第一篇:光学课程设计 望远镜系统结构参数设计
光学课程设计
——望远镜系统结构参数设计
一 设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等„„ 二 设计目的及意义(1)、熟悉光学系统的设计原理及方法;(2)、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或相差;(3)、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识(高斯公式、牛顿公式等)对望远镜的外型尺寸进行基本计算;(4)、通过本次光学课程设计,认识和学习各种光学仪器(显微镜、潜望镜等)的基本测试步骤;
三 设计任务
在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。并介绍光学设计中的PW法基本原理。同时对光学系统中存在的像差进行分析。四 望远镜的介绍
1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。2.望远镜的一般特性
望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体时,物镜的像方焦点和目镜的物方焦点重合,光学间隔d=o。当月在观测有限距离的物体时,两系统的光学问隔是一个不为零的小数量。作为一般的研究,可以认为望远镜是由光学问 隔为零的物镜和目镜组成的无焦系统。这样平行光射入望远系统后,仍以平行光射出。图 9—9表示了一种常见的望远系统的光路图。为了方便,图中的物镜和目镜均用单透镜表 示。这种望远系统没有专门设置孔径光阑,物镜框就是孔径光阑,也是入射光瞳,出射光 瞳位于目镜像方焦点之外,观察者就在此处观察物体的成伤情况。系统的视场光阑设在物 镜的像平面处,入射窗和出射窗分别位于系统的物方和像方的无限远处,各与物平面和像平面合。
三 望远镜的分类
广义上的望远镜不仅仅包括工作在可见光波段的光学望远镜,还包括射电,红外,紫外,X射线,甚至γ射线望远镜。我们探讨的只限于光学望远镜。
1609年,伽利略制造出第一架望远镜,至今已有近四百年的历史,其间经历了重大的飞跃,根据物镜的种类可以分为三种:
1,折射望远镜
折射望远镜的物镜由透镜或透镜组组成。早期物镜为单片结构,色差和球差严重,使得观看到的天体带有彩色的光斑。为了减少色差,人们拼命增大物镜的焦距,1673年,J.Hevelius制造了一架长达46米的望远镜,整个镜筒被吊装在一根30米高的桅杆上,需要多人用绳子拉着转动升降。惠更斯干脆将物镜和目镜分开,将物镜吊在百尺高杆上。直到19世纪末,人们发明了由两块折射率不同的玻璃分别制成凸透镜和凹透镜,再组合起来的复合消色差物镜,才使得这场长度竞赛得到终止。
折射望远镜分为伽利略结构和开普勒结构两类。其中,伽利略结构历史最悠久,其目镜为凹透镜,能直接成正立的像,但是视场小,一般为民用 的2——4倍的儿童玩具采用。而绝大多数常见的望远镜都是开普勒结构,其目镜一般是凸透镜或透镜组,由于其光路中有实象,可以安装测距或瞄准分划板用来测量距离。但是简单的开普勒结构所成的像是倒立的,需要在光路内加上正像系统使其正过来,常见的正像系统为普罗棱镜或屋脊棱镜,既起到正像的作用,又使光路折回,缩短整机长度。
2,反射望远镜
该类镜最早由牛顿发明,其物镜是凹面反射镜,没有色差,而且将凹面制成旋转抛物面即可消除球差。凹面上镀有反光膜,通常是铝。反射望远镜镜筒较短,而且易于制造更大的口径,所以现代大型天文望远镜几乎无一例外都是反射结构。
反射望远镜的结构里,除了主物镜外,还装有一或几个小的反射镜,用来改变光线方向便于安装目镜。由于反射式望远镜的入射光线仅在物镜表面反射,所以对光学玻璃的内部品质比折射镜要求低。1990年,美国在夏威夷建成当时口径最大的凯克望远镜,该镜采用了一些前所未有的新技术:1,主物镜由36面六边形薄镜片拼和而成,厚度仅为10厘米。2,有计算机控制背面直撑点,补偿重力引起的形变。3,能通过改变镜面曲率补偿大气扰动。这些新技术的采用使得人类发射太空望远镜的要求不再迫切。
3,折反射望远镜。
折反射望远镜的物镜是由折射镜和反射镜组合而成。主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差。此类望远镜视场大,光力强,适合观测流星,彗星,以及巡天寻找新天体。根据副镜的形状,折反射镜又可以分为施密特结构和马克苏托夫结构,前者视场大,像差小;后者易于制造。
四 开普勒望远镜和伽利略望远镜
1.开普勒望远镜折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸透镜形式。这种望远镜成像是上下左右颠倒的,但视场可以设计的较大,最早由德国科学家开普勒(Johannes Kepler)于1611年发明。为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜[1]在光路中增加了转像稜镜系统。此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
以下是开普勒(Kepler telescrope)望远镜光路图:
开普勒式原理由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板(安装在目镜焦平面处),并且性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。
正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。
开普勒式望远镜看到的是虚像, 物镜相当于一个照相机,目镜相当于一个放大镜.。
开普勒望远镜结构特点:
1、开普勒望远镜是世界是第一个真正能发现类地行星的太空任务,它将发现宜居住区围绕像我们太阳似的恒星运转的行星。水是生命之本,此宜居住区得是恒星周围适合于水存在的一片温度适宜的区域,在这种温度下的行星表面可能会有水池存在。
2、在开普勒望远镜三年半多的任务结束之前,它将让我们更好地了解其它类地行星在人类银河系到底是多还是少。这将是回答一个长久问题的关键一步。
3、开普勒望远镜通过发现恒星亮度周期性变暗来探测太阳系外行星。当人类从地球上某个位置来观察天空时,如果有行星经过其母恒星的前面,就能发现此行星会导致其母恒星亮度稍微变暗。开普勒望远镜更能洞悉这一情况。
4、开普勒望远具有太空最大的照相机,有一个95兆像素的电荷偶合器(CCD)阵列,这就像日常使用的数码相机中的CCD一样。
5、开普勒望远镜如此强大,以至于它从太空观察地球时,能发现居住在小镇上的人在夜里关掉他家的门廊
1.开普勒望远镜放大原理和光路图
图1 开普勒望远镜的光路图
图2 图1所示为开普勒望远镜的光路示意图,图中L0为物镜,Le为目镜。远处物体经物镜后在物镜的像方焦距上成一倒立的实像,像的大小决定于物镜焦距及物体与物镜间的距离,此像一般是缩小的,近乎位于目镜的物方焦平面上,经目镜放大后成一虚像于观察者眼睛的明视距离于无穷远之间。
物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
望远镜可分为两类:若物镜和目镜的像方焦距均为正(既两个都为会聚透镜),则为开普勒望远镜,此系统成倒立的像;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜,此系统成正立的像。
2伽利略望远镜
伽利略望远镜的物镜由正透镜构成,目镜由负透镜构成,如图10-14所示。该系统最早
是在1608年由荷兰人发明的,伽利略首先将它用于天文观察,并发现了木星的卫星,故称为伽利略望远镜。
图10-14 伽利略望远镜光路图
伽利略望远镜结构紧凑,筒长短,系统成正像。但是该系统的目镜是负透镜,当物镜为孔径光阑时,出瞳位于目镜前,很难和眼睛重合。因此,该系统作为助视光学仪器时,眼睛常为 孔径光阑,物镜为视场光阑,导致该系统存在渐晕现象。同时,因为它不存在中间的实像,不可以设置分划板进行物体线度的测量等原因,逐渐被开普勒望远镜所代替。五 望远镜外形尺寸设计
设计一个光学系统,一般可以分为两个阶段:第一阶段为初步设计阶段,通常叫做外 形尺寸计算;第二阶段为像差设计阶段。
光学系统外形尺寸计算的任务是根据对仪器提出的要求,如光学特性,外形,重量以 及有关技术条件等,确定系统的组成,各组元的焦距,各组元的相对位置和横向尺寸等。外形尺寸计算的主要依据是高斯光学理论,为了保证设计顺利进行,用像差理论对计算结 果作一些粗略地估计和分析也是必要的。
像差计算的任务是按照第一阶段设计计算结果,确定各组元的结构参数 径,厚度以及所用材料等等,并保证满足成像质量的要求。
本节仅以简单望远镜系统为例,说明光学系统外形尺寸设计计算的一般方法。
计算一个简单开普勒望远系统的外形尺寸。该系统只包括物镜和目镜,要求镜简长度 L=315nm, Γ=20*,2ω=3°20′ 以下是开普勒望远镜的光路示意图
1.目镜的视场角
根据可见光系统对目镜的要求。先求目镜的视场角。将视放大率Γ=20*,视场角 ω=1°40′带入公式tgω’=Γ*tgω,可求出ω’=33°20’。2ω’=66°40’.2.求物镜和目镜的焦距
由上面给出的已知条件,联立方程组可得:
L= f物’+ f目’ Γ=L/Γ=300/20=15mm
8.求目镜的口径D目 D目= D1’+2 Lz’tanω’
=1.5+2*15*0.658=21.229 六 望远镜的工作原理 望远镜系统的垂轴放大率、角放大率、、视放大率
望远镜是用来观察无限远目标的仪器,根据上节讨论的对目视光学仪器的共问要求,仪器应出射平行光,成像在无限远,这样望远镜应该是一个将无限远目标成像在无限远的无焦系统:刘于无限远目标,通过一定焦距的透镜组,将成像在透镜组的像方焦平面上,而不是无限远,不可能构成望远系统,联系上节讨论的放大镜和显微镜的构成,可以想到,再加一目镜,使透镜组的像方焦平面与目镜物方焦平面重合,这种组合就实现了把无限远目标成像到 无限远的目的,如图3—9(a)所示、望远镜是扩人人眼对远距离目标观察的视觉能力的。它必须要起到扩大视角的作用:由于物体位在无限远.同一门标对人眼的张角w眼和对仪器的张角。〔望远镜的物方视场角)完全可以认为是相等的,即w=w眼,从图3-(b)可以看到,物体通过整个系统成像后,对人眼的张角就等丁仪器的像方视场角w’,即w’=w仪按照视放大率的定义,对望远镜系统可以写出
Γ=tgw仪/tgw眼=tgw’/tgw
(3-8);
我们关心的是视角是否扩大,符合什么关系才能扩大视角,冈此需要把tgw’利tgw。用系统内部的光学参数表示出来。由图3—9(b),并根据无限远物的理想像高公式和无限远像的物高公式,对于物镜和目镜分别有 y’物=-f’物tgw或 tgw=-y’物/f’物 并考虑到y’物=y目,得到
Γ=tgw’/tgw=-f’物/f’目
(3-9)
式(3—9)即为望远系统的视放大率公式、从式(3—9)可以看到,视放大率在数值上等于物镜焦距与目镜焦距之比,只要物镜焦距大于日镜焦距,就扩大了视角,起到了望远的作用:要提高视放大率,就必须加大物镜的焦距或减小目镜的焦距。从(3—9)式还可以看出,Γ正可负,它与物镜、目镜焦距的符号有关,Γ为负时,w’与w反号,通过望远系统观察的是倒立的像。
从以上讨论可知、—个望过系统应该由物镜和目镜两组构成,物镜的像方焦平面应与懒目镜的物方焦平面重合,且物镜焦距在数值上应大于目镜焦距 这样,就把无限远物成像在无限远,并扩大了现角c 正是由于望远系统的这种构成方式,使望远系统具有一般光学系统并不具备的特点。从图3—9(b)看到,w是入射光束和光轴的夹角,w’是出射光束和光轴的夹角.二者正切之比是的放大率γ,显然,望远系统的视放大率Γ与角放大率γ相等、即Γ=tgw’/tgw=γ
按照角放大率的定义,它是—对共轭面的成像性质,但在望远系统中,人射光和出射光都是平行光束,倾斜入射的平行光束中任意一条人射光线的出射光线和光轴的夹角是相同的.即 大率为定值,与共扼面的位置无关;可以把不同的人射光线看作是由轴上不同点发出的,与相应的出射光线和光轴的交点看作是一 对共轭点,各对共轭面角放大率皆相同,所以角放大率与共轭面位置无关,这是望远系统特有的性质,一般光学系统角放大率是随共轭面位置的改变而变化的。由此可以得出:望远系统的视放大率等于角放大率.与共轭面位值无关,只与物镜和目镜的焦距有关c 根据放人率之间的关系.还可以知道,望还系统的垂轴放大率、轴向放大率都与共轭面的位置无关:
从间3-10可以看到,和光轴下行高度为y的入射光线可以看作是出任意—物平面物高 为y的物点发出的,其出射光线平行光轴射出*当然又通过像点,所以像高y’处处相等,即垂轴放大率处处相等。利用这—特点,又可以写出望远系统视放大率的另一种形式,经 过系统前方任意位置放—大小为D的物体,通过系统后像高为D’,垂釉放大率为
β=D’/D 所以
Γ=γ=1/β=D/D’
(3-10)
利用这个道理,可以测量望远镜的视放大率,在望远镜前垂直放置一有刻板的物体,在望远镜后测量像高的大小,二者之比即为望远系统的视放大率。
前面说过视放大率Γ可正可负,完全取决于物镜和目镜焦距的符号。Γ为负,w’与w反号,通过望远系统观察的像是倒立的,反之,Γ为正,像正立。经远物镜只能是正透镜,否则不 能满足扩大视角的要求,所以Γ的正负取决于目镜采用正透镜还是负透镜。望远镜的轴向放大率
对于有一定体积的物体,除垂轴放大率外,其轴向也有尺寸,故还有一个轴向放大率。轴向放大率是指光轴上一对共轭点沿轴移动量之间的关系。如果物体和沿轴移动一微小量dl,相应的像移动dl’,轴向放大率用希腊字母α表示,定义为:
α=dl/dl’
(3-1)则单个折射球面的轴向放大率α由微分可得:
—(n’dl’)/l’^2+ndl/l^2=0 于是有
α=dl’/dl=nl’^2/n’l^2
(3-2)也即
α=(n’/n)β^2
(3-3)由此可见,如果物体是一个沿轴向放置的正方形,因垂轴放大率和轴向放大率不一致,则其像不再是正方形。还可以看出,折射球面的轴向放大率恒为正值,这表示沿轴移动,其像点以同样的方向沿轴移动。
公式(3-3)只有当dl很小时才适用。如果物点沿轴移动有限距离,如图4所示,此距离显然可以用物点移动的始末两点A1和A2的截距l2-l1来表示,相应于像点移动的距离应为l’2-l1,这时的轴向放大率以a表示,有
a=(l’2-l’1)/(l2-l1)
图4 对A1和A2点由图可得:
n’/l’2-n/l2=(n’-n)/r=n’/l’1-n/l1 即
a=(n’/n)β1β2 其中,β1和β2分别为物体在A1和A2的垂轴放大率。4.望远镜的角放大率
在近轴区以内,通过物点的光线经过光学系统后,必然通过相应的像点,这样一对共轭光线与光轴夹角u’和u的比值,称为角放大率,用希腊字母γ表示:
γ=u’/u
(4-1)利用lu=l’u’,上式可表示为
γ=l/l’
(4-2)由式(2-3)可得
γ=n/n’ ·1/β
(4-3)利用上面式子可得三个放大率之间的关系:
aγ=β 3 望远镜的极限分辨角 通常,我们把望远镜刚能分辨的两物点在望远镜系统上成的两像点之间的夹角叫做望远镜的极限分辨角。它的大小与望远镜的视放大率以及垂轴,轴向放大率有关。
ω=1.22λ/D
其中,λ为入射波长,D为入瞳直径。望远镜的最灵敏波长为555纳米,当入瞳单位取mm,极限分辨角取秒时,ω’=140/D。七 物镜组和目镜组的选取
望远镜由物镜和目镜组合面成。对望远镜的光学性能和技术条件的要求,决定了对物镜和目镜的要求。例如,望远镜的物方视场角2w。就是物镜的视场角,而像方视场2w’就等于目镜的视场角。因此,当我们根据望远镜的要求来拟定光学系统的结构时,就要预先考虑到对物镜和目镜的要求。下面分别介绍一些常用的望远镜物镜和目镜的结构型式,以及它们可能达到的光学性能,作为拟定光学系统结构的参考。
物镜的光学待性主要有三个:焦距f‘物、相对孔径D/f’物和视场2w。
1物镜
相对孔径: 根据公式(3—l o)
Γ=γ=1/β=D/D’
(3-10)
在望远镜的光学性能中,对仪器的出瞳直径和视放大率提出了一定要求。根据上式
即可求得入瞳直径o。
入瞳直径D和物镜焦距f’物之比D/f’物称为物镜的相对孔径。当f’物和D确定之后,物镜的相对孔径也就确定了。这里不直接用光束口径,而采用相对孔径来代表物镜的光学特性,是因为相对孔径近似等于光束的孔径角2U’max。相对孔径越大,光束和光轴的夹角Umax越大,像差也就越大。为了校正像差,必须使物镜的结构复杂化。换句话说,相对孔径代表物镜复杂化的程度。例如,一个物镜的焦距为200 mm,光束口径为40 mm;另一个物镜的焦距为100mm,光束口径为35mm,前者相对孔径为l,5;而后者为1:2.85。尽管前者光束口径比后者大,但是后者必须采用比前者更为复杂的物镜结构。
2、视场
系统所要求的视场,也就是物镜的视场。由公式(3-8)得
tgw=taw’/Γ
。
w’即目镜的视场角。一般望远镜物镜的视场都不大,通常不超过10一15。
由于物镜视场不大,并且视场边缘的成像质量允许适当降低,因此只须校正球差、普差和铀向色差。
下面介绍几种常用的望远镜物镜的结构和光学待性。
(一)折射式望远物使
‘
1.双胶物镜。双胶物镜是一种最常用最简单的望远镜物镜,由一个正透镜和一个负透镜胶合而成,如图9—2所示。这种物镜的优点是;结构简单,安装方便,光能损失小,合适的选择玻璃可以校正球差、惠差和轴向色差三种像差,满足望远镜物镜的像差要求。
不同焦距时,双胶物镜可得到满意的成像质量的相对孔径,如表9-1所示
由于这种物镜不能校正像散和场曲,所以视场一般不能超过8一10。如果物镜后面有很长光路的棱镜,由于棱镜的像散和物镜的像散符号相反,可以抵销一部分物镜的像散。视场可达到15一20。一般双胶物镜的最大口径不能超过100 mm,这是因为当透镜直径过大时,由于透镜的重量过大,胶合不牢固。同时,当温度改变时,胶合面上可能产生应力,使成像质量变坏,严重时可能脱胶。
2.双不胶物镜。双不胶镜同样由一块正透镜和一块负透镜组成空气间隔,如图9—3所示。
它和双胶物镜比较,具有下列优点:
(1)物镜的口径不受限制。因此,一些大口径的物镜都用双不胶物镜,而不用双胶物镜。。
(2)能够利用空气间隔校正剩余球差,增大相对孔径。在一般焦距(100一150 mm)时,相对孔径可达1:2.5—1:3。
它的缺点是:光能损失增加,加工安装比较困难,特别是两透镜的共铀性不易保证。3.双单和单双物镜。如果物镜的相对孔径大子l :3时,一般采用一个双胶合透镜和一个单透镜进行组合,根据它们前后位置排列不同,分双单和单双两种物镜,如图9—4(a)、(b)所示。
这种型式的物镜,如果双胶透镜和单透镜之间的光焦度分配适当,双胶合透镜玻璃选择恰当,孔径高级球差和色球差都比较小,相对孔径可达1:2,这是目前采用较多的大相对孔径望远物镜。三分离物镜。这种型式的物镜由三个单透镜构成,如图9-5所示。他们能很好的控制孔径高级球差和色球差,相对孔径可达1:2,。缺点是装配调整困难,光能损失和杂光都比较大。摄远物镜。摄元物镜由一个正透镜和一个负透镜组构成,如图9-6所示。
它的优点是:
(1)使系统的总长度上小于物镜的总焦距f’。因此,可以缩短仪器的外形尺寸。(2)能增加视场。因为具有正透镜组和负透镜组,除了校正球差和惠差而外,还能校正场曲和像散。
它的缺点是:相对孔径比较小。因为前组的相对孔径比整个物镜的相对孔径高得多,如前所述,双胶物镜的相对孔径不能太大,因而整个物镑的相对孔径受到前组相对孔径的限制。前组用双胶透镜,相对孔径不超过l,4,整个物镜的相对孔径不超过1:7。若前组用相对孔径为1:3的双不胶透镜,则整个物镜的相对孔径可达到1:5左右。6.由两个双胶合组构成的物镜。如图9—7所示,随着两透镜组相对位置的不同,可以分为
图中(a)和(b)所表示的两类。图(a)形式的物镜可以增大相对孔径达到1:2.5一1:3,图(b)形式的物镜可以增加视场。例如,相对孔径为1:5时,视场可以达到30。目镜
望远镜目镜的作用相当于放大镜。它把物镜所成的像放大后成像在人眼的远点,以便进行观察。对于正常人眼睛,远点在无限远。因此,一般要求物镜所成的像平面应与目镜的物方焦平面重合。
目镜的光学特性主要有三个:像方视场角2w’、相对出瞳距离lz’和工作距离s下面分别加以说明。
(1)像方视场角2w’
根据里远镜的视放大率公式(3—8)可以看到,如果望远镜的视放大宰相视场角一定,兢要求一定的目镜视场。无论是提高望远镜的视放大率Γ或者视场角w,都需要相应地提高目镜的视场。目前,提高望远镜视放大率和视场主要是受到目镜视场的限制。
。。
一般目镜的视场为40.一50,广角目镜的视场为60一80,90以上的目镜称为持
。广角目镜。双眼仪器的目镜视场不超过75。
当目镜的视场一定时,增大望远镜的视放大率Γ必然要减小整个系统的视场2w。例
。如,当目镜的视场为45时,不同视放大率对应的视场角如表9—2所示。
如果要设计大视场和高视放大率的望远镜,必须采用广角和特广角目镜。
增大目镜视场的主要矛盾是轴外像差不易校正。尽管广角和特广角目镜的光学结构都比 较复杂,但像质仍不理想,使用受到限制。
二、相对出瞳距离lz’/f’B 目镜的出瞳距离lz’和目镜焦距f’目之比lz’/f’目称为相对出瞳距离。出瞳乃是望远镜的孔径光阑在望远镜像空间所成的像,它与入瞳对整个系统互为物像关 在一般情形,望远镜的孔径光阑和物镜框重合,如图9—14所示。应用牛顿公式 xx’=f目f目’=-f’目
将=-f物’, Γ=-f物’/f目’代入上式得 x’=-f目’/Γ
相对出瞳距离lz’/f目’为 lx’/ f目’=lf’/ f目’+x’/ f目’
当望远镜的放大率Γ较大时,x’和f目’比较起来很小,lz’近似地等于目镜的像方顶焦距lf’因此,对于一定型式的目镜lz’和焦距之比近似地为一个常数。所以可以用相对出瞳距离作为目镜的一个特性参数。下面讨论目镜的相对出瞳距离对望远镜结构的影响。
出瞳距离lz’是根据使用要求给出的。当lz’要求一定时,lz’/ f目’之比越大.则f目’越小.镜的总长度L等于目镜和物镜焦距之和,即
L=f目’十f物’= f目’(1一Γ)由上式可知,总长度L和目镜的焦距f目’成比例。所以目镜的相对出瞳距离直接影响仪器 的外形尺寸。
另外,当目镜视场w’一定时,lz’/f目’越大,光线在目镜上的投射高增加,像差也越严重。欲得到满意的像质,目镜的结构必然随着lz’/f目’比值增大而趋于复杂。
一般目镜的相对出瞳距离为lz’/f目’=o.5一o.8,有些目镜的相对出瞳距离达到1以上。
提高目镜的相对出瞳距离,实质上是使目镜的像方主平面H’向后移。在目镜物方焦平面附近加入负场镜也可以适当地增大出瞳距离。
三、工作距离S 目镜第一面顶点到物方焦平面的距离称为目镜的工作距离。如第三章所述,目视光学仪器
为了适应远视服和近视限使用,视度是可以调节的。极度的调节范围一般为土5视度。有些仪
器的视度是固定的,约在一o.5一一l视度之间。
当要求极度调节范围5D,土5视度时.根据公式(3—11),B镜的轴向移动量s等于
:——:;:——器
由此可见,当要求负视度时,2为正值,目镜必须移近物镜的像平面。
为了保证在调负视度时目镜的第一面不致与装在物镜像平面上的分划板相碰,要求目镜 的工作距离3大于目镜调极度所需要的最大轴向移动量(如果没有分划板,则上述要求就不
必要了)在简单的望远镜中,目镜和韧镜的相对孔径相等,但是目镜的焦距一般比物镜焦距小得
多,同时所用透镜组也比较多。因此,目镜的球差和轴向色差一般都比较小,用不着特别注意校
正便可满足要求。但是,由于目镜的视场大,和视场有关的替差、像散、场曲、g6f变相垂袖色差都
相应地大lB镜主要需要校正这五种像差。然面,由于目镜视场过大,无法完全校正。因此,望
远镜视场边缘的成像质量一般都比视场中心差。在装有瞄准或测量分划板的望远镜中,物镑
——180——
第二篇:《工程光学课程设计》课程简介
《工程光学课程设计》课程简介
一、课程基本信息
课程代码:0807908007
课程名称:工程光学课程设计
英文名称:Course Project of Engineering Optics
学分:1总 学 时:1周讲课学时:实验学时: 1周上机学时: 0课外学时: 0
适用对象:光电信息科学与工程专业学生
先修课程:大学物理、高等数学、工程光学
开课单位:通信工程学院
二、课程内容与教学目标
本课程是学完《工程光学》课程之后,让学生综合运用工程光学知识,进行光学系统的设计,以加深对工程光学基本知识的理解,对教材内容有一个系统的全面的认识。在课程实验的基础上,进一步提高综合应用知识、分析解决问题的能力,达到将理论知识和实践初步结合的目的。
三、对教学方式、实践环节、学生自主学习的基本要求
1、学习对基本的光学元件的特性和功能进行测试;
2、初步掌握简单组合光学系统的设计;
3、撰写规范的设计总结报告,培养严谨的作风和科学的态度。
四、考核方式与学习成绩评定(请注明平时成绩、考试成绩、实验成绩等各部分占比)
1、考核方式:根据考勤、设计、答辩验收、报告撰写情况综合评分
2、成绩评定:书面设计和设计总结报告的综合成绩25%;完成设计、完整的结果数据60%;创新能力 5%;态度和纪律10%
最终成绩分优秀、良好、中等、及格和不及格五档。
第三篇:结构课程设计总结
结构课程设计心得
回顾这此次结构课程设计,至今我仍感慨颇多,的确,从开始着手做,从理论到实践,在这一周的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,比如对单向板肋形楼盖进行整体设计计算,包括单向板的设计计算、次梁的设计计算、主梁的设计计算、绘制楼盖的结构布置图、次梁与主梁的模板配筋图等等
这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在朱老师的辛勤指导下,终于游逆而解。同时,对给过我帮助的所有同学和各位指导老师再次表示忠心的感谢!
第四篇:砌体结构课程设计
砌体设计
楼梯间采用现浇混凝土楼盖,纵横向承重墙厚度均为190mm,采用单排孔混凝土小型砌块、双面粉刷,一层采用MU20砌块和Mb15砂浆,二至三层采用MU15砌块和Mb砂浆,层高3.3m一层墙从楼板顶面到基础顶面的距离为4.1m,窗洞均为1800mm×1500mm,门洞宽均为1000mm,在在纵横相交处和屋面或楼面大梁支撑处,均设有截面为190mm×250mm的钢筋混凝土构造柱(构造柱沿墙长方向的宽度为250mm),图中虚线梁L1截面为250mm×600mm,两端伸入墙内190mm,施工质量控制等级为B级。
纵墙计算单元横墙计算单元
三毡四油铺小石子10.809009.90+油膏嵌实15mm厚水泥砂浆40mm厚水泥石灰焦渣砂浆3‰找坡 +100mm厚沥青膨胀珍珠岩120mm厚现浇混凝土板33006.60+3.3010mm厚水磨石地面面层 20mm厚水泥打底 120mm钢筋混凝土板33003300
1、荷载计算:
(1)屋面荷载:
防水层:三毡四油铺小石子 0.4kN/㎡ 找平层:15mm水泥砂浆 0.3kN/㎡
800++-0.00
找坡层:40mm厚水泥焦渣砂浆3‰找坡 0.56kN/㎡ 保温层:100mm厚沥青膨胀珍珠岩 0.8kN/㎡ 结构层:120mm厚现浇混凝土板 3.0kN/㎡ 抹灰层:10mm厚混合砂浆 0.17kN/㎡ 钢筋混凝土进深梁250mm×600mm 1.18 kN/㎡ 屋盖永久荷载标准值: ∑6.41kN/㎡ 屋盖可变荷载标准值 0.5kN/㎡ 由屋盖大梁给计算墙垛计算:
标准值:N1k =Gk+Qk=(6.41 kN/㎡+0.5 kN/㎡)×1/2×6.3m×3.6m=78.36 kN 设计值:
由可变荷载控制组合:N1=1.2Gk+1.4Qk=(1.2×6.41 kN/㎡+1.4×0.5 kN/㎡)×1/2×6.3m×3.6m=95.17 kN 由永久荷载控制组合:N1=1.35Gk+1.0Qk=(1.35×6.41 kN/㎡+1.0×0.5 kN/㎡)×1/2×6.3m×3.6m=103.80 kN(2)楼面荷载:
10mm厚水磨石地面面层 0.25 kN/㎡ 20mm厚水泥打底 0.40 kN/㎡ 结构层120mm钢筋混凝土板 3.0 kN/㎡ 抹灰层10mm厚 0.17 kN/㎡ 钢筋混凝土进深梁250mm×600mm 1.18 kN/㎡ 楼面永久荷载标准值: ∑5.0kN/㎡
楼面可变荷载标准值 1.95kN/㎡ 由楼面大梁传给计算墙垛的荷载:
标准值:N2k =Gk+Qk=(5.0 kN/㎡+1.95 kN/㎡)×1/2×6.3m×3.6m=78.81 kN 设计值:
由可变荷载控制组合:N2=1.2Gk+1.4Qk=(1.2×5.0kN/㎡+1.4×1.95 kN/㎡)×1/2×6.3m×3.6m=99.0 kN 由永久荷载控制组合:N2=1.35Gk+1.0Qk=(1.35×5.0 kN/㎡+1.0×1.95 kN/㎡)×1/2×6.3m×3.6m=98.66 kN(3)墙体自重:
女儿墙重(厚190mm,高900mm)计入两面抹灰40mm其标准值为:N3k =2.96 kN/㎡×3.6m×0.9m=9.59 kN 设计值:
由可变荷载控制组合:N3=9.59 kN×1.2=11.51 kN 由永久荷载控制组合:N3=9.59 kN×1.35=12.95 kN 女儿墙根部至计算截面高度范围内墙体厚190mm其自重标准为:2.96 kN/㎡×3.6m×0.6m=6.39 kN 设计值:
由可变荷载控制组合:N3=6.39 kN×1.2=7.67 kN 由永久荷载控制组合:N3=6.39 kN×1.35=8.63 kN 计算每层墙体自重,应扣除窗面积,对于2、3层墙体厚190mm,高3.3m自重为:(3.3m×3.6m-1.8m×1.5m)×2.96 kN/㎡+
1.8m×1.5×0.25 kN/㎡=27.85 kN 设计值:
由可变荷载控制组合:27.85 kN×1.2=33.42 kN 由永久荷载控制组合:27.85 kN×1.35=37.60 kN 对于1层墙体厚190mm计算高度4.1m其自重为:(3.5m×3.6m-1.8m×1.5m)×2.96 kN/㎡+1.8m×1.5×0.25 kN/㎡=29.98 kN 设计值:
由可变荷载控制组合:29.98 kN×1.2=35.97 kN 由永久荷载控制组合:29.98 kN×1.35=40.47 kN
2、内力计算:
楼盖、屋盖大梁截面b×h=250mm×600mm,梁端在外墙的支撑长度为190mm,下设由bb×ab×ta=190mm×500mm×180mm的刚
a01hf性垫块,则梁端上表面有效支撑长度采用墙偏心距e=h/2-0.4a0。h为支撑墙厚。,对于外由可变荷载控制下的梁端有效支撑长度计算表:
楼层 h/mm f /N/㎡
N /kN 600 4.02 11.51 600 4.02 140.1 0.41 600 5.68 272.52 0.80 0/N/mm2 0.034
1
0/mm
5.41 66.10
5.55 67.80
5.63 57.90 由永久荷载控制下的梁端有效支撑长度计算表:
楼层 h/mm f /N/㎡
N /kN 600 4.02 12.95 600 4.02 154.35 0.45 5.57 68.05 600 5.68 290.61 0.85 5.62 57.76 0/N/mm2 0.038
1
0/mm
5.41 66.10 外重墙的计算面积为窗间墙垛的面积A=1800mm×190mm墙体在竖向荷载作用下的计算模型与计算简图如下
纵向墙体的计算简图
各层I-I、IV-IV截面内力按可变荷载控制和永久变荷载控制组
合分别列于下表
由可变荷载控制的纵向墙体内力计算表
截面上层传荷
楼层
Nu 3 2 1 /kN 11.51(7.67)147.77 280.19
本层楼盖荷载 Nl
/kN 95.17 99.0 99.0
截面I-I
IV-IV NⅥ
/kN 147.77 280.19 412.61
e2
/mm 0 0 0
e1
M NⅠ
/mm /(kN/m)/kN 68.56 6.52 114.35 67.88 6.72 246.77 71.84 7.11 379.19 表
NⅠ= Nu+ Nl M= Nu·e2+ Nl·e1 NⅥ=NⅠ+NW(墙重)由永久荷载控制的纵向墙体内力计算表
中
截面上层传荷
楼层
Nu 3 2 1 /kN 12.95(8.63)162.98 299.24
本层楼盖荷载 Nl
/kN 103.80 98.66 98.66
截面I-I
IV-IV NⅥ
/kN 162.98 299.24 435.5
e2
/mm 0 0 0
e1
M NⅠ
/mm /(kN/m)/kN 68.56 7.12 125.38 67.78 6.30 261.64 71.94 7.10 397.9
3、墙体承载力计算:
本建筑墙体的最大高厚
H04100mm21.58c20.81.0692624.46h190mm满足要求
承载力计算一般对I-I截面进行,但多层砖房的底部可能IV-IV截面更不利计算结果如下表
纵向墙体由可变荷载控制时的承载力计算表
计算项目
M/(kN·m)N/kN e/mm h/mm e/h
第2层
截面第3层
截面I-I 6.52 114.35 57.02 190 0.3 17.37 0.26 342000 15 10 4.02 357.46 >1
6.72 246.77 27.23 190 0.14 17.37 0.44 342000 15 10 4.02 604.93 >1
IV-IV
第1层
截面
截面I-I 7.11 379.19 18.75 190 0.099 18.42 0.45 342000 20 15 5.68 875.15 >1
IV-IV
0 280.19 0 190 0 17.37 0.69 342000 15 10 4.02 948.64 >1
0 412.61 0 190 0 18.42 0.63 342000 20 15 5.68 1223.81 >1 H0h
A/m㎡ 砌块MU 砂浆M f/(N/mm2)
Af/kN Af/N
纵向墙体由永久荷载控制时的承载力计算表 计算项目
M/(kN·m)N/kN e/mm h/mm e/h
第2层
截面第3层
截面I-I 7.12 125.38 56.78 190 0.30 17.37 0.26 342000 15 10 4.02 357.46 >1
6.30 255.98 24.61 190 0.14 17.37 0.44 342000 15 10 4.02 604.93 >1
第1层
截面
截面I-I 7.10 397.9 17.84 190 0.099 18.42 0.45 342000 20 15 5.68 875.15 >1
IV-IV IV-IV
0 435.5 0 190 0 18.42
0 293.58 0 190 0 17.37 0.69 342000 15 10 4.02 948.64 >1 H0h
A/m㎡ 砌块MU 砂浆M
0.63 342000 20 15 5.68 1223.81 >1 f/(N/mm2)
Af/kN Af/N
由上表可知砌体墙均能满足要求。
4、气体局部受压计算:
以上述窗间墙第一层为例,墙垛截面为190mm×1800mm,混凝土梁截面为250mm×600mm,支承长度a=190mm,根据规范要求在梁下设190mm×600mm×180mm(宽×长×厚)的混凝土垫块。根据内里计算,当由可变荷载控制时,本层梁的支座反力为Nl=99.0kN墙体的上部荷载Nu=280.19KN,当由永久荷载控制时,本层梁的支座反力为Nl=98.66kN,墙体的上部荷载Nu=299.24KN。墙体采用MU20空心砌体砖,M10混合砂浆砌筑。由a0=57.76mm A0=(b+2h)h=(600mm+2×190mm)×190mm=186200
190mm=324000mm2mm2<1800mm×
故取
A0=186200mm2
2垫块面积:Ab=bb×ab=190mm×600mm=114000mm
计算垫块上纵向的偏心距,取Nl作用点位于墙距内表面0.4 a0处,由可变荷载荷载控制组合下:
280190N11400093.40kN1800mm190mm 190mm99.0kN(0.457.76mm)2e37.0mm99.0kN93.40kN NU0Abe37.0mm0.195h190mm查表得=0.69 A0186200mm2r10.35110.3511.292rl0.8r0.81.291.032 Ab114000mm垫块下局压承载力按下列公式计算:
N0NL99.0kN93.40kN192.4kN
rlAbf0.691.032114000mm25.68kN/mm2461.09kN
N0NLrlAbf
由永久荷载控制组合下
299240N11400099.75kN1800mm190mm 190mm98.66kN(0.457.76mm)2e35.75mm98.66kN99.75kN NU0Abe35.75mm0.188h190mm查表得=0.704 垫块下局压承载力按下列公式计算:
N0NL98.66kN99.75kN192.4kN
rlAbf0.7041.032114000mm25.68kN/mm2470.44kN
N0NLrlAbf
由此可见,在永久荷载控制下,局压承载能力能满足要求。
5、横墙荷载
(1)屋面荷载:
防水层:三毡四油铺小石子 0.4kN/㎡ 找平层:15mm水泥砂浆 0.3kN/㎡ 找坡层:40mm厚水泥焦渣砂浆3‰找坡 0.56kN/㎡ 保温层:100mm厚沥青膨胀珍珠岩 0.8kN/㎡ 结构层:120mm厚现浇混凝土板 3.0kN/㎡ 抹灰层:10mm厚混合砂浆 0.17kN/㎡ 屋盖永久荷载标准值: ∑5.23kN/㎡ 屋盖可变荷载标准值 0.5kN/㎡
标准值:N1k =Gk+Qk=(5.23 kN/㎡+0.5 kN/㎡)×1/2×1.0m×3.6m=10.31 kN 设计值:
由可变荷载控制组合:N1=1.2Gk+1.4Qk=(1.2×5.23 kN/㎡+1.4×0.5 kN/㎡)×1/2×1.0m×3.6m=12.56kN 由永久荷载控制组合:N1=1.35Gk+1.0Qk=(1.35×5.23 kN/㎡+1.0×0.5 kN/㎡)×1/2×1.0m×3.6m=13.61 kN(2)楼面荷载:
10mm厚水磨石地面面层 0.25 kN/㎡ 20mm厚水泥打底 0.40 kN/㎡ 结构层120mm钢筋混凝土板 3.0 kN/㎡ 抹灰层10mm厚 0.17 kN/㎡ 楼面永久荷载标准值: ∑3.82kN/㎡ 楼面可变荷载标准值 1.95kN/㎡ 由楼面大梁传给计算墙垛的荷载:
标准值:N2k =Gk+Qk=(3.82 kN/㎡+1.95 kN/㎡)×1/2×1.0m×3.6m=10.39 kN 设计值:
由可变荷载控制组合:N2=1.2Gk+1.4Qk=(1.2×5.0kN/㎡+1.4×1.95 kN/㎡)×1/2×1.0m×3.6m=13.17 kN 由永久荷载控制组合:N2=1.35Gk+1.0Qk=(1.35×5.0 kN/㎡+1.0×1.95 kN/㎡)×1/2×1.0m×3.6m=12.79 kN
横向墙体计算简图
(2)横墙自重承载力计算
对于2、3层墙体厚190mm,高3.3m自重为2.96 kN/㎡×3.3m×1.0m=9.768kN 设计值:
由可变荷载控制组合:9.768 kN×1.2=11.72 kN 由永久荷载控制组合:9.768 kN×1.35=13.19kN 对于1层墙体厚190mm计算高度4.1m其自重为: 2.96 kN/㎡×3.3m×1.0m=12.14kN 设计值:
由可变荷载控制组合:12.14kN×1.2=14.57kN 由永久荷载控制组合:12.14 kN×1.35=16.39 kN 本建筑墙体高厚比
H04100mm21.5826h190mm满足要求。
横向墙体由可变荷载控制组合表 计算项目 第3层
N/kN h/mm H0/m
24.28 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1
第2层 49.17 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1
第1层 76.91 190 4.1 21.58 0.59 190000 20 15 5.68 636.73 >1 H0h
A/m㎡ 砖MU 砂浆M f/(N/mm2)
Af/kN Af/N
横向墙体由永久荷载控制组合表 计算项目 第3层
N/kN h/mm H0/m
26.8 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1
第2层 52.78 190 3.3 17.37 0.69 190000 15 10 4.02 527.02 >1
第1层 81.96 190 4.1 21.58 0.59 190000 20 15 5.68 636.73 >1 H0h
A/m㎡ 砖MU 砂浆M f/(N/mm2)
Af/kN Af/N
由上表可知砌体墙均能满足要求
第五篇:LED灯具光学参数检测技术
分享:深圳洪润照明股份有限公司
LED灯具光学参数检测技术
LED光源与传统光源在物理尺寸及光通量、光谱、光强的空间分布等方面均存在很大差异,LED检测不能照搬传统光源的检测标准及方法。
【LED灯具光学参数的检测】
1、发光强度检测
光强即光的强度,是指在某一特定角度内所放射光的量。因LED的光线较集中,在近距离情况下不适用平方反比定律,CIE127标准规定对光强的测量提出了测量条件A(远场条件)、测量条件B(近场条件)两种测量平均法向光强的条件,2种条件的探测器面积均为1cm2。通常情况下,使用标准条件B测量发光强度。
2、光通量和光效检测
光通量是光源所发出的光量之总和,即发光量。检测方法主要包括以下2种:
(1)积分法。在积分球内依次点燃标准灯和被测灯,记录它们在光电转换器的读数分别为Es和ED。标准灯光通量为已知Φs,则被测灯的光通量ΦD=ED×Φs/Es。积分法利用“点光源”原理,操作简单,但受标准灯与被测灯的色温偏差影响,测量误差较大。
(2)分光法。通过光谱能量P(λ)分布计算得出光通量。使用单色仪,在积分球内对标准灯的380nm~780nm光谱进行测量,然后在同条件下对被测灯的光谱进行测量,对比计算出被测灯的光通量。
光效为光源发出的光通量与其所消耗功率之比,通常采用恒流方式测量LED的光效。
3、光谱特性检测
LED的光谱特性检测包括光谱功率分布、色坐标、色温、显色指数等内容。
光谱功率分布表示光源的光是许多不同波长的色辐射组成的,各个波长的辐射功率大小也不同,这种不同随波长顺序排列就称为光源的光谱功率分布。利用光谱光度计(单色仪)和标准灯对光源进行比对测量获得。
色坐标是以数字方式在坐标图上表示光源的发光颜色的量。表示颜色的坐标图有多种坐标系,通常采用X、Y坐标系。
色温是表示人眼看到的光源色表(外观颜色表现)的量。光源发射的光与某一温度下绝对黑体发射的光颜色相同时,该温度即为色温。在照明领域,色温是描述光源光学特性的一个重要参数。色温的相关理论源于黑体辐射,可通过光源的色坐标从包含有黑体轨迹的色坐标中获得。
显色指数表明光源发射的光对被照物颜色正确反映的量,通常用一般显色指数Ra表示,Ra是光源对8个色样显色指数的算术平均值。显色指数是光源质量的重要参量,它决定着光源的应用范围,提高白光LED的显色指数是LED研发的重要任务之一。
4、光强分布测试
光强随空间角度(方向)而变的关系称假光强分布,由此种分布连成的封闭曲线称为光强分布曲线。由于测点较多,且每点都经数据处理,通常采用自动的分布光度计进行测量。
5、温度效应对LED光学特性的影响
温度会影响LED的光学特性。大量的实验可以说明,温度影响LED发射光谱及色坐标。
6、表面亮度测量
光源在某方向的亮度为光源在该方向单位投影面积上的发光强度,一般使用表面亮度计、瞄准式亮度计测量表面亮度,有瞄准光路及测量光路2个部分。
【LED灯具其他性能参数的测量】
1、LED灯具电参数的测量
电学参数主要包括正向、反向电压和反向电流,关系到LED灯具能否正常工作,是判定LED灯具基本性能优劣的依据之一。LED灯具的电性参数测量有2种:即电流一定的情况下,测试电压参数;电压一定的情况下,测试电流参数。具体方法如下:
(1)正向电压。给待检测的LED灯施加正向电流,其两端会产生电压降。调节电流值确定的电源,记录直流电压表上的相关读数,即为LED灯具的正向电压。根据相关常识,LED正向导通时,电阻较小,使用电流表外接法比较精确。
(2)反向电流。给被检测的LED灯具施加反向电压,调节稳压电源,电流表的读数就是被测LED灯具的反向电流。与测量正向电压同理,因为LED反向导通时电阻较大,采用电流表内接法。
2、LED灯具热学特性测试
LED的热学特性,对LED的的光学特性、电学特性有重要影响。热阻和结温,是LED2大主要热学特性。热阻是指PN结到壳体表面之间的热阻,即沿热流通道上的温度差与通道上耗散的功率之比,结温是指LED的PN结的温度。
测量LED结温与热阻的方法一般有:红外微象仪法、光谱法、电学参数法、光热阻扫描法等。采用红外测温显微镜或微型热偶测得LED芯片表面温度作为LED的结温,精确度不够。
目前普遍采用的电参数法是利用LEDPN结的正向压降与PN结温度成线性关系的特性,通过测量不同温度下正向压降差得到LED的结温。
分享:深圳洪润照明股份有限公司