短波通讯概述

时间:2019-05-15 04:18:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《短波通讯概述》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《短波通讯概述》。

第一篇:短波通讯概述

短波通信概述

尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:

一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一旦发生战争

或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通

信方式,其抗毁能力和自主通信能力与短波无可相比;

二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;

三、与卫星通信相比,短波通信不用支付话费,运行成本低。

近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。

一、短波通信的一般原理

1.无线电波传播

无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为 10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10 米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。

电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

常见的传播方式有:(1)地波(地表面波)传播

沿大地与空气的分界面传播的电波叫地表面波,简称地波。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。

(2)直射波传播

直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和

微波通信就是利用直射波传播的。

在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。

(3)天波传播

天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波。电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。

(4)散射传播

散射传播是由天线辐射出去的电磁波投射到低空大气层或电离层中不均匀介质时产生散射,其中一部份到达接收点。散射传播距离远,但是效率低,不易操作,使用并不广泛。

2、电离层的作用

电离层对短波通信起着主要作用,因此是我们研究的重点。电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层。上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。产生电离的大气层称为电离层。电离层分为D、E、F1、F2四层。D层高度60~90公里,白天可反射2~9MHz的频率。E层高度85~150公里,这一层对短波的反射作用较小。F层对短波的反射作用最大,分为F1和F2两层。F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持短波传播。

电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低。电离的浓度以单位体积的自由电子数(即电密度)来表示。电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变。

3、短波频率范围

电离层最高可反射40MHz的频率,最低可反射1.5MHz的频率。根据这一特性,短波工作频段被确定为1.6MHz-30MHz。

4、短波传播途径

短波的基本传播途径有两个:一个是地波,一个是天波。

如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性。海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。短波信号沿地面最多只能传播几十公里。地波传播不需要经常改变工作频率,但要考虑障

碍物的阻挡,这与天波传播是不同的。

短波的主要传播途径是天波。短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。但天波是很不稳定的。在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果。

二、单边带的概念

在无线电通信中,传送信息的载体是特定频率的载波(也称为主频)。那么信息又是如何放到载波上的呢?这就引出了“调制”的概念。调制就是将信息的动态波形通过一定形式加到载波上发送出去,接收台收到被调制的载频信后,再还原信息。调制分为幅度调制(简称“调幅”)、频率调制(简称“调频”)、相位调制(简称“调相”)三种。中波、短波一般采用调幅方式,超短波一般采用调频方式。

根据国际协议,短波通信必须使用单边带调幅方式(SSB),只有短波广播节目可以使用双边带调幅方式(AM)。因此,国内外使用的短波电台都是单边带电台。

1.单边带的定义

调幅信号的频谱是由中央载频和上下两个边带组成的。将载频和其中一个边带加以抑制,剩下的一个边带就成为单边带信号。如果用一个边带再加上部份载频或全部载频,就成为兼容式调幅信号。

2、单边带的优点

单边带的优点是:(1)提高了频谱利用率,减少信道拥挤;(2)节省发射功率约四分之三;(3)减少信道互扰;(4)抗选择性衰落能力强。一部100W单边带电台的实际通话效果,相当于过去1000W以上双边带电台。

3、短波单边带主要术语

SSB 载波和一个边带全抑制的单边带话

USB 上边带话

LSB 下边带话

AM 全载波单边带话(全载波兼容式调幅话)

J2A 单边带报(用上边带或下边带传送手键报)

优化短波通信的方法

一、改善短波信号质量的三大要素

由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。1.正确选用工作频率

短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。

对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:

(1)接近日出时,若夜频通信效果不好,可改用较高的频率;(2)接近日落时,若日频通信效果不好,可改用较低的频率;

(3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;(4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;(5)遇到磁暴时,可选用比平常低一些的频率。

利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。

美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。2.正确选择和架设天线地线

天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。

短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线。而短波通信因使用的频率较低,天线必须做得足够大才能有效工作。简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高。

短波天线的理论原理比较高深。短波天线的种类繁多,用途各异,究竟应该选购何种天线,怎样安装架设才能获得良好的通信效果?根据我们了解和掌握的情况作如下简要介绍:

(1)了解天线的基本工作原理

短波天线分地波天线和天波天线两大类。

地波天线包括鞭状天线、倒L形天线、T形天线等。这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。典型地波天线和

波瓣分布如图1.2和图1.3所示。地波天线的效率主要看天线的高度和地网的质量。天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高。

图1.1 典型地波(T形)天线结构示意图

图1.2 典型地波天线垂直波瓣分布图

天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角,其典型波瓣分布如图3.3、图3.4和图3.5所示。典型的全向天波天线有:角笼形天线、倒V形天线等。它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角。

图1.3 典型天波天线(双极天线)结构示意图

图1.4 典型天波天线水平波瓣分布图

图1.5 典型天波天线垂直波瓣分布图

天波天线简单的规律为:天线水平振子(一臂的)长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比(H/λ)达到二分之一时,垂直波瓣主方向的效率最高。(2)按用途选购天线

随着短波通信技术的发展,短波天线出现了很多不同用途的新品种,例如用于短波跳频的高效能宽带天线;用于为了解决天线架设场地小和多部电台共用一副天线的多馈多模天线等。选择天线基本的着眼点应该是用途。

近距离固定通信:选择地波天线或天波高仰角天线。点对点通信或方向性通信:选择天波方向性天线等。组网通信或全向通信:选择天波全向天线。车载通信或个人通信: 选择小型鞭状天线。(3)正确处理天线价格与质量的关系

俗话讲一分钱一分货。首先同种用途的天线有不同种类,其增益有高低之分。此外同一种外形的天线,使用不同材料;不同制造工艺,其通信效果的差异是很大的。例如以特种不锈铜钢复合绞线为振子的天线,比用塑包线为振子的天线高频电磁转换效率高得多。又例如匹配器所用的磁性材料优劣,对电台与天线的匹配状态影响极大。高性能磁料能够保证全频段每个频点都能良好匹配;劣质磁料可能造成很多频点甚至整段频率匹配不好,驻波比过大。使用劣质天线,电台输出的功率可能只送出去不到三分之一甚至更少,通信效果可想而知。

在投资增加不多的前提下,尽量选用高质量高增益的天线,能够保证长期稳

定和优良的通信效果和延长使用寿命,是很划算的。(4)介绍二种性能和价格兼优的基站天线

根据多年的对比实验和实际使用经验,我们认为有两种进口天线在性能上能够广泛满足我国大多数用户的通信要求,而且价格不高,性能价格比好,以下分别介绍:

● 用于全方位通信的三角组合型全向全角天线

我国省级行政区,从省会到边缘地区的距离多数在1200公里以内。在这个区域内组建全省或地区的通信网,中心基站选用这种天线是比较理想的。

这种天线既能照顾360°全方位,又能照顾近中远各种距离,接收效果好,对改善通信盲区特别有效,此外它能兼顾垂直极化波和水平极化波,对区域内各种台站的不同种类天线的兼容性好。

● 兼顾全向和定向两种用途的高增益三线式天线

三线式天线是国际上近年流行的新型多用途天线,它虽然属于偶极天线类,但其性能是普通双极天线无法相比的。与普通双极天线相比它有以下优点: 增益高,全频段内驻波比小,而且均匀辐射效率高;

水平架设时不仅在天线宽边方向辐射强,而且在窄边方向也有较强辐射;

架设状态平稳,抗风抗毁能力强;

提供平行和倒V两种架设方式,分别支持2500公里内定向通信和2000公里半径内全向通信。

以上两种天线的振子材质都是不锈铜钢复合绞线,电磁转换效率高而且经久耐用;其高性能磁性材料保证了全频段匹配良好。(5)正确架设天线和连接馈线

选购好合适的天线后,还必须正确地安装架设,才能发挥出最佳效果。天线的长度和架设规范是不能改变的,但对于某些天线而言,架设的方向和高度是靠用户自己掌握的,应严格按通信的方向和距离来确定方向和高度。天线的架设位置以开扩的地面为好,没有条件的单位也可以架在两个楼房之间或楼顶。天线高度指天线发射体与地面或楼顶的相对高度。架在楼顶时,高度应以楼顶与天线发射体之间的距离计算,不是按楼顶与地面的高度计算。我们提醒用户,切忌因为架设场地不理想或怕麻烦,就随便把天线架起来完事,这样做通信效果很可能是不好的。

另一个要点是馈线的选用和布设。馈线是将电台的输出功率送到天线进行发射的唯一通道,如果馈线不畅通,再好的电台和天线,通信效果也是很差的。馈线分为明馈线和射频电缆两类。目前100W~150W电台一般都使用射频电缆馈电方式。选用射频电缆时要注意两项指标:一是阻抗为50欧姆;二是对最高使用频率的衰耗值要小。一般来讲,射频电缆直径越粗,衰耗越小,传输功率越大。在实际使用中,100W级短波单边带电台,常选用SYV-50-5或SYV-50-7的射频电缆,必要时也可以选SYV-50-9的射频电缆。

天线在进行安装选位和布设时,应尽可能缩短馈线的长度,普通SYV-50-5馈线每1米造成信号衰减0.082dB,这意味着100W电台功率通过50米馈线送达天线时,功率剩下不到40W。因此通常要求馈线长度控制在30米以内。如果因为场地条件限制必须延长馈线,则应采用大直径低损耗电缆。另外在布设电缆,应尽量减少弯曲,以降低对射频功率的损耗,如果必需弯曲,则弯曲角度不得小于120度。

(6)电台和天线的匹配

天线、馈线、电台三者之间的匹配必须引起高度重视,否则,虽然电台、天线、馈线都选得很好,通信效果还是不好。

所谓“匹配”就是要求达到无损耗连接,只有电台、馈线、天线三者保证高频输入输出阻抗一致,才能实现无损耗连接。多数短波电台的输出/输入阻抗为50欧姆,必须选用阻抗为50欧姆的射频电缆与电台匹配。天线的特性阻抗比较高,一般为600欧姆左右,只有宽带天线的特性阻抗稍低一点,大约200~300欧姆,因此,天线不能直接与射频电缆连接,中间必须加阻抗匹配器(也叫单/双变换器)。阻抗匹配器的输入端阻抗必须与射频电缆的阻抗一致(50欧姆),输出端阻抗必须与天线的输入阻抗一致(600欧姆或200/300欧姆)。阻抗匹配器的最佳安装位置是与天线连为一体。

自动天线调谐器也是匹配天线和电台阻抗用的。自动天调的输入端与电台连接,输出端与单极天线连接。自动天调与偶极天线连接时要根据不同产品而定。有些天调要求加单/双变换器,天调与单/双变换器之间用50欧姆射频电缆相连(芯线接天调输出端,外皮接天调的地端),单/双变换器的双输出端与天线连接;多数新型天调不用加单/双变换器,用天调的输出端和接地端分别连接偶极天线的两臂,匹配效果更好,而且效率更高。(7)正确埋设接地体和连接地线

地线是很多用户容易草率处理的问题。短波通信台站的地线是至关重要的,地线实际上是整个天馈线系统的重要组成部分。我们所说的地线,不是交流供电系统中的电源地或保安地。这里所说的地线是信号地,也称高频地。信号地一般不能接到电源地或保安地上,必须单独埋设。埋设接地体时,必须按有关标准进行,接地电阻不应大于4欧姆。电台的接地柱和接地体之间,必须用多股线铜、编织铜线或大截面优良导体连接,才能起到良好的高频接地作用。而良好的高频接地是减小发射驻波和减小接收噪声的必要前提。3.选用先进优质的电台和电源

工作频率和天线地线搞好了,相当于铺了一条“好路”。好路上还要跑“好车”。好车就是先进优质的电台和电源等设备。(1)选择电台的原则和标准

怎样评价电台的先进性和优质呢?先进性体现在两个方面:一是电气特性和工艺结构,这方面先进与否决定了性能指标的优劣和设备的可靠性;二是使用功能,具有多种先进功能的电台不仅用途更广泛,而且也说明制造者的科技实力。电气特性涉及的内容很多,这里只简述三个方面: ① 频率特性。好的电台频率稳定性比差的电台高几倍、几十倍甚至几百倍。频率稳定性高的电台,不但话音清晰,信号等级高,而且是支持高速数传的必要条件。在评价频率稳定性时要注意两点:一是全频段各频点的稳定性要一致;二是要在很宽的温度范围内稳定,不能机器一发热就产生频漂。② 通道特性。这一特性描述信号在通过高频、中频、低频几个通道后的畸变程度。当进行短波数传时,这一问题非常突出。使用通道特性差的电台,无论怎样改造,数传速率都上不去,原因之一就是高速数据脉冲通过不佳的通道后发生明显畸变,使其难以被识别。③ 干扰和抗干扰特性。这方面的性能在技术说明书上都是以dB(分贝)值表示的,我们统称为dB指标。电台发射方面的dB指标不好,说明你传给对方台 的信号不好,而且干扰其它台;电台接收方面的dB指标不好,说明自身容易被别人干扰;二者都是不能容许的。工艺结构方面,主要看电路集成度和模块化程度。集成度高,可靠性必然高。模块化除了提高设备可靠性外,还使扩展功能和维修十分便利,是当今电台工艺的主流趋势。

再来看使用功能。社会需求的发展和科技的进步,使短波通信日益向多功能化方向发展。像用于半自动优选频率的自适应功能和全自动优选频率的自优化功能,用于计算机和传真机的数据传输功能,用于保密和抗干扰的跳频功能,用于组网通信的数字选呼功能,用于卫星定位的GPS监控功能,用于连接有线网的有线无线转接功能,等等。在具有这些现代化功能的电台面前,那些只能进行简单通话的电台就显得太原始了。目前在国内有一种现象,就是很多单位致力于在一些单功能电台上添加数传、自适应等功能。这固然是由于有大量旧式电台要改造,可能还有造价方面的考虑。但可以肯定这种现象是过渡阶段。正像现在大家都用GSM手机,再也没有人使用土造的手持电话一样,未来的短波领域也势必普及先进的多功能电台。此外,先进优质电台的售价呈下降趋势,也越来越接近我国用户的经济承受能力。

哪些电台先进而且优质,要具体分析,但有一点可以肯定:目前国内常见的多数日本电台,其电性能、可靠性、功能等与欧美和澳大利亚名牌产品不在一个等级上。

澳大利亚柯顿公司首创的NGT自优化短波电台,正是先进电台的代表。(2)电源质量与通信效果的关系

很多人认为只要稳压电源的输出电压和电流的数值符合要求就可以用,这种认识不够全面。其实有些干扰可能来自电源,有些话音失真也可能是电源动态范围不足所致。数据传输对电源的要求更严格,如果电源的电磁屏蔽特性不好,输出纹波大,将直接导致数传工作不正常。功率容量和设计余量也是考核稳压电源优劣的重要依据,有些电源为了降低生产成本,加强价格竞争能力,把功率容量设计在临界状态,并尽量简化电路,选用低指标元器件等等。这类电源的技术性能和可靠性肯定是做不高的。

好汽车要用好发动机,好电台要用好电源,道理是相同的。在选购电源时,一定要挑选功率容量大、输出电压纹波小、电磁屏蔽特性好、电路设计余量大的静化电源产品。

4、短波通信的常见难点及解决方法

(1)近距离盲区及解决方法

前节已介绍了天波和地波二种传输途径。一般来说,地波最远可达30公里。而天波从电离层第一次反射落地(第一跳)的最短距离约为100公里。可见30至 100公里之间这一段,地波和天波都够不到,形成了短波通信的“寂静区”,也称为盲区,如图 2.1 所示。盲区内的通信大多是比较困难的。解决盲区通信主要有两个方法:一是加大电台功率以延长地波传播距离;二是常用的有效方法就是选用高仰角天线,也称 “高射天线”或“喷泉天线”。仰角是指天线辐射波辨与地面之间的夹角。仰角越高,电波第一跳落地的距离越短,盲区越少,当仰角接近90°时,盲区基本上就不存在了。前文提到的三角组合型全向全角天线就属于这一类。

图 2.1 电波越距现象及盲区

(2)车载台的通信困难及解决方法

车载通信一直都是短波通信中的一个难题。车的体积就那么大,没办法架长天线,其辐射能力怎么也比不上固定台。因此必须从合理设计天线形态和合理选择架设位置等方面来弥补,尽可能利用车体的反射效应,尽可能增加天线的“电长度”。

车载天线有多种,现在国际上多认为鞭状天线更适合车辆运动中通信,而自动天调应该安装在车外,最好是与天线鞭结合为一体,也就是常说的自调谐鞭状天线,这种天线因天调输出端与天线连接的馈线很短,故效率比较高。美军现在就大量使用这种天线。

鞭状天线可选择两种架设形态:①远距离通信时多用直立形态,这时可以利用地面以下部分的“镜象天线”效应,使天线鞭的电长度比实际架高增加将近一倍。②近距离通信时通常将天线鞭拉弯俯卧,利用车顶的反射作用增加高仰角辐射分量,改善盲区通信效果。

不管采取何种措施,车载台因天线长度的限制,发射效率肯定不如固定台高,因此实际通信中常常发现车载台收固定台的信号好,而固定台收车载台的信号不好的现象,为了弥补这种差异,建议车载台备份野外应急软天线供停车时使用。

国外目前还建议采用加大车载台功率的方法延长地波通信距离,改善盲区。提高车载台功率需要在原有100W电台基础上接续500W功率放大器,并相应改用大功率车载天线和大功率车载电源,这种大功率车载系统是行之有效的。

比较而言,船载通信比车载通信困难少得多。一是因为船体长,有围杆,便于架设天、地波兼顾的斜天线;二是海面地波传得远而且船离基地台距离也较远,不容易形成通信盲区。但是船载天线要求抗风强度高,抗腐蚀能力强。

(3)延长个人携带台通信距离的方法

个人携带台在行进中通信时只能使用短的鞭状天线。一副3米长的鞭天线配合25~50W电台,一般最远只能通20公里。如果要求通得更远,必须换用野外快速型长天线。一种快速天线是20米斜拉型,以最简洁的方法沿地面斜拉架设,最大通信距离可达1000公里以上。如果使用全长30米的三角形快速天线,通信距离更远。

以上两种天线也可以用作车载台的备用天线,在停车时换用,能够明显改善盲区内和远距离的通信效果。

5、短波噪声及消除方法

(1)插入噪声

在两段话音之间涌现的噪声称为插入噪声,这种噪声消除起来比较容易。现在多数短波电台和超短波电台都提供可选用的“静噪”功能。打开静噪开关,插入噪声就被抑制了。但是“静噪”功能不能解决与有用信号混杂在一起的噪声。

(2)背景混杂噪声

与信号混杂在一起的背景噪声是最令人头痛的,消除起来也是最困难的,必须通过DSP数字消噪技术加以解决。从使用类型来看,DSP数字消噪分为对端消噪和单端消噪两种。

①对端消噪

所谓对端消噪,就是需要发方电台和收方电台互相配合进行的消噪。其过程是:在发方,电台对信号和噪声进行大倍率的平等压缩;在收方,电台对信号和噪声进行不平等的解压,通过这一过程,强化了信号,弱化了噪声,实际消噪效果是比较明显的。但是对端消噪在实际用中遇到两个困难:一是消噪器要单独适配电台,设备互换性差;二是不配消噪器的电台参与通信比较困难。这两个问题制约了对端消噪器的推广。

②单端消噪棗噪声滤除技术

单端消噪只处理本机收到的信号,无须对方台配合,因而完全克服了对端消噪的弊端,成为消噪技术的发展主流。单端消噪的原理是根据有用信号的声谱对话音进行数字化处理,从而滤除噪声分量,因此也称为滤噪。目前有单独的滤噪器产品,还有像柯顿NGT电台,已经把滤噪器做成了电台的标准功能,消噪效果比较理想,不但滤除了讨厌的噪声,还可以将几乎被噪声淹没的微弱信号提升1~2个等级。

(3)附加噪声

附加噪声不是来自传播路径或电台本身,而是由于安装电台的地点、位置、安装条件等方面的原因所产生。例如设台地点周边电磁环境太乱,存在干扰源;地线不合格,导入本地噪声;车载电台因接地和屏蔽不良而引入本车噪声源等等。附加噪声种类很多,要具体问题具体解决。

短波通信中的天线选型

短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。

一、衡量天线性能因素

天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。

1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。

2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。

3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。

二、几种常用的短波天线

1.八木天线(Yagi Antenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。

2.对数周期天线(Log Periodic Antenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短

波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。

3.长线天线(Long-Wire Antennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度。

4.车载移动天线(Mobile Antennas)移动天线一般工作在2.0~25MHz频段上,为垂直极性天线,性能与机械特性有关,天线长度较短,在低仰角工作时,发射效率适中。在通常情况下,车载天线仰角应大于45度,因为天线长度较短,是低效天线。在汽车上,机械特性限制了天线的选择,但天线可以放置为倒“L”型,这样增加了天线的垂直辐射面,可以提高发射效率,倒“L”天线适宜用于中短波通信。

三、常用短波天线性能

方向性天线、简单的双极天线适用于短距离通信,但短波远距离通信信号微弱,甚至被各种噪音淹没时,天线就需要选择比双极天线增益更高的天线。理想方向性天线在工作方向上具有很高增益而无用方向上增益为0。

四、不同环境下天线选型

1.固定站间远/近距离通讯

由于固定站间通讯方向是固定不变的,所以一般采用高增益,方向性强的短波天线。通信距离在1000-3000公里,可使用高增益,低仰角对数周期天线(LP),但天线价格昂贵。在实践中100W短波自适应电台配这种天线,可基本实现北京至昆明,乌鲁木齐甚至拉萨全天候通信。如果通信质量要求不是太高也可使用价格相对便宜的天线如八木天线,长线天线,但长线天线需用天调。距离在600Km以内时采用水平双极天线可取得较好效果,但水平双极天线占地较大,中心站电台较多不适合布天线阵。

2.固定站与移动站间通讯

由于移动站在运动中,通讯方向不固定,所以中心站的天线应选用全向天线,例如,多膜短波宽带天线或配有天线调谐器的鞭状天线。多膜天线虽然价格较贵,但是一个天线竿上可以绕三副天线(两副高仰角天线,一副低仰角天线)远、近距离通信均可兼顾。中心站也可用鞭状天线,鞭状天线的仰角低,近距(20--100公里)通信困难,远距离(500--3000公里)只要频率合适,通信效果较好。移动站天线由于安装面的限制,多采用鞭状天线,国内有时用栅网、双环、三环天线。远距离通信时,鞭状天线竖直,近距离通信则可以放置为倒“L”型,这样使用增加了天线的垂直辐射面,可以提高发射效率。只要天线的发射角、电台的工作频率合适,可以克服短波盲区(3 0--80公里)的通信困难。

3.干扰环境下的天线选型

电台干扰是指工作在当前工作频率附近的无线电台的干扰,其中包括敌方 有意识的电子干扰。由于短波通信的频带非常窄,而且现在短波用户越来越多,因此电台干扰就成为影响短波通信顺畅的主要干扰源。特别对于军用通信系统,这种情况尤其严重。电台的干扰与其他自然条件引起的干扰有很大的不同,它带有很大的随机性和不可预测性。在敌方有意识的电子干扰情况下,采用高增益、方向性强的对数周期天线可取得一定的效果。当然,克服干扰主要提高短波电台性能(发射功率、接收灵敏度等等)或者采用频率自适应、短波宽带跳频技术。如果需要数传,调制解调器性能也非常关键,带有交织功能的串行体制短波高速调制解调器具有良好的抗干扰性能。

4.显示的是根据用户不同增益、仰角的要求选用天线表。

短波通信盲区及解决方法

尽管当前新型无线通信系统不断涌现,短波这一最古老和传统的通信方式仍然受到全世界的普遍重视,在卫星通信和移动通信快速发展的今天,短波通信不仅没有被淘汰,还在快速发展。其原因是:短波通信距离远、抗毁能力和自主通信能力强、运行成本低。短波通信技术发展状况

近年来,短波通信技术在世界范围内获得了长足进步,出现了很多新电台、新装备和新技术。其主要特点是: 1.短波电台

短波单边带电台体积越来越小,功能越来越多,性能越来越好,兼容性越来越强。数字化是短波电台的必然发展趋势。2.短波天线

短波天线主要是向宽带、全向、无“盲区”、高增益方向发展。体积越来越小,效率越来越高。现推出了多款新型基站天线和车载天线。3.频率选择

在频率选择方面,除已广泛使用的ASAPS测频系统和ALE自适应选频方法外,又推出了短波全频段实时自适应选频系统和频率管理系统。4.噪声消除

在抗噪声方面推出了多种静噪、消噪方式,尤其是美国SGC公司最近推出的ADSP2单端消噪器,可以串接在任何无线电台的收信音频放大电路中或做成消噪扬声器,消除信道中的背境噪声,使短波电台的收听质量,达到或接近超短波电台的收听水平。5.组网通信

在组网通信方面,除自适应(ALE)功能中的选呼组网方式外,国外己推出了CCIR493数字选呼系,该系使每一部电台分得一个不重复的ID码(4~6位),通过它可组成万台级的大网,现在澳大利亚生产的短波电台,欧、美生产的部份短波电台,己作为常规功能,固化于整机中。CCIR493数字选呼系统可实现单呼、组呼、群呼,收发短信息,传送GPS定位信号,传送警报信号,实现短波/市话网双向自动拨号等功能。短波通信盲区及解决方法

一、短波传播方式

无线电广播、无线电通信、电视、雷达等都要靠无线电波的传播来实现。

电波在各种媒介质及媒介质分界面上传播的过程,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

常见的传播方式有:

地波(表面波)传播,直射波(视距)传播,天波传播,散射传播。

超短波适用直射波传播方式进通信。

短波的基本传播途径有两种:

A、地波(表面波)传播。

B、天波传播。天波传播是短波通信的主要传输方式。

1、地波传播

沿大地与空气的分界面传播的电波,叫地面波或表面波,简称地波。地波的传播途径如图1-1 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于部份能量被大地吸收,很快减弱,波长越短,减弱越快,因而传播距离不远。但地波不受气候影响,可靠性高。通常,超长波、长波、中波无线电通信,利用地波传播。

2、天波传播

天波是指由天线向高空辐射的电磁波受到天空电离层反射或折射后返回地面的无线电波。传播途径如图 1-2所示。

天波是短波的主要传播途径。短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远(可上万公里),而且不受地面障碍物阻挡。但天波传播的最大弱点是信号很不稳定的,处理不好会影响通信效果。随着无线电通信新技术的不断涌现,天波传播弱点对短波通信的影响,正在逐步被克服。

3、通信盲区

上面已介绍了地波和天波两种传播方式。一般来说,地波的传播距离可达20~30公里,而天波从电离层第一次反射落地(第一跳)的最短距离约为80~100公里,可见20至100公里之间这一段,地波和天波都够不到,形成了短波通信的“寂静区”,也称为盲区,如图 1-3 所示。盲区内的通信大多是比较困难的。车载 台由于天线的限制,均存在通信盲区问题。

二、解决通信盲区的方法

1、常用方法:

一是加大电台功率以延长地波传播距离;二是常用的有效方法就是选用高仰角天线,也称“高射天线”或“喷泉天线”,缩短天波第一跳落地的距离。仰角是指天线辐射波瓣与地面之间的夹角。仰角越高,电波第一跳落地的距离越短,盲区越少,当仰角接近90°时,盲区基本上就不存在了。

在新式天线未出现之前,我们常用低架双极天线来解决近距离通信盲区问题,效果也不错。

2、三线式天线是目前效果较好的短波基站无盲区天线

澳大利亚月光公司生产的FD-230系列三线式宽带短波天线,已在我国推广使用较长时间,据我们反复测试和用户实际使用情况反映,该天线不用接天调,增益高,架设方便,通信效果好。水平架设使用,兼顾远、中、近距离通信(我们的用户最远的通1万3千公里);倒V架设使用,实现中、近距离无盲区通信。该天线目前正在武警系统、陆海空三军及二炮、公安系统、人防系统、林业部门、交通部门等单位大量推广使用。国内已有不少三线宽带天线仿制品,但关键部件的质量和性能与国外产品还有不少差距。

3、ML-90天线是目前国内最好的车载无盲区短波天线

长期以来,近距离通信盲区一直困扰着短波车载通信。人们尝试了各种天线,虽有不同程度的改善,但无法从根本上解决问题。现在由澳大利亚科麦克公司发明的ML-90车载电磁环天线完全解决了近距离通信盲区问题。

ML-90天线采用单电磁环振子配合新式自动天调,其特殊结构和特殊调谐原理,使天线产生强力的垂直幅射分量,天波信号以喷泉方式向空中幅射,大大缩短了经电离层第一次反射落地(第一跳)电波的最短距离,使天波传播的最近距离与地波传播的最远距离衔接,从而完全消除了近距离通信盲区。

ML-90天线在100公里范围内没有通信盲区,信号等级可达3~5分;600公里范围内信号等级可达2~4分;1000公里范围内信号等级可达1~3分。4、7006宽带软天线是便携式电台理想的无盲区天线

7006天线结构轻巧,便于携带,能快速架设和收集。不需天调,2~30MHZ范围内均能良好配谐。适合个人携带电台、车载台、野外临时基站使用。它的全向通信半径可达1000公里,在600公里范围内能进行可靠通信。

短波通信新技术与新体制

短波无线电利用地波或低电离层进行几十公里到几百公里的中、近距离通信,利用电离层反射进行数千乃至上万公里的远距离通信。短波电台既可用于大型固定台(站),也可用于车载、舰载、机载或背负移动通信。短波通信设备简单,造价低廉,使用灵活机动,坚固耐用是最基本的军事通信手段,世界各国都不遗余力地进行研究。由于电离层是一种典型的时变传输媒介,存在瑞利衰落、多径效应、多普勒频移等复杂时变因素,使收端码元在时间上展宽,包络发生畸变,因而数据传输产生码间干扰和误码。短波信道是带宽受限的信道,射频频谱非常拥挤,信道间互相干扰严重。传统的短波通信以单边带(SSB)电话为主,兼容低速数据和电报。六十年代卫星通信问世后,短波通信一度处于发展低潮。随着微型计算机、移动通信和微电子技术的迅猛发展,促进了短波通信技术的更新,八十年代以来,人们利用微处理器、数字信号处理(DSP)、自适应技术、跳频技术,不断提高短波通信的质量和数据传输速率,增强自动化、新业务功能,提高自适应与抗干扰能力,使现代短波通信重新焕发青春。各国竞相推出和装备各种短波自适应和跳频电台,我国也研制出了短波自适应通信系统、频率管理预报系统、跳频系列电台。为适应信息时代数据信息量飞速增长、电磁环境进一步恶化,短波通信必须提高数传速率和抗干扰能力,有效利用短波频率资源,提高频带利用率,加强网络建设。

实时选频与自适应技术实时选频采用实时信道评估技术,探测电离层传输和噪声干扰情况,即实时发射探测信号,根据收端对收到的探测信号处理结果进行信道评估,实现自动选择最佳工作频率。

一、实时选频系统目前有两类:

(1)自适应频率管理系统-在短时间内,对全频段快速扫描和探测,不断预报各频率可用情况。

(2)频率自适应系统-融探测与通信为一体,采用收发双方可靠呼应技术、线路质量分析(LQA)技术和自动线路建立(ALE)技术,使短波通信频率随信道条件变化而自适应地改变,确保通信始终在质量最佳信道上进行。自适应选频能充分利用频率资源、降低传输损耗、减少多径影响,避开强噪声与电台干扰,提高通信链路的可靠性。短波模拟通信已普遍采用自适应实时选频。自适应技术指实时或频繁地利用各种探测技术,根据探测结果自动调整设备参数,达到最佳通信效果。短波自适应通信的核心是自动选择最佳的工作频率,自动选用无线电信道和自适应数据传输。运用自适应选频、收发、调制解调、编码、均衡以及天线等多种自适应技术,在严重干扰条件下,短波通信自动改变工作频率、数传速率、调制方式、编码和纠错编码方式、最大限度地降低误码率。

跳频(FH)是指载频按照数字码系统规定的时-频图形,使频率相应跳变的一种扩频技术,可以对抗多径干扰、邻道干扰、人为瞄准式干扰,提高通信的保护性和可靠性,传统的短波慢跳频跳速为10-100H/S。自适应技术与跳频技术相结合,实现自适应跳频,能在质量良好的信道上进行跳频,跳频信道驻留时间可随意变动。

二、短波跳频有两种自适应方式:

(1)频率自适应跳频:基于对信道参数的探测,并适应信道质量的变化,自动在最佳频率集上进行。

(2)干扰自适应跳频:基于对信道中干扰信号参数的估计,采用干扰自适应抑制和自动躲避干扰的跳频。完整的自适应跳频通信系统,包括频率自适应和功率自适应控制,自适应跳频控制器完成跳频序列产生、被干扰频点的检测与自动更换、跳频同步及跟踪、信令协议及执行;自适应功率控制根据信道误码测量结果,自动调整输出功率,实现以最小的发射功率获得正常通信效果。

自适应数据终端,在数据传输过程中,运用选择自动请求重发(ARQ),使数传更可靠。自适应控制数据吞吐量是通过实时选择信道,调节帧长、调制解调速率、交织时延和发射功率量级,以获得最大数据吞吐量。

窄带高性能调制解调短波窄带高速数传,按调制方式分为多音并行和单音串行两种体制。单音并行体制:在话音通带内,把高速串行信道分裂成多个低速并行信道,以若干个副载波在基带有效带宽内并行传输信息,接收机输出的多路数据信息,分路后分别进行数据解调,得到多路低速数据信号,经过重新组合恢复成高速数据流。每个副载波承载的数据率相当低,码元长度相对于多径时延已足够大,能抗多径衰落影响。常用的多音有16、39、52音,每个单音受QPSK/8PSK调制。目前最高数据速率为2.4kb/s。新型多音并行调制解调器采用FEC、分集、多普勒频移校正和DSP技术。单音串行体制:在一个话路带宽内,串行发送高速数据信号。发送端采用8PSK调制,接收端采用高效自适应均衡、序列检测和信道估值综合技术,消除了多径传播和信道畸变引起的码间制串扰,串行制不存在功率分散问题,在相同传输速率下,误码率比并行制改善1-2数量级,大大提高了传输质量,数传速率高达9.6kb/s。格状编码调制(TCM)是一种不牺牲带宽有效性,而提供功率有效性,并与信道编码相结合的调制技术。编码器和调制器级联后产生的编码序列,具有最大的欧几里德自由距离,使编码对系统性能的改善达到最大;充分利用接收到的信道信息,在解调时,对接收信号进行软判决最大似然译码,从而得到系统的总体最佳性能。采用TCM技术的并行或串行调制解调器,明显优于纠错编码与调制各自独立的并行/串行解调器。

第二篇:优化短波通信方法

1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。1.1 正确选用工作频率

短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:

(1)接近日出时,若夜频通信效果不好,可改用较高的频率;(2)接近日落时,若日频通信效果不好,可改用较低的频率;

(3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;(4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;(5)遇到磁暴时,可选用比平常低一些的频率。计算机测频

利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。

美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。1.2 正确选择和架设天线地线

天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。

短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线。而短波通信因使用的频率较低,天线必须做得足够大才能有效工作。简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高。短波天线的理论原理比较高深。短波天线的种类繁多,用途各异,究竟应该选购何种天线,怎样安装架设才能获得良好的通信效果?根据我们了解和掌握的情况作如下简要介绍:(1)了解天线的基本工作原理

短波天线分地波天线和天波天线两大类。

地波天线包括鞭状天线、倒L形天线、T形天线等。这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。典型地波天线和

波瓣分布如图3.1和图3.2所示。地波天线的效率主要看天线的高度和地网的质量。天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高。

图1.1 典型地波(T形)天线结构示意图

图1.2 典型地波天线垂直波瓣分布图 天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角,其典型波瓣分布如图3.3、图3.4和图3.5所示。典型的全向天波天线有:角笼形天线、倒V形天线等。它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角。

图1.3 典型天波天线(双极天线)结构示意图

图1.4 典型天波天线水平波瓣分布图

图1.5 典型天波天线垂直波瓣分布图

天波天线简单的规律为:天线水平振子(一臂的)长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比(H/λ)达到二分之一时,垂直波瓣主方向的效率最高。

(2)按用途选购天线

随着短波通信技术的发展,短波天线出现了很多不同用途的新品种,例如用于短波跳频的高效能宽带天线;用于为了解决天线架设场地小和多部电台共用一副天线的多馈多模天线等。选择天线基本的着眼点应该是用途。

近距离固定通信: 选择地波天线或天波高仰角天线。

点对点通信或方向性通信:选择天波方向性天线等。

组网通信或全向通信: 选择天波全向天线。

车载通信或个人通信: 选择小型鞭状天线。(3)正确处理天线价格与质量的关系

俗话讲一分钱一分货。首先同种用途的天线有不同种类,其增益有高低之分。此外同一种外形的天线,使用不同材料;不同制造工艺,其通信效果的差异是很大的。例如以特种不锈铜钢复合绞线为振子的天线,比用塑包线为振子的天线高频电磁转换效率高得多。又例如匹配器所用的磁性材料优劣,对电台与天线的匹配状态影响极大。高性能磁料能够保证全频段每个频点都能良好匹配;劣质磁料可能造成很多频点甚至整段频率匹配不好,驻波比过大。使用劣质天线,电台输出的功率可能只送出去不到三分之一甚至更少,通信效果可想而知。在投资增加不多的前提下,尽量选用高质量高增益的天线,能够保证长期稳定和优良的通信效果和延长使用寿命,是很划算的。

(4)介绍二种性能和价格兼优的基站天线 根据多年的对比实验和实际使用经验,我们认为有两种进口天线在性能上能够广泛满足我国大多数用户的通信要求,而且价格不高,性能价格比好,以下分别介绍: ● 用于全方位通信的三角组合型全向全角天线

我国省级行政区,从省会到边缘地区的距离多数在1200公里以内。在这个区域内组建全省或地区的通信网,中心基站选用这种天线是比较理想的。这种天线既能照顾360°全方位,又能照顾近中远各种距离,接收效果好,对改善通信盲区特别有效,此外它能兼顾垂直极化波和水平极化波,对区域内各种台站的不同种类天线的兼容性好。

● 兼顾全向和定向两种用途的高增益三线式天线 三线式天线是国际上近年流行的新型多用途天线,它虽然属于偶极天线类,但其性能是普通双极天线无法相比的。与普通双极天线相比它有以下优点: 1.增益高,全频段内驻波比小,而且均匀辐射效率高;

2.水平架设时不仅在天线宽边方向辐射强,而且在窄边方向也有较强辐射; 3.架设状态平稳,抗风抗毁能力强; 4.提供平行和倒V两种架设方式,分别支持2500公里内定向通信和2000公里半径内全向通信。

以上两种天线的振子材质都是不锈铜钢复合绞线,电磁转换效率高而且经久耐用;其高性能磁性材料保证了全频段匹配良好。(5)正确架设天线和连接馈线

选购好合适的天线后,还必须正确地安装架设,才能发挥出最佳效果。天线的长度和架设规范是不能改变的,但对于某些天线而言,架设的方向和高度是靠用户自己掌握的,应严格按通信的方向和距离来确定方向和高度。天线的架设位置以开扩的地面为好,没有条件的单位也可以架在两个楼房之间或楼顶。天线高度指天线发射体与地面或楼顶的相对高度。架在楼顶时,高度应以楼顶与天线发射体之间的距离计算,不是按楼顶与地面的高度计算。我们提醒用户,切忌因为架设场地不理想或怕麻烦,就随便把天线架起来完事,这样做通信效果很可能是不好的。

另一个要点是馈线的选用和布设。馈线是将电台的输出功率送到天线进行发射的唯一通道,如果馈线不畅通,再好的电台和天线,通信效果也是很差的。馈线分为明馈线和射频电缆两类。目前100W~150W电台一般都使用射频电缆馈电方式。选用射频电缆时要注意两项指标:一是阻抗为50欧姆;二是对最高使用频率的衰耗值要小。一般来讲,射频电缆直径越粗,衰耗越小,传输功率越大。在实际使用中,100W级短波单边带电台,常选用SYV-50-5或SYV-50-7的射频电缆,必要时也可以选SYV-50-9的射频电缆。

天线在进行安装选位和布设时,应尽可能缩短馈线的长度,普通SYV-50-5馈线每1米造成信号衰减0.082dB,这意味着100W电台功率通过50米馈线送达天线时,功率剩下不到40W。因此通常要求馈线长度控制在30米以内。如果因为场地条件限制必须延长馈线,则应采用大直径低损耗电缆。另外在布设电缆,应尽量减少弯曲,以降低对射频功率的损耗,如果必需弯曲,则弯曲角度不得小于120度。(6)电台和天线的匹配

天线、馈线、电台三者之间的匹配必须引起高度重视,否则,虽然电台、天线、馈线都选得很好,通信效果还是不好。

所谓“匹配”就是要求达到无损耗连接,只有电台、馈线、天线三者保证高频输入输出阻抗一致,才能实现无损耗连接。多数短波电台的输出/输入阻抗为50欧姆,必须选用阻抗为50欧姆的射频电缆与电台匹配。天线的特性阻抗比较高,一般为600欧姆左右,只有宽带天线的特性阻抗稍低一点,大约200~300欧姆,因此,天线不能直接与射频电缆连接,中间必须加阻抗匹配器(也叫单/双变换器)。阻抗匹配器的输入端阻抗必须与射频电缆的阻抗一致(50欧姆),输出端阻抗必须与天线的输入阻抗一致(600欧姆或200/300欧姆)。阻抗匹配器的最佳安装位置是与天线连为一体。

自动天线调谐器也是匹配天线和电台阻抗用的。自动天调的输入端与电台连接,输出端与单极天线连接。自动天调与偶极天线连接时要根据不同产品而定。有些天调要求加单/双变换器,天调与单/双变换器之间用50欧姆射频电缆相连(芯线接天调输出端,外皮接天调的地端),单/双变换器的双输出端与天线连接;多数新型天调不用加单/双变换器,用天调的输出端和接地端分别连接偶极天线的两臂,匹配效果更好,而且效率更高。(7)正确埋设接地体和连接地线

地线是很多用户容易草率处理的问题。短波通信台站的地线是至关重要的,地线实际上是整个天馈线系统的重要组成部分。我们所说的地线,不是交流供电系统中的电源地或保安地。这里所说的地线是信号地,也称高频地。信号地一般不能接到电源地或保安地上,必须单独埋设。埋设接地体时,必须按有关标准进行,接地电阻不应大于4欧姆。电台的接地柱和接地体之间,必须用多股线铜、编织铜线或大截面优良导体连接,才能起到良好的高频接地作用。而良好的高频接地是减小发射驻波和减小接收噪声的必要前提。1.3 选用先进优质的电台和电源

工作频率和天线地线搞好了,相当于铺了一条“好路”。好路上还要跑“好车”。好车就是先进优质的电台和电源等设备。(1)选择电台的原则和标准

怎样评价电台的先进性和优质呢?先进性体现在两个方面:一是电气特性和工艺结构,这方面先进与否决定了性能指标的优劣和设备的可靠性;二是使用功能,具有多种先进功能的电台不仅用途更广泛,而且也说明制造者的科技实力。

电气特性涉及的内容很多,这里只简述三个方面:①频率特性。好的电台频率稳定性比差的电台高几倍、几十倍甚至几百倍。频率稳定性高的电台,不但话音清晰,信号等级高,而且是支持高速数传的必要条件。在评价频率稳定性时要注意两点:一是全频段各频点的稳定性要一致;二是要在很宽的温度范围内稳定,不能机器一发热就产生频漂。②通道特性。这一特性描述信号在通过高频、中频、低频几个通道后的畸变程度。当进行短波数传时,这一问题非常突出。使用通道特性差的电台,无论怎样改造,数传速率都上不去,原因之一就是高速数据脉冲通过不佳的通道后发生明显畸变,使其难以被识别。③干扰和抗干扰特性。这方面的性能在技术说明书上都是以dB(分贝)值表示的,我们统称为dB指标。电台发射方面的dB指标不好,说明你传给对方台的信号不好,而且干扰其它台;电台接收方面的dB指标不好,说明自身容易被别人干扰;二者都是不能容许的。

工艺结构方面,主要看电路集成度和模块化程度。集成度高,可靠性必然高。模块化除了提高设备可靠性外,还使扩展功能和维修十分便利,是当今电台工艺的主流趋势。

再来看使用功能。社会需求的发展和科技的进步,使短波通信日益向多功能化方向发展。像用于半自动优选频率的自适应功能和全自动优选频率的自优化功能,用于计算机和传真机的数据传输功能,用于保密和抗干扰的跳频功能,用于组网通信的数字选呼功能,用于卫星定位的GPS监控功能,用于连接有线网的有线无线转接功能,等等。在具有这些现代化功能的电台面前,那些只能进行简单通话的电台就显得太原始了。目前在国内有一种现象,就是很多单位致力于在一些单功能电台上添加数传、自适应等功能。这固然是由于有大量旧式电台要改造,可能还有造价方面的考虑。但可以肯定这种现象是过渡阶段。正像现在大家都用GSM手机,再也没有人使用土造的手持电话一样,未来的短波领域也势必普及先进的多功能电台。此外,先进优质电台的售价呈下降趋势,也越来越接近我国用户的经济承受能力。哪些电台先进而且优质,要具体分析,但有一点可以肯定:目前国内常见的多数日本电台,其电性能、可靠性、功能等与欧美和澳大利亚名牌产品不在一个等级上。澳大利亚柯顿公司首创的NGT自优化短波电台,正是先进电台的代表。(2)电源质量与通信效果的关系

很多人认为只要稳压电源的输出电压和电流的数值符合要求就可以用,这种认识不够全面。其实有些干扰可能来自电源,有些话音失真也可能是电源动态范围不足所致。数据传输对电源的要求更严格,如果电源的电磁屏蔽特性不好,输出纹波大,将直接导致数传工作不正常。功率容量和设计余量也是考核稳压电源优劣的重要依据,有些电源为了降低生产成本,加强价格竞争能力,把功率容量设计在临界状态,并尽量简化电路,选用低指标元器件等等。这类电源的技术性能和可靠性肯定是做不高的。

好汽车要用好发动机,好电台要用好电源,道理是相同的。

在选购电源时,一定要挑选功率容量大、输出电压纹波小、电磁屏蔽特性好、电路设计余量大的静化电源产品。

2、短波通信的常见难点及解决方法 2.1近距离盲区及解决方法

前节已介绍了天波和地波二种传输途径。一般来说,地波最远可达30公里。而天波从电离层第一次反射落地(第一跳)的最短距离约为100公里。可见30至 100公里之间这一段,地波和天波都够不到,形成了短波通信的“寂静区”,也称为盲区,如图 2.1 所示。盲区内的通信大多是比较困难的。解决盲区通信主要有两个方法:一是加大电台功率以延长地波传播距离;二是常用的有效方法就是选用高仰角天线,也称 “高射天线”或“喷泉天线”。仰角是指天线辐射波辨与地面之间的夹角。仰角越高,电波第一跳落地的距离越短,盲区越少,当仰角接近90°时,盲区基本上就不存在了。前文提到的三角组合型全向全角天线就属于这一类。

图 2.1 电波越距现象及盲区

2.2 车载台的通信困难及解决方法

车载通信一直都是短波通信中的一个难题。车的体积就那么大,没办法架长天线,其辐射能力怎么也比不上固定台。因此必须从合理设计天线形态和合理选择架设位置等方面来弥补,尽可能利用车体的反射效应,尽可能增加天线的“电长度”。车载天线有多种,现在国际上多认为鞭状天线更适合车辆运动中通信,而自动天调应该安装在车外,最好是与天线鞭结合为一体,也就是常说的自调谐鞭状天线,这种天线因天调输出端与天线连接的馈线很短,故效率比较高。美军现在就大量使用这种天线。鞭状天线可选择两种架设形态:①远距离通信时多用直立形态,这时可以利用地面以下部分的“镜象天线”效应,使天线鞭的电长度比实际架高增加将近一倍。②近距离通信时通常将天线鞭拉弯俯卧,利用车顶的反射作用增加高仰角辐射分量,改善盲区通信效果。

不管采取何种措施,车载台因天线长度的限制,发射效率肯定不如固定台高,因此实际通信中常常发现车载台收固定台的信号好,而固定台收车载台的信号不好的现象,为了弥补这种差异,建议车载台备份野外应急软天线供停车时使用。

国外目前还建议采用加大车载台功率的方法延长地波通信距离,改善盲区。提高车载台功率需要在原有100W电台基础上接续500W功率放大器,并相应改用大功率车载天线和大功率车载电源,这种大功率车载系统是行之有效的。

比较而言,船载通信比车载通信困难少得多。一是因为船体长,有围杆,便于架设天、地波兼顾的斜天线;二是海面地波传得远而且船离基地台距离也较远,不容易形成通信盲区。但是船载天线要求抗风强度高,抗腐蚀能力强。2.3 延长个人携带台通信距离的方法

个人携带台在行进中通信时只能使用短的鞭状天线。一副3米长的鞭天线配合25~50W电台,一般最远只能通20公里。如果要求通得更远,必须换用野外快速型长天线。一种快速天线是20米斜拉型,以最简洁的方法沿地面斜拉架设,最大通信距离可达1000公里以上。如果使用全长30米的三角形快速天线,通信距离更远。以上两种天线也可以用作车载台的备用天线,在停车时换用,能够明显改善盲区内和远距离的通信效果。

3、短波噪声及消除方法 3.1 插入噪声

在两段话音之间涌现的噪声称为插入噪声,这种噪声消除起来比较容易。现在多数短波电台和超短波电台都提供可选用的“静噪”功能。打开静噪开关,插入噪声就被抑制了。但是“静噪”功能不能解决与有用信号混杂在一起的噪声。3.2 背景混杂噪声

与信号混杂在一起的背景噪声是最令人头痛的,消除起来也是最困难的,必须通过DSP数字消噪技术加以解决。从使用类型来看,DSP数字消噪分为对端消噪和单端消噪两种。(1)对端消噪

所谓对端消噪,就是需要发方电台和收方电台互相配合进行的消噪。其过程是:在发方,电台对信号和噪声进行大倍率的平等压缩;在收方,电台对信号和噪声进行不平等的解压,通过这一过程,强化了信号,弱化了噪声,实际消噪效果是比较明显的。但是对端消噪在实际用中遇到两个困难:一是消噪器要单独适配电台,设备互换性差;二是不配消噪器的电台参与通信比较困难。这两个问题制约了对端消噪器的推广。(2)单端消噪棗噪声滤除技术

单端消噪只处理本机收到的信号,无须对方台配合,因而完全克服了对端消噪的弊端,成为消噪技术的发展主流。单端消噪的原理是根据有用信号的声谱对话音进行数字化处理,从而滤除噪声分量,因此也称为滤噪。目前有单独的滤噪器产品,还有像柯顿NGT电台,已经把滤噪器做成了电台的标准功能,消噪效果比较理想,不但滤除了讨厌的噪声,还可以将几乎被噪声淹没的微弱信号提升1~2个等级。3.3 附加噪声

附加噪声不是来自传播路径或电台本身,而是由于安装电台的地点、位置、安装条件等方面的原因所产生。例如设台地点周边电磁环境太乱,存在干扰源;地线不合格,导入本地噪声;车载电台因接地和屏蔽不良而引入本车噪声源等等。附加噪声种类很多,要具体问题具体解决。

第三篇:短波通信系统介绍

一、短波通信概述............................................................................................................2

二、短波通信的优势........................................................................................................2

三、短波通信的一般原理.................................................................................................3 3.1.无线电波传播......................................................................................................3 3.2 电离层的作用.....................................................................................................4 3.3 短波频率范围.....................................................................................................4 3.4 短波传播途径.....................................................................................................5

四、单边带概念...............................................................................................................5 4.1 单边带的定义.....................................................................................................6 4.2 单边带的优点.....................................................................................................6

五、优化短波通信的方法.................................................................................................6 5.1 正确选用工作频率..............................................................................................6 5.2计算机测频..........................................................................................................7 5.3 正确选择和架设天线地线....................................................................................7

六、短波电台天线知识.....................................................................................................8 6.1了解天线的基本工作原理.....................................................................................8 6.2正确选择电台天线...............................................................................................8 6.3正确处理天线价格与质量的关系..........................................................................9 6.4常用的天线..........................................................................................................9 6.4.1用于全方位通信的三角组合型全向全角天线...............................................9 6.4.2兼顾全向和定向两种用途的高增益三线式天线............................................9

七、工程施工要点..........................................................................................................10 7.1正确架设天线和连接馈线...................................................................................10 7.2电台和天线的匹配..............................................................................................11 7.3正确埋设接地体和连接地线................................................................................11 7.4选用先进优质的电台和电源...............................................................................12

八、短波电台的应用......................................................................................................13 9.1近距离盲区及解决方法............................................................................................14 小知识:........................................................................................................................15

一、衡量天线性能因素............................................................................................15

二、几种常用的短波天线........................................................................................15

一、短波通信概述

短波通信是利用波长为100-10米(3-30兆赫兹)的电磁波进行的无线电通信,也称高频通信,主要靠天波传播,可经电离层一次或数次反射,最远可传至上万公里,如按气候、电离层的电子密度和高度的日变化,以及通信距离等因素选择合适的频率,就可用较小功率进行远距离通信。但是由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。目前,它广泛应用于电报、电话、低速传真通信和广播等方面。

由于采用大气空间及电离层为传输媒介无需投资,仅需配置短波收发信机和天线、馈线系统即可组成短波通信系统。该系统通信设备较简单,机动性大,因此,可用于电话、电报、传真和广播等业务,特别适合应急通信和抗灾通信。

短波通信载频低,可用频带窄,容量不大,并且稳定性较差,所以较少用于民用通信。但近几年,随着新技术的发展,利用计算机进行自动测量传播参数和自动选择最佳通信频率的高频自适应通信,不但使电报电话短波通信可随时保持畅通,而且还可以进行数据速率达4800比特/秒的低速数据通信。

二、短波通信的优势

尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:

1、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;

2、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;

3、与卫星通信相比,短波通信不用支付话费,运行成本低。

三、短波通信的一般原理

3.1.无线电波传播

无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。

无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。

常见的传播方式有:  地波(地表面波)传播

沿大地与空气的分界面传播的电波叫地表面波,简称地波。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。

 直射波传播

直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。

在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。

限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。

 天波传播 天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波。电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。

 散射传播

散射传播是由天线辐射出去的电磁波投射到低空大气层或电离层中不均匀介质时产生散射,其中一部份到达接收点。散射传播距离远,但是效率低,不易操作,使用并不广泛。

3.2 电离层的作用

电离层对短波通信起着主要作用,因此是我们研究的重点。

电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层。上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。产生电离的大气层称为电离层。电离层分为D、E、F1、F2四层。D层高度60~90公里,白天可反射2~9MHz的频率。E层高度85~150公里,这一层对短波的反射作用较小。F层对短波的反射作用最大,分为F1和F2两层。F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持短波传播。

电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低。电离的浓度以单位体积的自由电子数(即电密度)来表示。电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变。

3.3 短波频率范围

电离层最高可反射40MHz的频率,最低可反射1.5MHz的频率。根据这一特性,短波工作频段被确定为1.6MHz-30MHz。3.4 短波传播途径

短波的基本传播途径有两个:一个是地波,一个是天波。

地波沿地球表面传播,其传播距离取决于地表介质特性。海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。短波信号沿地面最多只能传播几十公里。地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的。

短波的主要传播途径是天波。短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。但天波是很不稳定的。在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果。

四、单边带概念

在无线电通信中,传送信息的载体是特定频率的载波(也称为主频)。那么信息又是如何放到载波上的呢?这就引出了“调制”的概念。调制就是将信息的动态波形通过一定形式加到载波上发送出去,接收台收到被调制的载频信后,再还原信息。调制分为幅度调制(简称“调幅”)、频率调制(简称“调频”)、相位调制(简称“调相”)三种。中波、短波一般采用调幅方式,超短波一般采用调频方式。

根据国际协议,短波通信必须使用单边带调幅方式(SSB),只有短波广播节目可以使用双边带调幅方式(AM)。因此,国内外使用的短波电台都是单边带电台。4.1 单边带的定义

调幅信号的频谱是由中央载频和上下两个边带组成的。将载频和其中一个边带加以抑制,剩下的一个边带就成为单边带信号。如果用一个边带再加上部份载频或全部载频,就成为兼容式调幅信号。下面用图示的方法说明单边带信号是怎样产生的。

4.2 单边带的优点

单边带的优点是:

 提高了频谱利用率,减少信道拥挤;  节省发射功率约四分之三;  减少信道互扰;

 抗选择性衰落能力强。一部100W单边带电台的实际通话效果,相当于过去1000W以上双边带电台。

五、优化短波通信的方法

由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。

5.1 正确选用工作频率

短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:

(1)接近日出时,若夜频通信效果不好,可改用较高的频率;(2)接近日落时,若日频通信效果不好,可改用较低的频率;(3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;(4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;(5)遇到磁暴时,可选用比平常低一些的频率。

5.2计算机测频

利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。

美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。

5.3 正确选择和架设天线地线

天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。

短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线。而短波通信因使用的频率较低,天线必须做得足够大才能有效工作。简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高。

六、短波电台天线知识

6.1了解天线的基本工作原理

短波天线分地波天线和天波天线两大类。

地波天线包括鞭状天线、倒L形天线、T形天线等。这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。地波天线的效率主要看天线的高度和地网的质量。天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高。

天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角。典型的全向天波天线有:角笼形天线、倒V形天线等。它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角。

天波天线简单的规律为:天线水平振子(一臂的)长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比(H/λ)达到二分之一时,垂直波瓣主方向的效率最高。

6.2正确选择电台天线

随着短波通信技术的发展,短波天线出现了很多不同用途的新品种,例如用于短波跳频的高效能宽带天线;用于为了解决天线架设场地小和多部电台共用一副天线的多馈多模天线等。选择天线基本的着眼点应该是用途。

近距离固定通信:选择地波天线或天波高仰角天线。 点对点通信或方向性通信:选择天波方向性天线等。 组网通信或全向通信: 选择天波全向天线。 车载通信或个人通信: 选择小型鞭状天线。6.3正确处理天线价格与质量的关系

首先同种用途的天线有不同种类,其增益有高低之分。此外同一种外形的天线,使用不同材料;不同制造工艺,其通信效果的差异是很大的。例如以特种不锈铜钢复合绞线为振子的天线,比用塑包线为振子的天线高频电磁转换效率高得多。又例如匹配器所用的磁性材料优劣,对电台与天线的匹配状态影响极大。高性能磁料能够保证全频段每个频点都能良好匹配;劣质磁料可能造成很多频点甚至整段频率匹配不好,驻波比过大。

在投资增加不多的前提下,尽量选用高质量高增益的天线,能够保证长期稳定和优良的通信效果和延长使用寿命,是很划算的。

6.4常用的天线

根据多年的对比实验和实际使用经验,我们认为有两种进口天线在性能上能够广泛满足我国大多数用户的通信要求,而且价格不高,性能价格比好,以下分别介绍:

6.4.1用于全方位通信的三角组合型全向全角天线

我国省级行政区,从省会到边缘地区的距离多数在1200公里以内。在这个区域内组建全省或地区的通信网,中心基站选用这种天线是比较理想的。

这种天线既能照顾360°全方位,又能照顾近中远各种距离,接收效果好,对改善通信盲区特别有效,此外它能兼顾垂直极化波和水平极化波,对区域内各种台站的不同种类天线的兼容性好。

6.4.2兼顾全向和定向两种用途的高增益三线式天线

三线式天线是国际上近年流行的新型多用途天线,它虽然属于偶极天线类,但其性能是普通双极天线无法相比的。与普通双极天线相比它有以下优点:

 增益高,全频段内驻波比小,而且均匀辐射效率高;  水平架设时不仅在天线宽边方向辐射强,而且在窄边方向也有较强辐射;

 架设状态平稳,抗风抗毁能力强;

 提供平行和倒V两种架设方式,分别支持2500公里内定向通信和2000公里半径内全向通信。

以上两种天线的振子材质都是不锈铜钢复合绞线,电磁转换效率高而且经久耐用;其高性能磁性材料保证了全频段匹配良好。

七、工程施工要点

7.1正确架设天线和连接馈线

选购好合适的天线后,还必须正确地安装架设,才能发挥出最佳效果。天线的长度和架设规范是不能改变的,但对于某些天线而言,架设的方向和高度是靠用户自己掌握的,应严格按通信的方向和距离来确定方向和高度。天线的架设位置以开扩的地面为好,没有条件的单位也可以架在两个楼房之间或楼顶。天线高度指天线发射体与地面或楼顶的相对高度。架在楼顶时,高度应以楼顶与天线发射体之间的距离计算,不是按楼顶与地面的高度计算。我们提醒用户,切忌因为架设场地不理想或怕麻烦,就随便把天线架起来完事,这样做通信效果很可能是不好的。

另一个要点是馈线的选用和布设。馈线是将电台的输出功率送到天线进行发射的唯一通道,如果馈线不畅通,再好的电台和天线,通信效果也是很差的。馈线分为明馈线和射频电缆两类。目前100W~150W电台一般都使用射频电缆馈电方式。选用射频电缆时要注意两项指标:一是阻抗为50欧姆;二是对最高使用频率的衰耗值要小。一般来讲,射频电缆直径越粗,衰耗越小,传输功率越大。在实际使用中,100W级短波单边带电台,常选用SYV-50-5或SYV-50-7的射频电缆,必要时也可以选SYV-50-9的射频电缆。

天线在进行安装选位和布设时,应尽可能缩短馈线的长度,普通SYV-50-5馈线每1米造成信号衰减0.082dB,这意味着100W电台功率通过50米馈线送达天线时,功率剩下不到40W。因此通常要求馈线长度控制在30米以内。如果因为场地条件限制必须延长馈线,则应采用大直径低损耗电缆。另外在布设电缆,应尽量减少弯曲,以降低对射频功率的损耗,如果必需弯曲,则弯曲角度不得小于120度。

7.2电台和天线的匹配

天线、馈线、电台三者之间的匹配必须引起高度重视,否则,虽然电台、天线、馈线都选得很好,通信效果还是不好。

所谓“匹配”就是要求达到无损耗连接,只有电台、馈线、天线三者保证高频输入输出阻抗一致,才能实现无损耗连接。多数短波电台的输出/输入阻抗为50欧姆,必须选用阻抗为50欧姆的射频电缆与电台匹配。天线的特性阻抗比较高,一般为600欧姆左右,只有宽带天线的特性阻抗稍低一点,大约200~300欧姆,因此,天线不能直接与射频电缆连接,中间必须加阻抗匹配器(也叫单/双变换器)。阻抗匹配器的输入端阻抗必须与射频电缆的阻抗一致(50欧姆),输出端阻抗必须与天线的输入阻抗一致(600欧姆或200/300欧姆)。阻抗匹配器的最佳安装位置是与天线连为一体。

自动天线调谐器也是匹配天线和电台阻抗用的。自动天调的输入端与电台连接,输出端与单极天线连接。自动天调与偶极天线连接时要根据不同产品而定。有些天调要求加单/双变换器,天调与单/双变换器之间用50欧姆射频电缆相连(芯线接天调输出端,外皮接天调的地端),单/双变换器的双输出端与天线连接;多数新型天调不用加单/双变换器,用天调的输出端和接地端分别连接偶极天线的两臂,匹配效果更好,而且效率更高。

7.3正确埋设接地体和连接地线

地线是很多用户容易草率处理的问题。短波通信台站的地线是至关重要的,地线实际上是整个天馈线系统的重要组成部分。我们所说的地线,不是交流供电系统中的电源地或保安地。这里所说的地线是信号地,也称高频地。信号地一般不能接到电源地或保安地上,必须单独埋设。埋设接地体时,必须按有关标准进行,接地电阻不应大于4欧姆。电台的接地柱和接地体之间,必须用多股线铜、编织铜线或大截面优良导体连接,才能起到良好的高频接地作用。而良好的高频接地是减小发射驻波和减小接收噪声的必要前提。

7.4选用先进优质的电台和电源

工作频率和天线地线搞好了,相当于铺了一条“好路”。好路上还要跑“好车”。好车就是先进优质的电台和电源等设备。

7.4.1选择电台的原则和标准

怎样评价电台的先进性和优质呢?先进性体现在两个方面:一是电气特性和工艺结构,这方面先进与否决定了性能指标的优劣和设备的可靠性;二是使用功能,具有多种先进功能的电台不仅用途更广泛,而且也说明制造者的科技实力。

电气特性涉及的内容很多,这里只简述三个方面:

1、频率特性

好的电台频率稳定性比差的电台高几倍、几十倍甚至几百倍。频率稳定性高的电台,不但话音清晰,信号等级高,而且是支持高速数传的必要条件。在评价频率稳定性时要注意两点:一是全频段各频点的稳定性要一致;二是要在很宽的温度范围内稳定,不能机器一发热就产生频漂。

2、通道特性

这一特性描述信号在通过高频、中频、低频几个通道后的畸变程度。当进行短波数传时,这一问题非常突出。使用通道特性差的电台,无论怎样改造,数传速率都上不去,原因之一就是高速数据脉冲通过不佳的通道后发生明显畸变,使其难以被识别。

3、干扰和抗干扰特性

这方面的性能在技术说明书上都是以dB(分贝)值表示的,我们统称为dB指标。电台发射方面的dB指标不好,说明你传给对方台的信号不好,而且干扰其它台;电台接收方面的dB指标不好,说明自身容易被别人干扰;二者都是不能容许的。

工艺结构方面,主要看电路集成度和模块化程度。集成度高,可靠性必然高。模块化除了提高设备可靠性外,还使扩展功能和维修十分便利,是当今电台工艺的主流趋势。

八、短波电台的应用

社会需求的发展和科技的进步,使短波通信日益向多功能化方向发展。像用于半自动优选频率的自适应功能和全自动优选频率的自优化功能,用于计算机和传真机的数据传输功能,用于保密和抗干扰的跳频功能,用于组网通信的数字选呼功能,用于卫星定位的GPS监控功能,用于连接有线网的有线无线转接功能,等等。在具有这些现代化功能的电台面前,那些只能进行简单通话的电台就显得太原始了。目前在国内有一种现象,就是很多单位致力于在一些单功能电台上添加数传、自适应等功能。这固然是由于有大量旧式电台要改造,可能还有造价方面的考虑。但可以肯定这种现象是过渡阶段。正像现在大家都用GSM手机,再也没有人使用土造的手持电话一样,未来的短波领域也势必普及先进的多功能电台。此外,先进优质电台的售价呈下降趋势,也越来越接近我国用户的经济承受能力。

哪些电台先进而且优质,要具体分析,但有一点可以肯定:目前国内常见的多数日本电台,其电性能、可靠性、功能等与欧美和澳大利亚名牌产品不在一个等级上。

澳大利亚柯顿公司首创的NGT自优化短波电台,正是先进电台的代表。很多人认为只要稳压电源的输出电压和电流的数值符合要求就可以用,这种认识不够全面。其实有些干扰可能来自电源,有些话音失真也可能是电源动态范围不足所致。数据传输对电源的要求更严格,如果电源的电磁屏蔽特性不好,输出纹波大,将直接导致数传工作不正常。功率容量和设计余量也是考核稳压电源优劣的重要依据,有些电源为了降低生产成本,加强价格竞争能力,把功率容量设计在临界状态,并尽量简化电路,选用低指标元器件等等。这类电源的技术性能和可靠性肯定是做不高的。

在选购电源时,一定要挑选功率容量大、输出电压纹波小、电磁屏蔽特性好、电路设计余量大的静化电源产品。

九、短波通信的常见难点及解决方法 9.1近距离盲区及解决方法

前节已介绍了天波和地波二种传输途径。一般来说,地波最远可达30公里。而天波从电离层第一次反射落地(第一跳)的最短距离约为100公里。可见30至100公里之间这一段,地波和天波都够不到,形成了短波通信的“寂静区”,也称为盲区。盲区内的通信大多是比较困难的。解决盲区通信主要有两个方法:一是加大电台功率以延长地波传播距离;二是常用的有效方法就是选用高仰角天线,也称“高射天线”或“喷泉天线”。仰角是指天线辐射波辨与地面之间的夹角。仰角越高,电波第一跳落地的距离越短,盲区越少,当仰角接近90°时,盲区基本上就不存在了。

车载通信一直都是短波通信中的一个难题。车的体积就那么大,没办法架长天线,其辐射能力怎么也比不上固定台。因此必须从合理设计天线形态和合理选择架设位置等方面来弥补,尽可能利用车体的反射效应,尽可能增加天线的“电长度”。

车载天线有多种,现在国际上多认为鞭状天线更适合车辆运动中通信,而自动天调应该安装在车外,最好是与天线鞭结合为一体,也就是常说的自调谐鞭状天线,这种天线因天调输出端与天线连接的馈线很短,故效率比较高。美军现在就大量使用这种天线。

不管采取何种措施,车载台因天线长度的限制,发射效率肯定不如固定台高,因此实际通信中常常发现车载台收固定台的信号好,而固定台收车载台的信号不好的现象,为了弥补这种差异,建议车载台备份野外应急软天线供停车时使用。

国外目前还建议采用加大车载台功率的方法延长地波通信距离,改善盲区。提高车载台功率需要在原有100W电台基础上接续500W功率放大器,并相应改用大功率车载天线和大功率车载电源,这种大功率车载系统是行之有效的。

小知识:

一、衡量天线性能因素

天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。

1、辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。

2、极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。

3、增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。

4、阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。

二、几种常用的短波天线

1、八木天线

八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。

2、对数周期天线 对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。

3、长线天线

长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度

4、车载移动天线(Mobile Antennas)

移动天线一般工作在2.0~25MHz频段上,为垂直极性天线,性能与机械特性有关,天线长度较短,在低仰角工作时,发射效率适中。在通常情况下,车载天线仰角应大于45度,因为天线长度较短,是低效天线。在汽车上,机械特性限制了天线的选择,但天线可以放置为倒“L”型,这样增加了天线的垂直辐射面,可以提高发射效率,倒“L”天线适宜用于中短波通信。

第四篇:民航的短波通信探讨

民航的短波通信探讨

1、短波的传播方式

民航通信中使用到的短波实质为无线电波,主要用于地面与飞机间的通信,其通信传播方式主要有以下三种:

1.1地面波。地面波是沿着地球表面传播的波,它沿着半导电性质和起伏不平的地表面进行传播,一方面使电波的场结构不同于自由空间传播的情况而发生变化并引起电波吸收,另一方面使电波不像在均匀媒质中那样以一定的速度沿着直线路径传播,而是由于地球表面呈现球形使电波传播的路径按绕射的方式进行。

1.2天波。天波是经过地面上空40~800公里高度含有大量自由电子离子的电离层的反射或折射后返回地面的电波传输方式。天波是短波的主要传播途径,可实现长距离的传播,短波信号由天线发出后,经电离层的多次反射,传播距离可以由几百公里达到上万公里,且不受地面障碍物阻挡。在天波传播的过程中,路径衰耗、大气噪声、时间延迟、电离层衰落、多径效应等因素,都会造成信号的畸变与弱化,影响短波通信的效果。

1.3直接波。直接波是从发射天线到接收天线之间,不经过任何发射,直接到达,电波就象一束光一样,所以有人称它为视线传播。由于民航中,飞机大多数时间都是在飞行,所以有些时候地、空之间的短波通信,实际上是可以靠直接波完成的。

2、短波通信的特点

与卫星通信、地面短波等通信手段相比,无线电短波通信有许多显著的优点:(1)短波通信无需建立中继站即可实现远距离通信,(2)短波通信元器件要求低、技术成熟、制造简单、设备体积小、价格便宜,建设和维护费用低;(3)设备简单,目标小、架设容易、机动性强,即使遭到损坏也容易修理,由于其造价相对较低,可以大量装备,因而系统顽存性强。(4)电路调度容易,灵活性强,可以使用固定设置,进行定点固定通信,也可背负或装入车辆,实现移动中的通信。这些优点是短波通信被长期保留、至今仍被广泛应用的主要原因。同时,短波通信也存在着一些明显的缺点:(1)信道拥挤、频带窄;(2)短波的天波信道是变参信道,故信号传输不稳定;(3)大气和工业无线电噪声干扰严重;(4)天线匹配困难。

3、短波通信在民航中的应用

短波通信系统的主要用途是使飞机在飞行的各阶段中和地面的航行管制人员、签派、维修等相关人员保持双向的语音和信号联系,当然这个系统也提供了飞机内部人员之间和与旅客的联络服务。

3.1民航短波通信基本设备

民航短波地空通信设备由短波单边带发信机、短波单边带收信机、遥控器及地空选择呼叫器组成,设备一律使用单边带抑制载波、模拟单信道无线电话工作方式。短波单边带发、收信机均采用全固态电路及频率合成技术,频率范围为2.8~22MHz,发信机功率不大于6KW。

3.2民航短波通信地面站

民航短波通信地面站系统由三部分组成:短波机房设备、天线和馈线以及操作台设备。短波机房设备作为大功率发射设备,通常设置在远端,以减少对其他电子设备的干扰以及对操作员健康的影响。操作台设备设置在操作终端附近,便于操作与管理。

3.2.1短波机房设备。短波机房设备的主要设备包括短波通信电台、功放、预后选器、交流稳压电源、光端机及一整套控制电缆,主要功能是传送选呼信号和语音信号。短波电台是整个系统的核心设备,地面与航空器上均有配备,用于收发信号,包括选呼信号和音频信号。电台的性能直接决定了整个系统的性能,电台选型依据主要有两点:符合用户需求并且与飞机上电台匹配。预后选器是为了提高系统的抗干扰能力而选择的设备。光端机是地面站系统中实现远程控制的接口设备,起着连接短波机柜和操作台的作用。

3.2.2 操作台设备。操作台设备由操作终端及监控软件、选呼器、选呼控制器和光端机组成。操作员的所有操作都在监控软件上进行。监控软件实现对选呼器和短波电台的远程遥控,控制选呼器产生选呼代码,呼叫对应的飞机,控制电台的调制方式转换和音频信号收发,同时监测电台的工作状态。选呼器的功能是通过发射4个单音信号选择通知某个飞机。选呼器提供了一个7针的音频接口,包括一对平衡的选呼音频输出口、一个PTT输出口和一个地线,其余3个口经改造用于同选呼控制器通信。选呼控制器作为选呼器、电台和控制终端的中间设备,是实现系统自动化的关键,其基本作用是实现对电台、选呼器、控制终端、音频设备的信号转接、电平匹配、远程控制和状态感知,并自动转换调制方式。

3.2.3天线。天线的选择具体根据用途来确定:近距离固定通信:选择地波天线或天波高仰角天线。点对点通信或方向性通信:选择天波方向性天线等。组网通信或全向通信:选择天波全向天线。车载通信或个人通信:选择小型鞭状天线。3.3短波地空通信数据链系统 在民用航空领域,由于我国地理复杂、疆域辽阔、超短波网络尚不能实现完全覆盖,短波依然是地空通信的主要手段。短波地空通信数据链系统作为民航数据通信系统的子系统,在当前兴起的极地飞行中,有效解决了飞行盲区问题,对飞行安全起着非常重要的保障作用。短波地空通信数据链系统用于航空器飞行中保持与基地和远方航站的联络。其系统构造由短波/超短波通信系统、卫星通信站、地空数据网及机载通信系统组成,短波地空通信数据链系统通过短波、超短波与卫星实现了近、中、远程地空实时话音和数据通信。

4、结束语

近年来,随着微型计算机、移动通信和微电子技术的迅速发展,短波通信技术有了新的突破性进展,出现了实时选频、自适应、跳频、差错控制、多载波正交频分复用(OFDM)调制及软件无线电等新技术,使短波通信很好地弥补了它的缺点,还使短波通信的设备更加小型化、更加灵活方便,进一步发挥了短波通信设备简单、造价低廉、机动灵活等固有的优点。短波通信必将在应急通信、抗灾通信、特别是在军事通信中发挥更重要、更广泛的作用。因此。短波通信作为民航内部通信的重要手段,必将在今后较长时间内得到保持和发展。

参考文献:

[1]Johb G.Proakis Masoud Salehi.通信系统原理.电子工业出版社.2006年6月

[2]游战清.无线射频识别技术规划与实施[M].北京:电子工业出版社,2005

[3] 谈华生,周民.关于航空频段通信导航业务受干扰问题的分析与思考.2004.06

[4] 中国人民解放军总装备部.短波通信技术.国防工业出版社,2002

第五篇:短波通信系统(范文模版)

短波通信系统

省内部分边远地区等特殊情况下可能仍然采用短波通信系统进行语音通信,省应急平台就需要建设短波通信系统,作为通信的补充手段,实现远距离的点对点语音通信业务。具体要求如下:

 使用3M-30M的频段,频点按规定申请;

 固定和车载短波电台应具有自适应选频功能;

 固定短波电台能实现与公众电话网、集群通信网的互通功能;  车载台与便携式短波电台之间的通信距离应达到30KM以上;

 短波通信的电磁发射和敏感度要求应符合GJB151.4和GJB151.5的要求;  设备外部接口符合GJB880的规定;

相关标准

 GB/T 16946-1997《短波单边带通信设备通用规范》

 SJ 20492-95《便携式短波单边带电台通用规范》

 SJ 20491-95《车载短波单边带通信设备通用规范》

 SJ/T 10652-95《短波单边带通信设备通用技术条件》

下载短波通讯概述word格式文档
下载短波通讯概述.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    短波通信盲区及解决方法

    短波通信盲区及解决方法 卫星、网络通讯快速发展的今天,短波通信不仅没有被淘汰,还在快速发展。 其原因是:短波通信距离远、抗毁能力和自主通信能力强、运行成本低。 短波通......

    军事短波通信抗干扰措施

    【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通......

    优化短波通信的方法

    优化短波通信的方法 1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波......

    短波通信(HF)(5篇范文)

    短波通信 HF:高频,所指的就是短波波段1600千周--30000千周(180公尺--10公尺) FM:调频,是一种通信方式 调频(FM),就是高频载波的频率不是一个常数,是随调制信号而在一定范围内变化的调......

    通讯

    一、通讯的含义 通讯,是以叙述与描写相结合为主要表现手段,综合运用多种表达方式,及时、具体、 真实、生动地报道现实生活中新近发生的具有新闻价值的人物与事实的一种常用的新......

    通讯

    通讯文体的写作 一、通讯的概念 通讯,是运用叙述、描写等多种手法,具体、生动、形象地反映新闻事件或典型人物的一种新闻报道形式。它是记叙文的一种,是报纸、广播电台、通讯社......

    通讯

    第10课时《 通讯及彭德怀印象》导学案(教师版)教学目标】知识与能力 1、认识什么是通讯,了解通讯作品的社会功能,学会阅读通讯作品。 2、掌握通讯的作品的体裁特点和构成要素......

    通讯

    拈菊欣忆旧,敬老励承先——记院青协重阳敬老 文/赵科鹏 图/赵科鹏 10月16日,在我国传统敬老节日——九九重阳之际,院青年志愿者协会组织志愿者再次走进芙蓉里敬老院,给老人们带......