第一篇:相似三角形教学设计
相似三角形教学设计
教学目标: ⒈知识技能达成目标
通过一些具体的情境和应用,深化对相似三角形的理解和认识;进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辨证关系。
⒉过程方法揭示目标
经历感受,观察,说理,交流等过程,进一步发展学生的推理论证能力和有条理的表达能力。
⒊情感态度孕育目标
学生在自主探索,合作交流中获得成功的经验,树立自信心;感受数学与生活的密切联系,增强用数学的意识。
教学重难点:
重点:让学生认识定义所揭示的相似三角形的本质属性。难点:用知识解决实际问题,提高数学学习能力。教学准备:三角板,多媒体 教学过程:
㈠问题情境
多媒体展示:问题1:观察两幅图形有怎样的关系?
问题2:观察两个三角形有怎样的关系? 说明:通过出示两幅图片的相似过程,激发学生的学习兴趣,同时,让学生体验运用旧知识类比新知识,并最终获得新知识的过程。
㈡自主探究
⒈⑴用多媒体展示动画效果,提出问题3:通过观察两个三角形地变化过程,你发现两个三角形的边,角有没有变化?若有变化,是如何变化得呢?
说明:提出问题后,教师引导学生仔细观察变化过程,学生会发现两个三角形的形状没有改变,只是大小改变;而且可以获得角没有改变,边长同时放大或同时缩小。为下面探索相似三角形的定义作好铺垫。
⑵学生讨论:两个三角形相似要具备哪些条件呢? ⑶归纳:①定义
②表示方法
⒉①问题;反之,三角形ABC和三角形A’B’C’相似,你能指出对应角,对应边吗?它们又有什么关系呢?
②归纳;两个三角形相似,对应角相等,对应边成比例。说明:此环节的设计意图是让学生认识定义所揭示的相似三角形的本质属性,即对应角相等,对应边成比例。
⒊明晰;揭示三角形的本质属性。
⒋做吗?找出图中相似三角形的对应边对应角。
说明:此练习题的设置使学生在掌握定义的本质后,抓住相似的顶点字母对应的特征,快速确定对应边对应角。
㈢知识运用
1.合作探究:课本中的议一议
说明:此活动的安排,实际上是相似三角形概念的直接运用。在没有给出图形情况下,考察学生得空间想象能力和推断能力。
1. 试一试:课本中的例一
说明:是书上的例一,根据学生的实际情况,教师在不影响例题整体示范性的情况下,大胆更换了例题的实际背景。学生已经初步掌握相似三角形的定义,并且有了简单的应用。
2. 能力训练:①课本中的例二 ②从例二中,你还能获得那些结论?
说明:例题主要运用相似三角形的定义所揭示的本质属性进行计算。给出的两个问题解决后,教师又提出一个开放性的问题,问题出示后,教师要引导学生利用已有的结论,认真推理,大胆地发言,获得新结论,从而,渗透三角形相似与平行的内在联系。
㈣拓展应用
练习:小明欲测量灯塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端恰好与塔的影子的顶端重叠,此时他距离该塔18米,小明的身高是1.6米,他的影长是2米。试求塔的高度。
说明:题的设计有两个意图:一方面,运用本节课学的知识解决实际问题;另一方面,留给学生一个思考题,为什么这样的测量方法就能得到两个三角形相似。这是为下节课的内容埋下伏笔。
思考:你能说明为什么此时两个三角形相似? ㈤课堂小结
通过本节课的学习你有什么收获?
相似三角形的教学反思
在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力。比如对特殊三角形,提出这两个三角形有什么关系?理由是什么?对任意两个三角形,老师请学生量一量、算一算,结果都是由学生自己操作、判断得出。体现了教师是数学学习的组织者、引导者和合作者的新理念。
学生在富有现实性的数学情景问题中学会运用两个三角形相似解决实际问题,在解决实际问题中经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。在教学中突出了“审题,画示意图,明确数量关系解决问题”的数学建模过程,培养了学生把生活中的实际问题转化为数学问题的能力,利用图形的相似解决一些实际问题。是综合运用相似知识的良好机会,通过本节知识的学习,可以使学生综合运用三角形相似的性质解决问题,发展学生的应用意识,加深学生对于相似三角形的理解和认识。一节课上下来基本达到了预期目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题。
“数学教学活动应该考虑建立在学生的认知发展水平和已有的知识经验基础之上.激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.让学生真正成为数学学习的主人,让学生的数学学习活动成为一个生动活泼的、主动的和富有个性的过程.”同时在这样的潜移默化 的过程中学生同样地掌握了扎实的数学”双基”。
这节课感到遗憾的是有些学生操作计算速度慢,没有时间等待他们探索出给论。这样他们对这节课所学的内容理解不透彻,不能更好应用新知解决问题,今后要加强注意给每个学生留有足够的时间和空间去思维,并且对不同的学生教师应提出不同的问题,使不同的学生得到不同的发展,进而使每个同学都得到应有的发展
第二篇:相似三角形教学设计
《相似三角形》教学设计
教者:廖德虎
一、知识结构
本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。
二、重难点分析
相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误。
三、教法分析
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识。
4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解。
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解。
三、教学设计
(一)教学目标
1.使学生理解并掌握相似三角形的概念,理解相似比的概念.2.使学生掌握预备定理,并了解它的承上启下的作用.3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.4.通过学习,培养由特殊到一般的唯物辩证法观点.
(二)课时安排
1课时
(三)教具学具准备
投影仪、胶片、常用画图工具.
(四)教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.相似三角形
相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做相似三角形
符号“∽”,读作:“相似于”,记作: ∽,如图所示.∴ ∽
反之亦然.即相似三角形对应角相等,对应边成比例(性质).
∵
∴ ∽
,另外,相似三角形具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
相似三角形对应边的比K,叫做相似比(或相似系数).
注:①两个相似三角形的相似比具有顺序性.
如果 与
那么 的相似比是K,与
的相似比是
.②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽
,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截,本质上与右图是一致的.
两边所得,其中
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现
的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.
【小结】
1.本节学习了相似三角形的概念.
2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.
3.重点学习了预备定理及注意的问题.
【布置作业】
教材课后练习题中2,3.【板书设计】
第三篇:三角形相似教学设计
三角形相似教学设计
一、学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
二、教学过程:
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢? 生:已经研究了相似三角形的定义、判别条件。师:那么我们今天该研究什么了? 生:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢? 设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材: 给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联? 生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了? 生:面积比问题。师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比; 相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比; 相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
(四)操作应用,形成技能
2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。设计意图:落实双基,形成技能
(五)习题拓展,发展能力
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
第四篇:《相似三角形》复习教学设计
《相似三角形》复习的教学设计
修武县郇封一中 薛海明
一、教材和学生现状的分析
相似三角形判定和性质是本册教材的重点也是难点。在期中考试中时,我发现学生对这部分的知识掌握基本上比较死板的。尤其是在以下几个方面比较欠缺:1.相似三角形的对应边找不来;2.对应顶点易写错
3、当出现动点时,学生不能把所有相似的情况想全;4.在相似的性质中,对于面积比等于相似比的平方,要么把平方漏掉,要么反过来,把相似比写成面积比的平方.二、教学目标
知识目标: 1.熟悉相似三角形的判定定理和性质定理。
2.灵活应用相似三角形的判定定理和性质定理,主要是两角对应相等、两边对应成比例及夹角相等。
技能目标: 通过动点问题,发展学生的思维能力,培养学生的思维能力和
语言表达能力。
情感目标: 培养学生独立思考问题的能力,以及团结协作的精神。
三、教学过程的设计:
本节内容为复习课,主要是组织学生回忆、思考、归纳,逐渐把这些知识内化于自己的知识结构体系中。1.从基本定理的复习入手,加以简单练习的巩固。针对学生对相似三角形中对应边不熟,练习1至7的设计就是让学生熟练寻找对应边和对应角。以及周长比和相似比,面积比和相似比性质。如:
1、两个相似三角形对应中线之比是1:2,则对应角平分线之比也是1:2。()
2、两个相似三角形面积比是1:2,则相似比是1:4。()
3、△ABC∽△A′B′C′,相似比为2:3,若△ABC周长为6,则△A′B′C′周长为9。()
2.两个相似五边形的面积比为9:16,其中较大 的五边形的周长为64cm,则较小的五边形.如图,DE∥BC,AD:DB=1:2,DC,BE交于点O,则△DOE与△BOC的周长之比是_________, ________._______cm.6.四边形ABCD面积比是是平行四边形,点E是 的周长为BC的延长线上的一点,而CE:BC=1:3,则 △ADG和△EBG的周长比
为
面积比。
4、两相似三角形对应高之比为3∶4,周长之和为28cm,则两个三角形周A 长分别为
B 2.“相似判定定理”的应用.因此,探索发现设计主要是对这个判定的应用。如例1.已知:如图,△ABC中,P是AB边上的一点,连结CP.满足一个什么条件时△ ACP∽△ABC.这个例题的设计具有一定的开放性.问学生图中有多少个理由判定相似三角形.A G C F D B
E P 2
C 3.相似部分中的动点问题,通常要求学生能全面地考虑各种可能的情况。对于学生来说有一定的难度。因此我制作课件,利用幻灯片的动画功把这个动点真正地动起来,加强直观和生动,让学生对问题掌握得更加全面。这是练习题的设计目的之一。如图,正方形ABCD的边长为8,E是AB的中点,且CM=2,点N在CD上滑动,则当CN=_________时,以C、M、N为顶点的三角形与△ADE相似。
同时,相似的判定中“AA”“SAS”是重点,而练习就包含了这两种方法的应用。数形结合是初中数学思想的重要组成部分,在相似中,这种思想的应用是非常多的。同时,相似与函数的综合应用也是学生必须掌握的内容。因此温故知新的设计正是为了达到以上目的。
4.练习题大多学生平时的易错题组成,这样设计,既与复习的内容密切联系,使学生能巩固这部分的知识。同时让那些乐于思考、对数学有很大兴趣的学生有更多的锻炼机会,更好地深化和完善知识。
四、教法
由于本节课是复习,老师组织好学生探索,引导他们归纳。1.让他们更多地体验知识的应用过程,主动获取知识。2.鼓励学生一题多解,从各种角度来思考问题,以达到对知识的灵活,娴熟应用。3.与信息技术相整合, 扫除学生的思维障碍。通过幻灯片动画的应用,变静为动,变抽象为直观。培养学生的形象思维能力。4.通过动点问题的研究,演示,培养学生思维的严密性。4.B
M
E A
D
N C 必要的点拨与指导.虽然我们提倡学生主动学习,但是老师指导也不可少。课堂上有许多问题是课前所不能预测的,老师的应变能力非常重要。如在不打击学生积极性的前提下纠正学生的错误。
五、学法
本节课中,学生的自主学习得到较好的体现。1.独立思考,探究.定理的复习以及简单的练习,学生均是独立完成.2.小组合作,积极讨论。在动点问题的研究中,由于学生思维的局限,许多学生并不能想全各种情形。因而小组成员的合作就非常必要。向同伴学习,印象更深。同时彼此之间能发现优点。
六、设计意图。
为了实现预期的教学目标,激发学生的学习需求,精心设计问题,设计层层递进的问题,能照顾到部分基础较弱的学生,又能使较好的学生思维得到拓展。在教学实施过程中,教师给予学生探索、研究以充分的时间,在教师的指导下,以学生个人和学生之间的合作与交流为主,师生互动,让学生在学习活动过程中体会自我建构的乐趣。对于思维创新的火花,哪怕它是很稚嫩、很欠缺的,教师也要积极鼓励,让学生的创新精神得以发扬。
第五篇:《相似三角形的性质》教学设计
《相似三角形的性质》教学设计
教学目标:
1、知识与技能
(1)、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。
(2)、灵活运用相似三角形的判定和性质,提高分析,推理能力。
2、过程与方法:
(1)、对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。
(2)、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。
(3)、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。
3、情感与态度:
在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。
教学重点:相似三角形性质定理的探索及应用
教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系
教学方法与手段:探究式教学、小组合作学习、多媒体教学
教学过程:
一、创设情境,引入新课
1、我们已经学了相似三角形的哪些性质?
2、问题情境:
某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面积有多少?周长是多少?你能解决这个问题吗?
二、实践交流,探索新知
1、看一看:
△ABC与△A′B′C′有什么关系?为什么?
2、算一算:
△ABC与△A′B′C′的相似比是多少?
△ABC与△A′B′C′的周长比是多少?面积比是多少?
3、想一想:
你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?
4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?
5、在学生思考、讨论的基础上给出证题过程(多媒体)
6、归纳小结;相似三角形性质定理2
相似三角形的周长比等于相似比,面积比等于相似比的平方。
三、基础训练,加深理解
练一练:已知两个三角形相似,请完成下列表格:
归纳:周长比等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。
四、综合应用,解决问题
已知:如图,△ABC,DE//BC,且△ADE的面积等于梯形BCED的面积,则△ADE与△ABC的相似比是
五、拓展延伸,共同提高
1、如图,在△ABC中,点D、E分别是AB、AC的中点。(1)找出图中的各对相似三角形;
(2)各对相似三角形的相似比分别是多少?面积的比呢?
ADEOBC
2、如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
六、回顾反思,畅谈心得
本节课你有何收获?
1、这节课我们学到了哪些知识?
2、我们是用哪些方法获得这些知识的?
3、通过本节课的学习,你有没有新的想法或发现?你觉得还有什么问题需要继续讨论吗?
七、布置作业
1、作业本2、3(2)(3)、4、5
2、探究推理过程课外整理完成,各组自行组织讨论交流。
教学设计说明:
1、本节课从一个较为实际的生活情境引入,设置问题悬念,激发学生的求知欲望,使学生掌握将实际问题转化为数学问题的思想方法,感受数学知识在生活中的广泛应用。
2、性质定理2的学习和探索,注重于知识的形成过程,使学生体验特殊到一般的认知规律,以及由观察——猜想——论证——归纳的数学思维过程。
3、由问题的解决变式到例题,再经例题加以拓展延伸,使本节内容衔接更趋自然,同时使学生充分体会类比的数学思想以及图形之间的互相联系。
4、教学中注重小组之间的合作交流,在合作中加强学生的团体意识,体验成功的喜悦,树立学习的自信心。