三角形内角和教学论文

时间:2019-05-15 03:05:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三角形内角和教学论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三角形内角和教学论文》。

第一篇:三角形内角和教学论文

把握教材特点 合理使用教材

教《三角形内角和》一课浅谈

杨玉萍

教材是知识的载体,是教师进行课堂教学的依据。多年来,“以本为本”是处理教材的基本原理,它一定程度上限制了教师的思想,也限制了学生的思维,制约了学生的发展。新课程已将我们从“以本为本”的桎梏中解脱出来,走向“以人为本”的全新发展观。因此我们应该以《课程标准》为指导,把握素质教育的多元化目标,在充分尊重教材基础上,把握教材特点,合理使用教材,大胆灵活地处理教材,创造性地超越教材,使教材内容成为更易于课堂教学表达,更易于学生自主探索的教学材料,从而达到优化教学内容和培养学生能力之目的。只有这样课堂教学改革才能落实到实处。教《三角形内角和》一课之后,我有以下几点感悟:

一、尊重教材 巧用教材资源

新教材体现了新课程标准的基本理念,无论是内容的选择还是呈现方式上,都很好地体现了“以学生发展为本”的理念,它不仅结合了数学自身的特点,更强调从学生已有的生活经验出发,力求形成“问题情境――探究新知――建立模型――解释应用与拓展”的基本模式,进而使学生获得对数学知识理解的同时,在思维能力、过程方法以及情感态度与价值观多方面得到进步与发展。但同时教材中的学习资源是有限的,由于地域环境以及其它因素的影响,有时会远离学生的生活经验,甚至超越学生的生活实际。再好的教材也会有局限性和不适应性,这就需要教师在充分了解和把握课程标准、学科特点、教学目标、教材编写意图的基础上遵守“信奉而不唯是”的原则,以教材为载体,结合社会、学校、学生等方面的情况,灵活的运用教材,有效地组织教学。如在《三角形内角和》一课中,教材在“量一量,画一画”的活动中,要求每人画一个三角形,量一量三角形三个内角的度数,并求出它们的内角和。这样不好渗透研究问题要全面的数学思想,所以我让学生四人一组,一人记录,其余三人每人从准备好的锐角三角形、钝角三角形、直角三角形中选一个量角算和,这样学生在组内交流、互动的过程中就能感知各类三角形内角和是180°。

这样将新知融入活动当中,使学生在活动中,通过观察、操作、思考、探究交流,感受数学学习的乐趣。在教学中,挖掘教材、尊重教材,同时能巧妙灵活地处理教学内容,既到位,又不越位,使学生不仅知其然,而且知其所以然。

二、活用教材 激活教材资源

新的课程观把教材定义为:“给教师完成教学目标提供的范例。”既然是“范例”,就给教师自主活用教材的空间。众所周知,受客观条件的限制,教材总是以静态的形式呈现出来,而学生接受知识的过程却是动态的。因此,作为教师在领会教材编写意图的基础之上,教师应该要活用教材资源,力求改变教材静态、无味的呈现方式,接近教材与生活、教材与学生的距离,把静止的画面变为动态的画面,以促进学生探究思考。如在本课教学时,我将“三角形争论内角和大小”的情境图改编成有声有色的动画形式呈现,引出探究的问题“三角形内角和是多少?”当学生用量角器量角求和之后,我又激发他们怎样才能验证“三角形内角和是180°”,引发探究的欲望,学生积极探索验证方法,动手操作验证,这样不但把静态教材资源转化为动态的资源,而且学生兴趣被调动,探究欲望被激发,在活动中不仅获得数学知识,同时也经历体验获取知识的过程,从而促进学生自主建构知识。

三、拓展教材 优化教材资源

教材是教师设计教学活动的蓝本。尤其是课本上的很多练习是编者精心设计的,富有思维含量。不过,也有一些教材资源虽有广泛的思考探究空间,但由于教材的问题并未完整凸现其应有的价值。教师可以结合对教材的理解发挥其主观能动性,创造性地将其拓展,延伸教材,突破教材练习的限制,创造性地设计一些开放性的练习题。如在《三角形内角和》一课的练习时,我拓宽了学生探究学习的空间。我将课前准备的大小三角形进行拆分、组拼,不断地变换三角形,让学生说说每次呈现的三角形的内角和是多少,这样的问题,又有哪个孩子不愿意、不乐于帮助老师动脑去思考呢?如此拓展教材、突破教材习题的框框,创造性设计一些开放性的练习,一方面可以进一步巩固所学知识,另一方面有效提高学生解决问题的能力。

这样充分利用教材提供的资源,挖掘教材蕴含因素,对教材内容进行拓展延伸,对教材进行创造性地驾驭,及时提出具有挑战性的问题,优化教学内容,促进学生不断思考,把握数学教学的本质,实现教育价值的最大化。

四、超越教材 创生教材资源

原苏联著名教育家阿莫纳什维利说:“儿童单靠动脑,只能理解和领悟知识;如果加上动手,他会明白知识的实际意义;如果加上心灵的力量,那么知识的所有大门都将在他面前敞开,知识将成为他改造事物和进行创造的工具。”教学中,如果教师能够超越教材,创设让学生喜闻乐见的实践活动,那么,他们将会从“要我学”转化为“我要学”,不但他们的“智慧、心灵和双手”将会得到满足和发展,而且拓展学生的思维空间,提升学生的思维水平。

我在本节课的最后,讲了帕斯卡的故事,激发学生:我们现在还不到12岁,能不能利用“三角形内角和是180°”的性质来探索发现四边形及至多边形的内角和。学生的兴趣被调动起来,思维被激发,灵活地运用所学的知识,将多边形转化成三角形,很快求出了多边形的内角和。这样的实践活动,不是“照搬教材”,而是充分挖掘教材资源的综合运用,即创生教材、超越教材。从而培养了学生从多角度观察问题解决问题的能力,这样教学必将有利于学生的后续发展。

总之,新教材是新一轮课程改革的文本体现,是一个载体。要适应新课程新教材的改革,就要求我们教师改变传统的教材观和教学模式,树立现代的教材观和科学的教学法。因此我们只有认真研读新教材,感悟新教材,领悟新教材,才能把握新教材,才能用好、用实、用新、用活教材。只有这样,才能有利于调动学生学习主动性,有利于课堂教学的有效性,凸显数学教学本质。

第二篇:论文《浅谈三角形的内角和的教学》

论文《浅谈三角形的内角和的教学》

王永志

《三角形的内角和》是学生一个重要的知识点,不仅小学要学习到了初中依然要学习,它是图形的重要组成部分,这个基础必须要打捞,它是以后学习几何的基础知识,它也一直是教师关注的课题。如何把握好教学的“度”?我们认为,在小学阶段,教学的侧重点应体现在通过实验的方式,运用一些特例,通过一系列数学活动来“验证”这一结论的正确性,让学生初步尝试研究数学问题的一般方法,以体验在此过程中运用的不完全归纳的数学思想,为后继的学习积累数学活动经验。

学生在主动建构新知的时候必然具备一定的知识经验。教师不仅要基于教材,同时也必须基于学生来进行教学设计,根据学生的认知水平来决定教与学的方式。给我们带来如下教学启示:

三角形“内角”的概念尽管是一个新的知识点,但是学生从字面上容易理解,因此在教学时无需花很多时间讲解。

对于“三角形的内角和是180°”的结论大部分学生已经知晓,其途径之一是通过家长或者同学结论性的告知;途径之二是看书了解或者是之前通过完成课本中的练习——测量一副三角板(也就是两个直角三角形)中的三个内角的度数知道的,但对于其他类型的三角形三个内角的度数之和究竟是不是180°并没有真正尝试通过一些方法去了解,而仅是将这一结论性的知识进行了推广。

学生想到验证三角形的内角和的方式基本有如下两种:一种是先测量出每个内角的度数后再相加,另一种是想办法将三个内角凑在一起看看是不是一个平角。至于书本上介绍的将一个内角沿三角形的一条中位线翻折后再将另两个内角折叠拼在一起的方法,由于对操作的要求比较高,学生很难想到,只能作为丰富验证方法的补充演示。

基于学生的现实状态,我们将本节课的教学目标重点定位在引导学生运用多种方法验证不同类型三角形的内角和是否是180°这一结论上。而在这几种常用的实验方法中,都会不可避免地带来不同程度的误差,如何看待误差的出现?忽略误差显然不是一种科学的态度,但误差过大却会造成学生对结论正确性的质疑,实验所期望达到的效果会受到很大的影响。因此,尽可能帮助学生完成对这一结论的正确感知便成为在学生活动时教师需要关注的问题:第一,正确的感知有助于学生对三角形认识的进一步深化,也是进一步学习多边形内角和的基础;第二,伴随活动而产生的成功体验,会给学生带来对这种研究方法的认同,并主动地在今后的实践中加以运用。当然,需要说明的是,正确的感知,并不是刻意回避误差,或者暗示学生不尊重实验的事实去凑结论,而是要预计到学生在操作过程中可能出现的问题,及早干预,避免在学生测量、剪拼活动时受技术因素的干扰出现过大的偏差,减少不必要的失误。因此,教师在组织活动时可要求学生先标注出三角形的三个内角、要求同桌两人先后测量同一个三角形的内角度数再相加就是基于这样的考虑。

除了对上述问题的必要认识,在教学本课时还有以下几方面的思考:

一、数学活动——激发理性思考的欲望

在数学教学中,动手实践是非常有效的学习方式之一,教师要倡导学生通过“做数学”的方式来达到对问题的理解。在验证三角形内角和的环节设计了如下几个层次:一是明确活动目的,即验证三角形的内角和是否是180°;二是讨论取样范围,即对选用什么样的三角形来验证达成共识;三是用多种方法来验证三角形的内角和是否是180°,从测量、剪拼到进行简单推理,从研究一个三角形的内角和出发到研究由两个三角形拼成的大三角形的内角和,层层深入,把学生对三角形内角和的认识由“偏重结论”转向“重视过程”。尽管在学生的操作活动中存在着误差,导致没能实现对“三角形的内角和是180°”的精确感知,学生似乎经历的是“不够严密的数学”,但是正是由于误差的产生,才让学生从另一个角度体会数学是一门严谨的学科,从而产生对更严密的“证明”法的好奇和渴望,萌生进一步探究学习的欲望。同时,学生在活动中体验到的实事求是的治学态度,通过直观活动所萌生的进行理性思考的需求,对提升学生的数学素养都会产生积极的影响,这便是这类数学活动的价值所在。

二、变式训练——促进广泛深刻的理解 知识的理解和应用是相辅相成的,知识理解得越深刻,就越能被灵活地提取和应用,反之,知识在不同的背景下被运用得越广泛,它就会被理解得越深刻。并且,这些可应用的、灵活的知识正是学生创新意识的源泉,应成为当前基础知识教学关注的一个重心。那么怎样更好地支持学生对数学知识的理解?“变式”教学可以视作有效的策略。

本课第一个部分是学生自行用各种方法验证“三角形的内角和是180°”,第二个部分便是变化角度对这一知识进行解释和运用。教材“想想做做”第1题作为一个基本练习,其目的是要求学生运用三角形内角和的知识,在已知两个内角的情况下求出第三个内角。就单纯地解决这样的问题,大部分学生不会感到困难,如何给这个练习赋予更丰厚的内涵?我觉得,研究三角形内角度数的变化规律不仅仅应该体现在“会计算”上,更应通过直观的手段来突出三角形三个内角的度数变化引起三角形形状的相应变化这一必然联系,来帮助学生体会不同三角形的内角的特点和它们之间的关系,更好地建立关于不同类型三角形的表象,从而发展学生的空间观念。

三、思想点化——追求深入浅出的感悟

数学教学不应仅仅是单纯的知识传授,更应注意对其中所蕴含的数学思想方法进行提炼和总结,使之逐步被学生掌握,从而更好地理解数学的本质。因此,教师需要做的就是在教学的关键处进行恰到好处的点拨并引导学生进行深度思考。在本课的教学中,教师的提问是经过精心设计的。例如,当学生通过计算得出一副三角板的两个直角三角形的内角和都是180°时,教师提问:“我们通过计算,发现这两个直角三角形的内角和分别是180°,那么是不是就能说明所有三角形的内角和都是180°?”引导学生体会到“研究数学问题,不能光凭一两个特殊的例子就能轻易地得出结论”,从而产生样本实验的方法需求。如何取样?这里又需要策略。学生在教师的预设之下经历了运用不完全归纳法进行数学研究的一般过程。只有教师能够看清数学活动对于领悟方法、生成策略以及启迪智慧的价值,才能跳出“活动”看“活动”,较好地把握对学生思维能力培养的支持方式和水平。

第三篇:三角形内角和教学设计

三角形内角和教学设计

一、教学目标:

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境 揭示课题。

师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。

师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °

师:(出示一个很小的三角形)它呢? 生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

第四篇:《三角形内角和》教学设计

《三角形的内角和是180°》教学设计

教学思路:

由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。

学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。

这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。

教学目标:

1、知识技能目标:

(1)理解和掌握三角形的内角和是180°;

(2)运用三角形的内角和知识解决实际问题和拓展性问题;

2、能力技能目标:

(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

(2)知道三角形两个角的度数,能求出第三个角的度数。

(3)发展学生动手操作、观察比较和抽象概括的能力。

3、情感与态度目标:

让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点

重点:理解掌握三角形的内角和是180°。

难点:运用三角形的内角和知识解决实际问题。教具、学具准备:

教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。

教学过程:

一、创设情境 生成问题

(一)课件出示三角形争吵图

在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?

(二)猜想什么是三角形的内角和

师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?

课件演示三角形的内角(内角和)

二、探索交流 解决问题

(一)探究猜想内角和的度数

师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?

生:用量角器进行度量。

师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。

生回答。(回答可能不一样。)

师:同学们通过刚才的汇报你有什么想说的吗?

生:我发现内角和的度数不一样。

师:是啊,什么原因呢?

生:可能是量的时候出现了差错。

师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?

板书课题:三角形的内角和

(二)讨论验证方法

以小组为单位来想一想我们可以怎么样来验证?

小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)

(三)动手验证

生活动,师巡视

(四)汇报

师:哪个小组来汇报你们的验证方法和验证结论?

组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。

师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?

组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。

组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。

哪个小组的同学最想上来展示一下你们的研究成果?

师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?

(动画演示剪拼验证过程)

边演示边解说。

见证奇迹的时刻到了,你发现了什么?

师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。

课件演示独特折法

同学们还有不同的验证方法吗?

组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。

组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。

出示:普通折法

师:还有不同折法吗?

组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。

师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?

组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。

师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?

课件演示长方形推理法。

师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。

看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。

小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。

三、巩固应用 内化提高

同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!

1、根据已知角的度数求出未知角的度数

(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)

2、求等边三角形各内角的度数

3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)

4、放风筝:

同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?

一个等腰三角形的风筝一个底角是70度,求顶角的度数?

5、挑战极限:

同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?

根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?

四、回顾整理反思提升

同学们通过这节的学习你有哪些收获?

第五篇:三角形内角和教学反思

“双主体”教学反思

--《三角形内角和》课后反思

严怀军

为了全面提高教学质量,学校以我们初一数学为启动点,非常有幸的学习了南京东庐中学“讲学稿”模式、高邮赞化中学“导学案”教学,结合我们学生的特点形成了我校的“双主体”特色,我们这些新手是最大的受益者。本学期快结束了,我上了一节汇报课《三角形内角和》,让我真切的感觉到“教育是门带有遗憾的艺术”。

本节课的宗旨是以学案为依托,以教师为主导,以学生为主体,通过学生的自主学习,培养学生的自学能力,实现学生的自学能力、合作能力、创新能力和整体素质共同提高,进而提高教学效益。在设计这节课时我请教了学校的教学能手余老师,请她对教学环节进行了指导。对教学案中涉及三角形外角知识进行了探讨,在学习余老师的课后我们决定在我的课上也可一试。现将我在这节课的思索、认识、体会及迷惑、彷徨总结如下:

一、抓好小组建设及学法指导,是搞好“双主体’的基础。

“小组学习”是“双主体”的主要形式。小组建设要遵循“同组异质,异组同质”的原则,考虑成绩搭配、男女性别平均、学生的意愿;要通过小组文化建设增强小组团结协作的凝聚力;更要做好小组长的培训,明确小组内每位成员的职责。比如在进行例二的探索研究时,小组长并没有组织好组内讨论,你一言我一语的显得无序,最后也没形成一个总结来进行汇报。

二、“双主体”的成功离不开教师的巧妙引导。

以学生为学习的主体,在“双主体”中,教师是学生的得力助手,一方面要相信学生的智慧和能力,绝对不能越俎代庖;另一方面也要注意:学生毕竟是学生,离不开教师必要的引导、指导。初中生是有一定的自我修正能力的,教师必须对学生进行必要的“学法指导”,才能让学生在平时的学习过程中随时掌握解决问题的方法,逐步由“学会”变为“会学”。我在这节课上没有很好的关注全体学生,未能调动部分学生的学习积极性和主动性,特别是在解决利用外角知识解决问题时,学生产生倦怠、迷惑或感到困难时,未能真正实现课堂教学中的“生生互动”、“师生互动”,使教学得以顺利进行,获得成功。

三、实施“双主体”,身上的担子更重了

实施“双主体”后,表面上教师在课堂教学中轻松了,但教师的任务并没有减轻,而是对教师的要求更高了。教师要提高自己的职业修养和道德素养,明确自己的任务,提高业务素质。课下教师要搜集更多适合教材、学生的教学、教育资料和相关信息,供学生参考和学习,要把工作做得更深、更细;努力准备各种材料,使之更适合不同层次学生的需要,使材料更具有逻辑性、趣味性、生活化,只有这样,课堂上利用非智力因素,展现一切课堂机智,调动学生投入的积极性,才能真正组织学生进行有效的学习。才不会只见热闹,没有成效。

四、我的疑惑

1、“双主体”的实施对优秀学生来说的确得到了更多、更快的发展,对于那些基础差、行为习惯不够好的孩子来讲,简单的知识他们是投入进去了,碰到难的,比如现在的几何推理部分,他们就丧失了自学能力,让他们做,那就更是摸不着东南西北了。

2、教学流程要求学生独学、对学、群学(在预习时解决)、展示汇报、点评,对于每节课短短的45分钟来说,即使我们现在每堂课仅仅只安排了一个框题的内容,还是无法完成教学任务,教学成绩如何保障?

3、小组交流学习起不到预期的效果。在实际教学过程中,每个小组内那些基础差的、表达能力弱的、不够大方的同学常常是没有发表自己的观点,没有真正实现参与讨论,长此下去,他们只会越来越没有自信,表达能力也会越来越弱。

感谢学校的课改行动,给了我教学新生命,我必将坚定不移的沿着教改的路走下去,努力向教学能手们学习,提升自身教学修养,提高课堂效率!

下载三角形内角和教学论文word格式文档
下载三角形内角和教学论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形内角和教学案例

    《三角形内角和》教学案例 新疆兵团第四师63团中学马莉红 《三角形内角和》的教学内容,以前曾是选学内容,有时是必学内容,无论是选学必学,我应用新的教学理念和已有的经验,使这个......

    三角形内角和教学设计

    冀教版教材小学数学四年级下册 《三角形内角和》4+4N教学模式讲析课 ——承德县上谷学区中心校 一、创设情境 创设情境的目的:是以情境问题的解决为需求,激发学生在情境中发......

    三角形内角和教学设计[★]

    《三角形的内角和》教学设计 沈芸 教学内容 义务教育课程标准实验教科书(苏教版)四年级数学(下)第28-29页 教学目标 认知目标 1. 让学生运用量、拼、摆等方法,主动探索并掌......

    三角形内角和教学设计

    《三角形的内角和》教学设计 新华实验小学安利 教材内容:人教版四年级下册数学第85页例6 教学目标: 1、通过“量一量”“算一算”“拼一拼”“折一折”的方法,让学生推理归纳三......

    《三角形内角和》教学设计

    《三角形内角和》教学设计 【教材内容】 北京市义务教育程改革实验教材(北京版)第九册数学 【教材分析】 《三角形内角和》是北京市义务教育程改革实验教材(北京版)第九册第三单......

    《三角形内角和》 教学设计

    《三角形内角和》 教学设计 【教学内容】四年级下册教科书第24页“探索与发现:三角形内角和。” 【学习目标】 1.让学生亲自动手,通过量、剪、拼等直观操作活动,探索、发现并证......

    三角形内角和教学设计

    三角形内角和教学设计 一、教材分析: 教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。 教材创设了一个有趣的问题情境,以此激发学......

    三角形内角和教学设计

    三角形内角和教学设计 知识目标: 掌握三角形内角和是180度这一规律,并能实际应用。 能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学......