1)全批全改。
(2)精批细改。
(3)原则性问题有记录。
(4)对差生要适时当面批改。
四、观摩教学评课标准
1、教学目的是否明确,要求是否适当。
2、教学内容的组织处理是否恰当,教学原则、方法的运用是否合理,特别是思想性和科学性的贯彻是否得当。
3、是否重视了双基落实。
4、是否突出了重点,抓住了关键,解决了难点。
5、启发式、参与式教授法运用如何,学生是否参与教学,效果怎样。
第二篇:高中数学教学论文
浅谈如何提高高中数学课堂效率
高中数学较初中数学,所涉及的知识点多,面广,较抽象,学生难以理解和全面掌握,而新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课堂的学习效率,寻求正确的学习方法从而提高课堂效率。
一、教学内容的设计由易到难、循序渐进
学习任何东西都要遵循从易到难的顺序,对于高难度的数来来说,更应该如此,只有打好基础,以后才能更好地学习后面有难度的知识。由易到难的教学方法不仅有利于学生以后的学习,还有利于培养他们的自信心,培养好学心理。所以我认为,一定要注重基础知识的积累,不能因为基础知识简单而忽视对基础的学习与巩固,越是简单易懂的基础越要重视,每天都要督促学生温习一遍基础知识,把基础打扎实。例如,二、情景创设的趣味性
常言道:兴趣是最好的老师。学生只有对学习本身感兴趣,思维才能处于最活跃状态,才能进行主动的学习,这样的教学才能取得事半功倍的效果。高中的数学知识本身就繁多抽象,如果只是以单一枯燥的方式提出问题,或者直接进行新知识的讲授,学生会对学习数学心生厌倦,而降低学习热情与动力,这样的教学就很难取得成功。因此,教师在进行教学前要充分考虑到学生的兴趣爱好,设计富有趣味性与新颖性情境,更好地吸引学生的注意力,使学生在愉悦的氛围中展开主动思考与积极思维,这样的教学自然能够取得事半功倍的效果。因此,在情景创设时我们要尽量避免过于直白的提问,可以运用故事、游戏、操作多媒体等来创设丰富而有趣的问题情境,以达到吸引学生注意力、激发学生学习兴趣的目的。如在学习
学习“等差数列求和公式”时,我们可以用数学家高斯在小学时巧解从1到100的自然数相加的结果的故事来引发学生的好奇心,激发学生求知欲。
三、利用多媒体技术,提高数学教学的有效性
数学具有很强的抽象性,而学生的认知规律是由形象到抽象再到形象的过程,这决定了在教学中我们要将抽象深奥的数学知识寓于直观的实物与模型中,让学生从中获取大量感性材料,通过独立思考与积极思维进行信息的提取与分析,进而抽象出数学模型,达到对抽象知识的深刻理解,由此上升为理性认知。在以往的教学中所能用到的教具有限,而且这些教具并不能进行动态呈现,使得以往的数学教学抽象枯燥,学生并没有达到对基本概念与定理的真正理解,只是在机械地记忆与运用,只知其然而不知其所以然。而多媒体技术具有很强的模拟演示功能,可以收集丰富的信息来呈现抽象的数学知识,以图文声像的形式动态而直观地将概念与定理的形成过程展现出来,多媒体进行教学,声形并茂地展示了数学知识。让学生从中获取大量感性认知,从而总结出内在规律,进而达到真正的理解。如在学习“椭圆的概念”这一内容时,我们可以利用多媒体来进行动态演示,固定两点,使绳子的长度大于、等于、小于固定点间的距离,来分别演示所形成的轨迹,带给学生初步感知。让学生认识到当绳子长度大于固定点的距离时形成椭圆。然后再通过改变两定点间的距离来演示轨迹的形成。这样的教学将整个过程动态地展现出来,再加上教师的启发与指导,通过学生的积极思考,学生便可以认识到各系数变化对椭圆形状的影响。这样的教学重视结果,更重视过程,真实地再现了知识形成的全过程,学生对于知识的学习不再只是机械地记忆结果,而是深入过程,亲历知识形成的全过程,是对知识的真正理解与掌握,更加利于学生创造性地加以运用;更为重要的是可以增强学生的探究意识,培养学生创新能力。
四、调动学生的积极性,建立合作探究的学习模式
教学要充分体现以学生为主题,以学会学习方法提高数学能力为目标。教师在进行知识的学习和探究的时候,要多鼓励学生进行合作学习和思考。让学生在课堂上动起来,主动地去探究知识和感受数学知识学习的乐趣。给学生设置问题情境,让学生以小组的形式思考讨论、探究结果;或是让学生动手制作一些教具,让学生在动手中体会数学知识的形成„„例如在学习椭圆的时候,教师就可以让学生自己准备一个绳子和两个图钉,在课堂上让学生用图钉固定绳子的两端,但不要把绳子拉紧,之后让学生用笔去撑起这个绳子,并且沿着绳子去画所呈现的图像,学生会看到一个“椭圆”,呈现在了自己的本上。通过学生的动手增加了学生的学习兴趣,启发了学生的求知欲和好奇心,教师再引入椭圆的概念以及相关知识,学习效果会事半功倍。例如在学习了《二次函数》后,通过做题,教师可以让学生共同去总结和归纳二次函数的综合问题的做题规律是什么?一个学生的认识可能存在不全的时候,但是在学生共同的探究和总结中,学生就会总结出:二次函数的综合问题多涉及二次函数、二次方程、二次不等式的关系问题,处理时一般是相互转化。一般规律是:在研究一元二次方程根的分布问题时,常借助于二次函数的图像数形结合来解,一般从开口方向;对称轴位置;判别式;端点函数值符号四个方面分析。在研究一元二次不等式的有关问题时,一般需借助于二次函数的图像、性质求解。通过学生的合作,学生们把问题分析的非常全面和透彻,这正是集体智慧的结晶。所以,在教学过程中,教师要充分调动学生的积极性,让学生自主进行合作探究,促进学生的共同提高。
第三篇:高中数学教学论文
高中数学复习应注重的两种方法
甘肃省合水县第一中学
745400
刘克江
一、系统复习高三教材及总结数学思想与方法
系统复习教材。教师归纳知识体系是单元复习的重点。要提高复习效果,掌握复习教材的方法。对教材要有正确认识,万丈高楼平地起,学会把教材“由厚变薄”,强调“给知识演电影”,建立学科知识体系,漫无边际地看教材意义不大,复习教材的方法是“看目录—想内容—去翻书—作练习”,尤其是教材中“总复习参考题”的内容,经常有高考题的基础题,是它们的引伸、变形、拓宽;挖掘典型例题、练习题,把握学科思想方法;学习“由厚变薄”到“由薄变厚”是质的飞跃。
教材复习的两个层次要求:首先是“熟练教材,适当拓宽”。具体包括教材中概念、定理、法则、公式等知识系统的把握,灵活运用;掌握知识的来龙去脉,能够自己推导公式。掌握教材体系,是复习教材的基本要求,是“继承”。同时对曾经做过的练习题、课堂学习笔记、错题本等内容进行整理复习,系统掌握,进行知识拓宽。
其次是“构建网络,形成体系”。是在上一步的基础上,按照知识结构、学习系统、解题规律等方面对教材内容进行科学整合,这是建立知识体系的过程,是一种较高要求,是“发展”,体现创新精神,同时,又是归纳、概括能力的重要标志。
系统总结数学思维与方法。考查数学思想方法是高考中考查能力的要求。高中阶段数学思想主要包括函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想、参数思想等。数学方法主要包括换元法、消元法、待定系数法、配方法、判别式法、反证法、比较法、综合法、分析法、放缩法、数学归纳法等。各个单元的特殊的思想与方法,要在复习中认真总结。例如立体部分中的割补思想、等积法、平面展开图法等;函数部分中集合思想、对称思想、图象法、反函数法、单调性法、变换法、运动法、导数法等;三角函数部分中切割化弦的思想、化积思想、转化思想、公式活用、公式逆用、降幂思想、变角、变结构、变名称等。公式多,选择多,歧路多,要学会选择,主要体现化归的思路;数列部分中迭加法、叠代法、递推法、错位相减法、演绎法、归纳法、构造法、极限法、数学归纳法等;解析几何部分中运动思想观点、对称观点、代点法、定义法、点差法、参数法、交轨法等。
我们可以肯定的是:“习题”无限,而“学科思想”有限,“学科方法”有限,“知识点”有限,“题型”有限。强调“以题带法,以法解题,解一个题,即代表一类题”,这是提高学习效率,轻负担的必由之路!
二、备考要有“针对性”注意各类题型的方法总结 加强各种题型宏观指导:判断题注意概念(尤其是内涵与外延);选择题注意方法;填空题注意技巧;解答题注意过程。
1.选择题的常用解法有:计算法、排除法、赋值法、验证法、图象法、分析法、极限法、估 算法、特例法(包括特殊点、特殊值、特殊图形、特殊方程、特殊模型等),此外,分析法、观察法、反证法、猜测法等,都可用来解选择题,充分利用题目的信息,综合运用,很多选 择题的解决不是单一的,因而可择最佳解法。
2.填空题的解法:填空题题小,跨度大,覆盖面广,形式灵活,可以有目的、和谐的综合一些问题,突出训练学生准确、严谨、全面、灵活运用知识的能力和基本运算能力,除直接推理计算外,还要讲究一些解题策略技巧。如:整体代入法、图象法、分类法、顺推巧算、建立模型法、特例法,直接法等等,根据题的需要,选准思维策略,灵活选择方法,推演步步为营,迅速准确无误,最终提高填空题的速度和准确率。
3.完整的“解题训练”:完整的解题训练包括审题关、步骤关、结果关、反思关。我们学生的普遍情况是同学们重视结果,忽视审题,欠缺步骤,不具备反思。
坚持审题三读,具体包括,泛读,明确是几个条件,求什么?细读,关键要把握关键字、词,数量关系、单位等;精读,就是要深入思考,注意挖掘隐含条件。
书面表达要求:要坚持“字迹工整、格式规范、推证合理、详略得当”。字迹工整,是网上阅卷要求,强调字迹要求写工整,包括字间距、行距适中,笔画交代清楚,用黑色钢笔书写。
格式规范包括文字说明的规范化,计算结果的规范化,运算过程的规范化,作图的规范化,表达书写中符号语言表达的规范化等。
推证合理就是要先有“因为”,后有“所以”,不能没有“因为”,一直“所以”,造成推理论证的逻辑错误。详略得当就是要求重点内容、难点突破要详写,其他内容略写。
4.数学应用题:应用题主要是考察学生解决实际问题的能力,是综合思维能力的反映。要想解好应用题,最好要过以下“五关”:心理关,相信自己能够通过数学知识的系统学习,解决数学应用题;事理关,就是数学问题要符合实际,学生本人在具体思考解决过程中要符合生活实际,不能异想天开;文理关,就是要能够读懂问题,包括关键的字、词的理解;数量关,就是在具体的处理中,分清数学应用题的类型,按照各个单元的知识,建立数学的模型,从而解决问题。情理关,数学问题的结果要符合实际。
应用题要做到审题在先,坚持2至3遍,书面表达过程中坚持“设—列—解(化简)—答”的过程。“设”包括引进的各种量的含义、单位等,“列”就是建立数学模型的过程,“解”就是化简过程,“答”就是去伪存真的过程。
在高考复习教学中,只要做到能够贯彻以上两种方法。同时,加强对学生的练习要求,一定能提高学生的解题能力。
第四篇:高中数学教学心得
尊敬的各位领导、老师:
大家好!今天我能有机会在这里发言,我感到十分荣幸。首先,我要感谢学校,是都梁培育了我,让我成长。学校给了我一个平台,让我能在这样的平台上展现自我。
其次,感谢年级的各位领导,是你们的关心与鼓励,给我莫大的支持,也给我最大的动力,让我能静心工作,实现梦想。
再次,感谢很多身边的同事,是这些同事给我很多无私的帮助,在教学上,给我很多经验,让我能够快速的成长;我所在的科组是一个优秀的教研组,很多老师在教学上是我学习的榜样,他们非常敬业,敢于创新,又很热心帮助指导青年教师,这非常有利于我的教学水平的提高。
作为一名年轻教师,初涉教坛,我有年轻气盛的躁动、有浅尝甘霖的欣喜、也有不眠不休的焦虑。从把教师作为一种职业,到把教师当作一种理想与事业的追求,一种挑战自我、完善自我的方式,其间的过程,苦乐自知。是学生们清纯的眼眸给了我力量,是领导关切的话语给了我能量,是同事们的微笑给了我鼓励,是家长的信任给了我信心,让我勇敢的去战胜一切困难,去体验教育生命的真谛。我在日常教学实践中,深刻地感受到:只有不断学习,努力提高自己的业务水平和自身素质,才能做一名让学生喜欢和尊敬的老师!为此,在教学工作中, 我时常告诫自己,时刻不能放松自己,不断深入钻研教材教法, 坚持认真地备课,精心设计教案,悉心批改作业。经常采用游戏启发、情景创设、联系引用等方法寓教于乐,尤其是分切块、自主探究的教学方法使我受益匪浅,它帮助我增强教学的感染力,激活每一节课,有效地调节学生情绪,让学生在课堂上动起来,而不是去睡觉。我还经常向有经验的教师请教,聆听他们的教学见解,学习他们的优秀教法并运用到自己的课堂上来,不断改进课堂教学,使自己的业务水平再上新台阶。我无时无刻不在努力着,脚踏实地、谦虚好学、安心工作,潜心钻研,“两袖清风心自富,满园桃李不忧贫”。只有做到脚踏实地,努力提高教学质量,努力提高业务水平,才能够真正实现自己的价值;只要勇于创新,团结协作、乐于奉献,就能够取得成就。
生命之旅如爬山,成长要过十八盘。成绩已入历史博物馆,如今我们又站在新的起跑线上。我恳切地希望各位领导和老师对我的教学工作提出批评性的指导和建议。今后我将更加努力的工作,全力做好自己的本职工作,决不辜负学校领导的期望和学生家长的希望。
最后祝各位领导万事如意!祝各位老师工作顺利、牛年大吉!谢谢大家!
林野老师
高中数学教学心得
对于刚刚进入高中的学生而言,高中数学起始教学对整个高中阶段的数学学习阶段至关重要。如果能根据起始教学的特点,教学得法,就可以提高教学质量;否则,大多数学生一进入学校,就可能对数学望而生畏,丧失信心,以至放弃数学的进一步学习。所以,搞好高中数学起始教学具有十分重要的意义。
一、培养习惯,打好基础
“基础性”除重视基础知识,基础理论和基本技能的教学,最主要的是要培养良好的学习习惯和正确的学习方法。
1.阅读和理解的习惯
高中数学教学的主要目标是进一步培养学生的逻辑思维能力,空间想象能力,数学操作技能和心智技能等。
2.练习和反思的习惯
练的习惯主要是为学生创造条件,在课外尽可能有针对性地做。而反思是重要的思维活动,它是思维活动核心和动力。反思习惯主要是靠教师在课堂上来培养。3.归纳和总结的习惯
二、减少坡度,平稳过渡
教学内容由初级中学较浅显、具体的内容一下转到高级中学较深奥、抽象的内容。如在数学阅读方面,初级中学对阅读教材的深度、难度、广度要求较低,而高级中学阶段要求了解更多的物理及其它自然学科知识。特别是初级中学普通代数及平面几何与高级中学数学教学方法有很大的差别,学生一下子难以适应。因而这个阶段的教学关键在于使初级中学和高级中学阶段的教学自然衔接和平稳过渡,使学生尽快适应高中数学教学。
三、激发兴趣,培养能力
高中阶段以学生独立思考、老师分析、指点为主。这不仅给学生带来新鲜感,甚至以自己能独立解决问题还获得了一份自豪感。激发学生的学习兴趣和求知欲要注意以下几点: 1.贴近学生生活,营造良好的课堂氛围,给每个学生提供数学思维的时间和 机会。
2.设置思维环境,进行思维式教学。教师应创设情景,让学生犹如亲临其境,进行独立思考,总之,数学教学的目的是要学生在实际使用中掌握知识能力,在思考行为中发展思维,在做题实践中提高解题能力。
3.进行成功教学。学生的学习兴趣和求知欲能否持久,与他们能否取得成功有很大的关系。
4.进行情感交流,增强学习兴趣。“感人心者莫先乎情”,5.及时反馈,不断激发学习动机。
数学教学的效果与别的学科不同,更带有“立竿见影”的性质,成功与失败的机会更多。教学不得法,一月半月下来,学生的成绩马上会拉开距离,出现严重的“两极分化”。所以,高中阶段数学的起始教学,更显得重要。
立足课本教学----高中数学新教材教学心得
培养创新精神和实践能力是目前我国教育改革,实施素质教育的重要任务之一,它要求我们在日常教学中持之以恒地认真钻研教材,合理创设问题情景,加强思维训练,并积极探索规律,改进教学方法,优化教学过程。笔者在高中数学新教材教学中,发现教师若能恰当地把握传授知识与增减能力的关系,运用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂效果。高中数学新教材的特点之一就是创设各种问题情景,降低教学的难度,使数学问题与现实紧密联系。在课本教学实践中,若能始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担又培养了学生的多种能力。
一、重视课本概念的阅读,培养学生的自学能力。
中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂外,另外一个原因是许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝地讲,满满黑板的写,使学生产生依赖性,数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容,此外,还可以发挥课本使用文字、符号的规范作用,潜移默化培养和提高学生准确说练的文字表达能力和自学能力。
重视阅读数学课本,首先要教师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,教师按课本原文逐字、逐句、逐节阅读。在阅读中,让学生反复认真思考,对书中叙述的概念、定理、定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如换成其它词语行吗?省略某某字行吗?加上某某字行吗?等等,要读出书中的要点、难点和疑点,读出字里行间所蕴含的内容,读出从课文中提炼的数学思想、观点和方法。教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误、笔误所产生的概念错误,从而使学生能准确地掌握课本知识,提高课堂效率。
为了帮助学生在课外或课内阅读,教师还可以列出读书提纲,以便使学生更快更好地理解课文,例如,高一下期平面向量中平面向量的坐标运算一节,笔者拟了以下读书提纲,让学生阅读自学:
平面向量的坐标表示是怎样进行的?
起点在原点的向量、起点不在原点的向量、相等的向量,它们在坐标系中是怎样表示的?
两向量平行时,它的坐标表示是什么?
通过学生对课文的阅读,加深了学生对课文的理解,提高了学生的自学能力。
二、挖掘课本隐含知识,培养学生的研究能力。
高中数学新教材中知识点的抽象性和隐含性比其它学科显得更为突出,数学中的知识点要通过思维和逻辑推理才能揭示,由于学生受思维和推理能力的限制,以及没有阅读数学课本的习惯,许多学生对数学教材看不懂、不理解。为了完成中学数学的教学目的和任务,首先教师要认真钻研和熟悉教材,把蕴藏在教材中那些隐含的知识点挖掘出来,帮助学生理解教材和掌握教材以培养学生的研究能力。
例如,判断函数的奇偶性的等式f(-x)=f(x),f(-x)=-f(x)就隐含着定义域关于原点对称这个前提,而学生往往忽视这个重要前提而导致失误。
又如学习数列通项公式时,就应注意(1)不是所有数列都能写出它的通项公式;(2)同一数列的通项公式不一定唯一;(3)仅由前几项可以归纳出无限多个“通项公式”;(4)对某些数列,通项公式可以用分段表示。
再比如平行向量的定义中就隐含两个零向量不是平行向量这一知识点。经过教师对教材隐含知识的挖掘,激发了学生学习数学的积极性,增加了学生探索问题、研究问题的能力。
三、剖析课本例题,培养学生解决问题的能力。
新教材中所选的例题都是很典型的,是经过精选,具有一定的代表性的,例题教学占有相当重要的地位,搞好例题教学,特别是搞好课本例题的剖析教学,不仅能加深对概念、公式、定理的理解,而且对培养学生发现问题、解决问题的能力以及抽象思维能力等方面,能发挥其独特的功效,例题的剖析主要从三个方面进行:
1、横向剖析
即剖析例题的多解性,课本上的例题一般只给出一种解法,而实际上许多例题经过认真的横向剖析,能给出多种解法。如果我们对课本例题的解法来一个拓宽,探索其多解性,就可以重现更多的知识点,使知识点形成网络。这样,一方面起到强化知识点的作用,另一方面培养了学生的求异思维和发散思维的能力。课堂上剖析例题的多解性,还可以集中学生的学习注意力,培养学生“目不旁骛”的良好学习习惯。
2、纵向剖析
即分析这个例题从已知到结论涉及哪些知识点:例题中哪些是重点、难点和疑点,例题所用的数学方法和数学思想是什么等等,甚至哪一步是解题关键,哪一步是学生容易犯错误的,事先都要有周密的考虑。我们以新教材第一册第62页例5为例:已知函数f(x)是奇函数,而且在(0,+∞)上是增函数,求证:f(x)在(-∞,0)上也是增函数。这个例题难度虽然不大,但对于刚步入高中的高一学生来说是很难理解其解法的。本例涉及的知识点有区间概念,不等式性质,函数奇偶性,函数单调性;本例重点是比较大小,难点是区间转化,疑点是变量代换;本例所用数学方法是定义法,数学思想是转化思想。本例的成败关键,也就是防止学生犯错误的是如何突破难点和疑点。因为转化思想和变量代换是高中数学的一个质的飞跃,对于高一学生是很陌生和不习惯的。如果数学教师能把课本中例题剖析得透一些,讲解得精一些,引导学生积极思维,使学生真正领悟,则必将提高学生的解题能力,使学生摆脱题海的困境。3、“变题”剖析
即改变原来例题中的某些条件或结论,使之成为一个新例题。这种新例题是由原来例题改编而来的,称之为“变题”。改编例题是一项十分严谨、细致而周密的工作,要反复推敲,字斟句酌。因此,教师如果要对课本例题进行改编,必须在备课上狠下功夫。“变题”已经成为中学数学教学中的热点,每年的“高考”试题中都有一些“似曾相识”的题目,这种“似曾相识题”实际上就是“变题”。我们广大数学教师如果也能象高考命题一样去研究“变题”,那么必将激发学生的学习情趣,培养学生的创造能力。当然,在研究“变题”时,除了上面所述的严谨性、科学性以外,还应当注意以下几点:(1)要与“主旋律”和谐一致,即要围绕教材重点、难点展开,防止脱离中心,主次不分;(2)要变化有度。即注意审时度势,适可而止,防止枯蔓过多,画蛇添足;(3)要因材而异,即根据不同程度的学生有不同的“变题”,防止任意拔高,乱加扩充。
四、归纳课本知识,培养学生的概括能力。
教师在授完教材一节或一章内容后,要根据教材的特点,有重点的对课本知识进行深入浅出地归纳,这种归纳不是概念的重复和罗列,也不同于一个单元的复习,而是一种源于课本而又高于课本的一种知识概括。“概括”需要有一定的思维能力,这种能力不同于其它思维能力,它是通过对众多事物的观察,以及对许多知识的提炼而得出的条理化、规律化的东西,经过概括的知识易记、易懂。
例如,对三角函数中sinX>cosX的判断求解时,就可通过作平面直角坐标系一、三象限的角平分线区分,在角平分线上方有sinX>cosX,在角平分线下方有sinX<cosX。又如高一学习反函数图象和性质一节,教材篇幅较长,学生较不易理解,为了突破这一难点,在讲完课后,与学生一起概括它的四条规律(1)互换性:原来函数的定义域A、值域B,分别为其反函数的定义域B和值域A;(2)对称性:函数y=f(x)与反函数y=f-1(x)的图象在同一坐标系中关于直线y=x对称;(3)奇偶性:奇函数若有反函数,则反函数仍是奇函数,偶函数不存在反函数;(4)单调性:若函数y=f(x)是A上的增(减)函数,则其反函数y=f-1(x)是B上的增(减)函数。
对适应知识的归纳、概括不仅是学习的需要,乃至在今后的工作实践中,这种概括能力也是不可缺少的,我们都要在教学中逐步培养学生这种能力,以适应社会工作的需要,这也是素质教育的一个方面。
改革课堂教学,培养学生的创新思维
对学校教育而言,数学教育是创新教育的主阵地之一,因此在数学教学中培养学生的创新思维的实验具有重要意义创新意识是创造精神的主体,是创造能力的心理基础,是素质教育中,学生必须具备的素质。做为以培养学生精确的运算能力、丰富的空间想象能力和严密的逻辑推理能力为主要任务的数学教学,如何发挥学科优势,培养学生的创新思维,自然成为我们数学教师研究的热门课题。其中改革课堂教学又是教师必经之路。
1、恰当处理“教”与“导”的关系。施教之功,贵在引导,妙在开窍。课堂教学中,教师应处于主导地位,学生应是主体地位。但在现实教学中,仍有大量的教师一讲到底,满堂灌,教师只是在为学生听懂而“教”,学生更是在拼命为听懂教师的“教”而“学”,在这种教学方法下,教师成了教学的主体,学生则是被动机械地接受,试问在这样的课堂里,何来创新?要想更好地在课堂教学中培养学生的创新思维能力,教师就必须切实转变观念,转换角色,要恰当处理“教”与“导”的关系,变“教”为“导”。教师在教学中的主要任务不是“教”,而是“导”,是指导学生“学”,引导学生“学会”到“会学”。尊重学生的主体地位,变“教”为“导”,“导”其开窍,也只有这样才有利于学生创新思维能力的培养。
2、创造宽松和谐的教学环境,是培养学生创新精神的重要条件。心理学研究表明“一个人的创新思维只有在他感觉到„心理安全‟和„心理自由‟的条件下才能获得最大限度的表现和发展”。所谓“心理安全”是指不需要有戒备心,不会受到苛求和责备。所谓“心理自由”是旨在思考问题时,不必有过多的条条框框的束缚,能够比较自由地思维表达。因此,在数学课堂教学中要创造这样一种宽松和谐的教学环境,使学生在心理舒畅的情景下愉快地学习,从而发挥自己的聪明才智,进行创造思维和想象。美国心理学家罗杰斯指出:“成功的教学依赖于一种真诚的理解和信任的师生关系,依赖于一种和谐安全的课堂气氛”。只有师生关系和谐,才能使他们的心理距离接近,心情舒畅,才有可能使学生的创新精神获得最大限度地表现和发展。营造数学学科创新教育的氛围。每个学生都具有潜在的创新才能,要把这种潜能转化为现实中的创新力,应营造浓厚的适宜创新教育的氛围轻松活泼的课堂气氛和师生关系,是培养学生创新能力较适宜的“气候”和“土壤”。以“升学率”为教育目标的应试教育,使得教师和学生都处于高度紧张的机械的知识传授中,很难形成创新意识,这些严重阻碍了创新能力的培养。因此,在数学教学中,应转变过去提倡的教师“教”和学生“学”并重的模式,实现由“教”向“学”过渡,创造适宜于学生主动参与、主动学习的活跃的课堂气氛,从而形成有利于学生主体精神、创新意识、创新能力健康发展的宽松的教学环境。教师应为学生提供有利于创造的学习环境。教学环境应当为每个学生提供自由思想的空间,让学生大胆的想象甚至可以异想天开。学生能否具有一定的对学习内容自主选择的自由,也是在课堂教学中实现创新教育的关键。教师要为学生创设一个愉悦、和谐、民主、宽松的人际环境,教师应该努力以自己对学生的良好情感去引发学生积极的情感反应,创设师生情感交融的氛围。使学生在轻松和谐的学习氛围中产生探究新知兴趣、积极主动地去追求人类的最高财富——知识和技能,从而使学生敢创造,同时迸发出创新思维的火花。老师应多为学生创造表现机会,使学生在自我表现的过程中增强自信,提高创新能力。
3、培养创新思维的教学模式,教学模式是在一定教学思想指导下所建立起来的完成所提出教学任务的比较稳固的教学程序及其实施方法的策略体系。它是人们在长期教学实践中不断总结、改良教学而逐步形成的。它源于教学实践,又反过来指导教学实践,是影响教学的重要因素。要培养学生的创新思维,就应该有与之相适应的,能促进创思维培养的教学模式,当前数学创新教学模式主要有以下几种形式。
①开放式教学。这种教学模式在通常情况下,都是由教师通过开放题的引进,学生参与下的解决,使学生在问题解决的过程中体验数学的本质,品尝进行创造性数学活动的乐趣的一种教学形式。开放式教学中的开放题一般有以下几个特点。一是结果开放,对于用一个问题可以有不同的结果;二是方法开放,学生可以用不同的方法解决这个问题,而不必根据固定的解题程序;三是思路开放,强调学生解决问题时的不同思路。
②活动式教学。这种教学模式主要是:“让学生进行适合自己的数学活动,包括模型制作、游戏、行动、调查研究等方式,使学生在活动中认识数学、理解数学、热爱数学。”
③探索式教学。这种教学模式只能适应部分的教学内容。对于这类知识的教学,通常是采用“发现式”的问题解决,引导学生主动参与,探索知识的形成、规律的发现、问题的解决等过程。这种教学尽管可能会耗时较多,但是,磨刀不误砍柴工,它对于学生形成数学的整体能力,发展创造思维等都有极大的好处。
4、培养学生的创新思维,应善于应用现代教育技术
改变一支粉笔,一块黑板的现状,实现教育手段的现代化,是教育发展的必然趋势。充分运用现代教育技术,不仅能增大课堂教学容量,优化教学结构,实现资源共享,还能增强学生兴趣,激发探索精神。比如在学习函数、立几、解几等内容时,能做到静动结合,给学生以质感、美感。如在学习立体几何中旋转体时,利用现代教育技术演示旋转体的形成过程,这样,就将抽象概念转化为形象直观的三维动画。学生易于接受,印象深,效果好。如果能根据课堂内容,通过让学生自己设计制作课件等,不仅能提高实践能力,而且有利于创新思维的培养。
浅淡我对高中数学教学的10个看法
要教好高中数学,首先要求自己对高中数学知识有整体的把握和认识;其次要了解学生的现状和认知结构;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是学生在校期间学习科学文化知识的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力;不但要发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学,尤其是在正课上,不但要提高学生的智力因素,而且要提高学生在课堂40分钟的学习效率,尽量在有限的时间里,出色地完成教学任务。以下谈一谈自己的一些看法: 1.有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《向量及其运算》这一课是整个向量这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释向量的产生和发展,体会到向量本身存在我们的周围,来激发学生的求知欲望,同时也就提高了学生自己分析问题和解决问题的能力。
2.能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
3.要善于应用现代化教学手段
随着科学技术的飞速发展,对教师来说,掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点:一是能有效地增大每一堂课的课容量,从而把原来四十分钟的内容在三十五分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。4.根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
5.对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
6.充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。7.处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《向量及其运算》第二课时时,有“两向量不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课堂教学中当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了向量具有的特性,即大小和方向,不能成立的原因就是多了一个方向。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。8.要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进来,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。9 切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。10 渗透教学思想方法,培养综合运用能力。
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,我们就应该多思考,多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
高中数学新课改心得体会
不同的教育思想产生不同的教育。传统的数学教学的特点是以传授知识为主要目的、单向平面地讲授教科书的活动.“以纲为纲,以本为本”,是这种传授活动的金科玉律。在这种理念下,教师崇尚钻研教材,视处理好教材、教好教材为教学艺术,这种预先设计好的教学目标往往超越教学过程本身,脱离学生的现实。新课程理念下的课堂教学的特点具有整体性,开放性、创造性、不确定性。新课程更加体现了学生的主体性,在实施过程中,教师应转变传统的教育教学方式,解放自己的思想,转变教育思想观念,改革教学方法,由数学课程的忠实执行者向课程决策者转变,创造性地开发数学教学资源,大胆地改变现有的教学模式,彻底改变教学方法,多给学生发挥的机会,为学生提供丰富多彩的教学情境,引导学生自己探索数学规律、自己去推论数学结论,要善于创设数学问题情景,引导学生体验数学结论的探究过程,让学生成为 “跳起了摘桃子的人”,而不是“盛桃子的筐”,给他们讲得应尽量少些,而引导他们去发现的应尽量多些,学生自己能够自主解决的,教师决不和盘托出。这样才有利于创新人才的培养!传统的数学教学因为过分预设和封闭,使课堂教学变得机械沉闷,缺乏生气和乐趣,学生始终处于从属地位,成了教师灌输知识的容器,课堂上倦怠应付,与创造的喜悦无缘,师生都无法在课堂上焕发生命的活力。
教学过程是师生交往、积极互动、共同发展的过程,是为学而教,以学定教,互教互学,教学相长的过程。教师必须改变传统的压抑学生创造性的教学环境,通过教学模式的优化,改变教师独占课堂、学生被动接受的信息传递方式,促成师生间、学生间的多向互动和教学关系的形成。
(1)教师不仅是数学知识的传授者、解惑者,更是知识的促进者、引导者;学生不仅是知识的接受者、复制者,更是知识的发现者、创造者。教师的作用主要在于“导”,就是通过精心设计教学过程,善于对学生进行启发诱导,点燃其思维的火花,引导学生主动探索数学结论的形成过程,体会科学家走的路,充分体现学生是数学学习的主人。
(2)教师和学生之间不是传统课堂教学中的对象性的主客体关系,而是一种主体间性的意义关系。师生之间的交往是作为主体的人与人之间的交往,具有民主、平等的特性,通过相互作用、相互协商,建构学生多样化的主体活动,完成认知和发展的任务,从而促进学生主体性的充分发展。
现代信息技术为学生自主学习提供了良好的环境、丰富的学习资源,有利于提高学习的主动性、创造性和有效性,促进认知过程、情感过程和意志过程的统一,使学生的身心得到和谐的发展。当然我转变这些还不够,更准确的应该是我们在对新课改的理解基础之上所做的所有转变.显然这对我们教师自身提高了要求,可能增加了教师的压力;但我相信主要的压力来源于我们传统的教育与新课改后教育之间的跨越!还来源于各个地方文化背景、经济、家长观念等。面对压力,我们一定要充分理解新课程精神,才能因地制宜的搞好新课改。
总之,新课程,新的教学方法,新的教学思想都应该建立在学生爱学,想学,乐学的基础上,培养学生的学习兴趣,教会学生怎样去学习。我们要始终树立:培养学生要从学生的长远角度出发,从学生的长远发展出发,让他们学到的不仅仅是使书本上的知识,更是增养去学习的能力,“授之以鱼,不如授之以渔”,这样才能为他们将来更好的发展打下坚实的基础。
浅谈对高中数学新课改的心得体会
高中数学课程是普通高级中学的一门主要课程,高中数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机结合起来。它从国际意识、时代需求、国民素质、个性发展的高度出发,是对于数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题,分析问题、解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。它是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它也是学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有意义。总体目标中提出的数学知识(包括数学事实、数学活动经验)本人认为可以简单的这样表述:数学知识是“数与形以及演绎”的知识。所谓数学事实指的是能运用数学及其方法去解决的现实世界的实际问题,数学活动经验则是通过数学活动逐步积累起来的。
1、基本的数学思想
基本数学思想可以概括为三个方面:即“符号与变换的思想”、“集全与对应的思想” 和“公理化与结构的思想”,这三者构成了数学思想的最高层次。对中小学而言,大致 可分为十个方面:即符号思想、映射思想、化归思想、分解思想、转换思想、参数思想、归纳思想、类比思想、演绎思想和模型思想。圣于这些基本思想,在具体的教学中要注意渗透,从低年级开始渗透,但不必要进行理论概括。而所谓数学方法则与数学思想互为表里、密切相关,两者都以一定的知识为基础,反过来又促进知识的深化及形成能力。方法,是实施思想的技术手段;而思想,则是对应方法的精神实质和理论根据。
2、重视数学思维方法
高中数学应注重提高学生的数学思维能力,着是数学教育的基本目标之一。数学思维的特性:概括性、问题性、相似性。数学思维的结构和形式:结构是一个多因素的动态关联系统,可分成四个方面:数学思维的内容(材料与结果)、基本形式、操作手段(即思维方法)以及个性品质(包括智力与非智力因互素的临控等);其基本形式可分为逻辑思维、形象思维和直觉思维三种类型。
3、应用数学的意识
这个提法是以前大纲所没有的,这几年颇为流行,未见专门的说明。结合当前课改的实际情况,可以理解为“理论联系实际”在数学教学中的实践,或者理解为新大纲理念的“在解决问题中学习”的深化。新旧教材中,都配备有所谓的应用题,有许多内容已经很陈旧,与现实生活相差甚远。结合实际重新编写应用题只是增强应用数学的意识的一部分,而绝非全部;增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习、主动探究。教师有责任拓宽学生主动学习的时空,指导学生撷取现实生活中有助于数学学习的花朵、启迪学生的应用意识,而学生则能自己主动探索,自己提问题、自己想、自己做,从而灵活运用所学知识,以及数学的思想方法去解决问题。
4、注重信息技术与数学课程的整合
高中数学课程应提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质。在保证笔算训练的全体细致,尽可能的使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
5、建立合理的科学的评价体系 高中数学课程应建立合理的科学的评价体系,包括评价理念、评价内容、评价形式评价体制等方面。既要关注学生的数学学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中表现出来的情感态度的变化,在数学教育中,评价应建立多元化的目标,关注学 生个性与潜能的发展。
通过对新课标的学习,我更深层地体会到新课标的指导思想,深切体会到作为教师,我们应该以学生发展为本,指导学生合理选择课程、制定学习计划;帮助学生打好基础,提高对数学的整体认识,发展学生的能力和应用意识,注重数学知识与实际的联系,注重数学的文化价值,促进学生的科学观的形成。在日常教学中,就要贯彻新课标的指导思想,更新理念,改进教学方法,争取早日成为合格的、成熟的数学教师
第五篇:高中数学教学总结
高中数学教学总结
发布者:kk 发布时间: 2013-10-10 9:20:44 自2003年毕业以来,已经从事高中数学教学已有几年了,经历老人教版教材和新课程高中数学的教学。在不断的摸索和学习中,我发现自己已经适应了高中数学教学,并且深深喜欢上了数学,不敢说自己有教学上的经验,但可以说有一些感受。
首先,我觉得数学教学是一项非常有趣而有研究意义的工作。在数学课上,有思维深化,也有正误辩论,有积极的合作。如今的教学和我们小时接受的教学方式真的是千差万别,我们机械的模仿和固定的思维已经不能适应现代学生的 要求,他们个个使劲浑身解数,在展示自己的个性思维和奇妙方法,像是在演绎精彩而又真实的数学童话故事。不知不觉,挑战成了孩子们喜欢的学习方式。在学生 这种研究的劲头下,我怎么可能不被感染,也想好好研究一下这门课的教学,乐在其中,努力改变着的传统的教学方式方法。
其次,第一次接触高中数学教学,遵循传统的教学方法,填鸭式的教 学模式,教师满堂讲,学生全堂听,犹如开什么会议似的,几年过后,幸运的赶上了新课程、新模式、讲创新、新时代,现在也在慢慢的摸索中和我班的孩子共同成 长,运用新的教学理念和新的教学方法。我就更加谨慎,不说大话,指望我的教法和培养方法能指引学生终生的学习,但愿我的点滴能够对孩子的发展有一点点的鞭 策。在实施新的教学理念的教育教学此文转自斐斐课件园过程中,我多次尝试、反思、总结,对高中的教学我已有了初步的研究和很深的体会。
1、放手让孩子创新,适合他们的年龄阶段的创新。
2、教师要教的少,让学生学的多。
3、小组合作既促进学习,又增进友谊。
4、要让学生学会“在做中学、在做中练、在做中提高”。
5、“练习时要时刻回顾基本概念,要把回顾基本概念放到练习中去”。
最后,了解学生的心。知己知彼才能百战不殆,教学上也应如此,只有真正了解学生的心理特点和接受水平,才能采取有效的方法,帮助学生实现真正的学习。总的说来,自己懂得数学教学方面的知识还是少了点,不足以满足教学的需要,以后的工作中还应多学习专业知识,提高自己的专业素养,多研读教材,深入把握教学核心,用先进的教育理念武装大脑,是自己成为一个适应现代教育教学!