二次根式单元备课(推荐)

时间:2019-05-15 03:07:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次根式单元备课(推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次根式单元备课(推荐)》。

第一篇:二次根式单元备课(推荐)

第一章

二次根式 单元备课

一、教材分析

本章是在学习了平方根、算术平方根以及实数概念的基础上安排的。主要内容是二次根式的概念、性质和运算。二次根式是最基本、最常用的无理式。学习本章后,就把式的范围由有理式扩展到代数式。因此,二次根式的运算既与实数及二次根式的概念、性质有关,又与前面的整式、分式的运算有紧密联系。整式、分式的计算是二次根式运算的基础,它们的运算法则、性质对二次根式也成立,学习本章也为以后学习打基础。

二、教学目标

1、记住二次根式、最简二次根式、同类二次根式的概念,会识别二次根式、最简二次根式、同类二次根式;

2、能说出二次根式的性质,并会用它们进行化简;

3、能说出二次根式的运算法则,并会进行计算。

三、重难点、关键

二次根式的化简和计算是重难点;二次根式的概念和性质是关键。

四、学情分析

上学期我从事八年级一班的数学教学,从上学期期末考试成绩来看,大部分学生的成绩还算可以,但还是有少数学生成绩相当糟糕,分析其原因,主要是练习的量太少,所以这学期的主要突破口是加大学生的练习力度。在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。在教学方面,平时对学生的练习抓的不够紧,以至有少数同学一学期基本没做几次作业,作业的数量也不够。

五、教学措施

1、注重在复习旧知识的基础上使学生的学习形成正迁移;如学习二次根式的概念,先复习算术平方根;学习同类二次根式,先复习同类项等;

2、注意对学生基本技能的培养,特别是运算能力。因本章的重点是二次根式的运算,所以在进行二次根式的运算教学时,要让学生记住运算法则,在运算过程中,要让学生能说出每步计算的根据。

3、为大面积提高学生成绩,注重平时的辅导及作业的面批;课堂上设计有层次性的练习题组,进行强化训练。

六、课时安排

二次根式及其性质

3课时 二次根式的加减法

1课时 二次根式的乘除法

2课时 复习与训练

2课时

七、测试

测试与讲评

2课时

第二篇:二次根式单元测试

二次根式单元测试

1.在、、、、中是二次根式的个数有______个.

2.当=

时,二次根式取最小值,其最小值为。

3.化简的结果是_____________

4.计算:=

5.实数在数轴上的位置如图所示:化简:.

6.已知三角形底边的边长是cm,面积是cm2,则此边的高线

7.若则

8.计算:=

9.已知,则

=

10.观察下列各式:,,……,请你将猜想到的规律用含自然数的代数式表示出来是      .

11.下列式子一定是二次根式的是()

A.

B.

C.

D.

12.下列二次根式中,的取值范围是的是()

A.

B.

C.

D.

13.实数在数轴上的对应点的位置如图所示,式子①②③④中正确的有()

A.1个

B.2个

C.3个

D.4个

14.下列根式中,是最简二次根式的是()

A.B.C.D.15.下列各式中,一定能成立的是()

A.

B.

C.

D.

16.设的整数部分为,小数部分为,则的值为()

A.

B.

C.

D.

17.把根号外的因式移到根号内,得()

A.

B.

C.

D.

18.若代数式的值是常数,则的取值范围是()

A.

B.

C.

D.或

19.计算:

(1)

(2)

(3)

(4)

20.已知:,求:的值

21.如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺面成.求一块方砖的边长.

22.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)

23.阅读下面问题:

;;,……。试求:

(1)的值;

(2)(n为正整数)的值。

(3)根据你发现的规律,请计算:

24.已知.甲、乙两个同学在的条件下分别计算了和的值.甲说的值比大,乙说的值比大.请你判断他们谁的结论是正确的,并说明理由.

25.12分)如图:面积为48的正方形四个角是面积为3的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的底面边长和体积分别是多少?(精确到0.1)

第三篇:二次根式复习题

二次根式

复习题

二次根式

四种运算

加、减、乘、除

三个概念

两个公式

两个性质

二次根式

最简二次根式

同类二次根式

一.性质

1.当x满足条件

时,式子在实数范围内有意义。

当x

_________时,有意义;当x_______时,有意义

2.当x________时,式子有意义;假设式子有意义,那么x的取值范围是____。

3.以下二次根式有意义的范围为x≥3的是〔

〕。

(A)

(B)

(C)

(D)

4.当-1≤x≤1时,在实数范围内有意义的式子是〔

A.

B.

C.

D.

二.化简

=;

=;

=

;=;

=;

=

;=

;=。

1.假设,那么

;当a<0时,化简=。

2.-1a0,化简:-=

.3.假设最简根式与是同类二次根式,那么x=

4.假设最简二次根式与是同类根式,那么x=______,y=________

5.设a,b,c为三角形ABC的三边长,6.以下各式中,是最简二次根式的是〔

〕。

(A)

(B)

(C)

(D)

7.假设数轴上表示数a的点在原点的左边,那么化简的结果是〔

A.

3a

B.—3a

C.a

D.8.当x<0时,那么的化简结果是〔

A.-x

B.-x

C.x

D.x

三.计算

〔1〕·

〔2〕

〔3〕÷

〔4〕(2+3)

〔5〕

〔6〕4-(-)

〔7〕

四.应用

1.用长3cm,宽2.5cm的邮票30枚刚好可以摆成一个正方形,这个正方形的边长是多少?

2.设实数a,b,c在数轴上的位置如下图,试化简:

++

3.观察以下分母有理化的运算:

=-1+,=-+,=-+…

从上面的计算结果找出规律,并利用这一规律计算:

〔+++…+

+〕·〔1+〕

第四篇:二次根式教案

I.二次根式的定义和概念:

1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式.当a>0时,√a表示a的算数平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式.√ā(a≥0)是一个非负数.II.二次根式√ā的简单性质和几何意义 1)a≥0;√ā≥0 [ 双重非负性 ] 2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论.III.二次根式的性质和最简二次根式 1)二次根式√ā的化简 a(a≥0)√ā=|a|={-a(a<0)2)积的平方根与商的平方根 √ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最简二次根式 条件:

(1)被开方数的因数是整数或字母,因式是整式;

(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有√

2、√

3、√a(a≥0)、√x+y等;

含有可化为平方数或平方式的因数或因式的有√

4、√

9、√a^

2、√(x+y)^

2、√x^2+2xy+y^2等 IV.二次根式的乘法和除法 1 运算法则

√a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)

二数二次根之积,等于二数之积的二次根.2 共轭因式

如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式.V.二次根式的加法和减法 1 同类二次根式

一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2 合并同类二次根式

把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式.3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并

Ⅵ.二次根式的混合运算 1确定运算顺序 2灵活运用运算定律 3正确使用乘法公式 4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化 VII.分母有理化 分母有理化有两种方法 I.分母是单项式

如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多项式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如图

II.分母是多项式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

第五篇:二次根式教案设计

二次根式教案设计

一:教学内容分析

本节课是人教版九年级上册第21章二次根式第一节二次根式第一课时的内容,它是前面学习的数的开方的后继学习,也是学习二次根式的运算的基础,他在整个初中阶段起着重要的作用,贯穿始终,为后继学习打下夯实的基础。二:学生情况分析

本节课是在数的开方的有关知识的基础上展开的,有了一定知识基础,并且在勾股定理中有所运用,他们并不陌生,所以只要我们连接好新旧知识,学生很容易接受,加强新旧知识的联系,化为知为已知。

三、教学目标:

1.知识与技能

(1)理解二次根式的概念.(2)二次根式有意义的判定.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出二次根式概念.

(2)再对概念的内涵进行分析,得出二次根式成立的条件,并运用这一条件进行二次根式有意义的判断.

3.情感、态度与价值观

通过本节的学习培养学生:准确归纳概念的科学精神,经过探索二次根式是否有意义,发展学生观察、分析、发现问题的能力.

四、教学重难点

1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点:利用“(a≥0)”解决具体问题.

五、教学方法

启发式教学法

六、教学过程 导入新课(问题导入)

请同学们独立完成下列三个问题: 问题1、7的算术平方根是()。

问题

2、直角三角形的两条直角边分别为5和4,斜边为()。问题

3、正方形的面积为S,则它的边长为()。推进新课 一、二次根式的定义

很明显√

7、√

41、√S都是一些正数的算术平方根。像这样一些正数的算术平方根的式子。我们就把它称为二次根式。因此,一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。想一想:为什么一定要加上a≥0这一条件?

教师引导学生说出只有正数和零才有平方根,负数没有平方根。议一议:(1)-1有算术平方根吗?(2)0的算术平方根是多少?(3)当a<0时,√a有意义吗?

说明:负数没有平方根,更没有算术平方根。(4)√a表示什么含义?

目的:让学生了解算术平方根与二次根式的联系。

二、应用迁移

1、对二次根式概念的考查

下列式子,哪些是二次根式,哪些不是二次根式:

2、√3、1/x、√x(x≥0)、√0、-√2、1/(x+y)、√x+y(x≥0、y≥0)

分析:看是否为二次根式,关键看是否满足√a(a≥0)的形式。解:略

点拨:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数。

2、对二次根式被开方数范围的考查 当x为多少时,√3x-1在实数范围内有意义?

分析:有二次根式的定义可知。被开方数一定要大于或等于0,所以3x-1≥0,√3x-1在实数范围内有意义。解:由3x-1≥0,得x≥1/3,当x≥1/3时,√3x-1在实数范围内有意义。

点拨:要使二次根式有意义,必须满足被开方数要大于或等于0.三、巩固提高

1、下列式子中,是二次根式的是()A、-√7 B、三次根号7 C、√x D、x

2、当x为何值时,下列各式在实数范围内有意义?(1)√x-3 ;(2)√2/3-4x ;(3)√-5x ;(4)√/x/+1

四、本课小结 本节要掌握:

1、形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。

2、要使二次根式有意义,必须满足被开方数要大于或等于0.五、教学反思

1:本节课从旧知识引入,降低难度,激发了求知欲,和进一步探索的欲望。

2:本节课重点培养了学生的思维能力,使学生真正理解概念。3:学生用字母表示数还不熟练还有一部分同学错误认为a表示正数,-a表示负数。所以还应加强符号教学。

4:对以前的完全平方式运用欠佳,所以应加强知识之间的综合运用能力。

下载二次根式单元备课(推荐)word格式文档
下载二次根式单元备课(推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次根式教案

    二次根式教案汇编七篇二次根式教案 篇1 【1】二次根式的加减教案教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除......

    《二次根式》教学反思

    《二次根式》教学反思 《二次根式》教学反思1 在二次根式化简这一节的学习中,重点是是掌握二次根式的化简运算,教学的关键是理解二次根式的性质,在本节教学中,存在以下问题:1、虽......

    《二次根式》教学反思

    《二次根式》教学反思 《二次根式》教学反思1 本节课先复习合并同类项、整式的加减,为学习二次根式的加减做好准备。通过具体的'实际问题,引出二次根式的加减问题,激发学生的学......

    《二次根式》教学反思

    《二次根式》教学反思 《二次根式》教学反思1 本节课先复习合并同类项、整式的加减,为学习二次根式的加减做好准备。通过具体的实际问题,引出二次根式的加减问题,激发学生的学......

    二次根式教学设计

    二次根式教学设计 二次根式教学设计1 1教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的......

    二次根式教学反思

    二次根式教学反思 二次根式教学反思1 这节课教学困难重重,因为经过一个星期的了解,整个班学生八年级升九年级的期末考试数学科目最高分56分,于是五十几分的就成了本班的数学宝......

    二次根式教学反思

    二次根式教学反思 二次根式教学反思1 一、数学教学过程应当是一个生动活泼的。主动的和富有个性的过程,而不能再是单一的。枯燥的,以被动听讲和练习为主的方式,它应该是一个充......

    二次根式教学案例

    二次根式教学案例 一、案例背景: 本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次......