相似三角形的应用教学设计

时间:2019-05-12 18:11:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《相似三角形的应用教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《相似三角形的应用教学设计》。

第一篇:相似三角形的应用教学设计

相似三角形的应用

一、知识要点:

(一)相似三角形的应用主要有如下两个方面

1.测高(不能直接使用皮尺或刻度尺度量的);

2.测距(不能直接测量的两点间的距离)。

(二)测高的方法

测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例”的原理解决。

(三)测距的方法

测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

1.如图甲所示,通常可先测量图中的“线段”BD、DC、DE的距离(长度),根据相似三角形的性质,求出AB的长.2.如图乙所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长。

二、例题解析:

例1.如图,AB、CD相交于点O,且AC∥BD,则OA·OD=OC·OB吗?为什么?

解:∵AC∥BD

∴∠B=∠A,∠D=∠C

∴△OBD∽△OAC

∴OA·OD=OB·OC 1

因此OA·OD=OC·OB成立.

例2.如图,物AB与其所成像A′B′平行,孔心O到蜡烛头A的距离是36cm,到蜡烛头的像A′的距离是12cm,你知道像长是物长的几分之几吗?你是怎样知道的?

解:∵AB∥A′B′

∴∠ABO=∠A′B′O

又 ∵ ∠AOB=∠A′OB′

∴△AOB∽△A′OB′

∵AO=36cm,A′O=12cm

∴ 则

答:像长与物长之比为

例3.如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.

(1)图中△ABC与△ADE是否相似?为什么?

(2)求古塔的高度.

解:(1)△ABC∽△ADE.

∵BC⊥AE,DE⊥AE ∴∠ACB=∠AED=90°

∵∠A=∠A ∴△ABC∽△ADE(2)由(1)得△ABC∽△ADE ∴

∵AC=2m,AE=2+18=20m,BC=1.6m ∴

∴DE=16m 答:古塔的高度为16m 例4.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽),你有什么方法?3

方案1:如上左图,构造全等三角形,测量CD,得到AB=CD,得到河宽。

方案2:如上右图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?

解:∵AB⊥BC,CD⊥BC

∴∠ABO=∠DCO=90°

又 ∵ ∠AOB=∠DOC

∴△AOB∽△DOC

∵BO=50m,CO=10m,CD=17m

∴AB=85m

答:河宽为85m.

例5.已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE。亮区一边 4 到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高BC?

分析:作EF⊥DC交AD于F。则,利用边的比例关系求出BC。

解:作EF⊥DC交AD于F。因为AD∥BE,所以,所以

又因为,所以。因为AB∥EF,AD∥BE,所以四边形ABEF是平行四边形,所以EF=AB=1.8m。所以

m。

例6.用一个正方形完全盖住边长分别为3厘米、4厘米、5厘米的一个三角形,这个正方形的边长最小是多少?

分析:设

则能完全盖住是直角三角形,其中,EG为斜边。显然,边长为4cm的正方形的正方形ABCD,如图所三边EF、FG、GE分别长3cm,4cm,5cm,但不是最小的,可以设想一个完全盖住

示,此时正方形的边长

解:设,则,而

即,于是,整理后可解得:

所以要完全盖住

三、课后练习: 的最小正方形边长

1.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得树高是多少?

2.测量河宽AB,先从A处出发,沿河岸走100步到C处,在C处立一根杆标,然后沿AC继续朝前走20步到D处,在D处,转过90°角沿DE方向再走32步,到达E处,并使河对岸的B处(目标物)和C、E同在一直线上,问测得河宽为多少米?(1步约等于0.75m)

3.一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,求桶内油面的高度。

练习答案:

1.提示:作CE//DA交AB于E,树高是4.2m。

2.点拨:利用相似三角形的判定和性质。

解:因为B、C、E在同一直线 所以

又因为

所以(步)

答:河宽约为120m。

3.0.64m。

第二篇:相似三角形的应用教学设计

《相似三角形的应用》教学设计

无锡市安镇中学 汪秋莲

【教材分析】

(一)教材的地位和作用

《相似三角形的应用》选自华东师范大学出版社义务教育课程标准实验教科书中数学九年级上册第二十四章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定、性质,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

(二)教学目标

1、。知识与能力:

①了解测量旗杆高度的方法。

②会用相似三角形的知识解决生活实际问题。2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。3.情感、态度与价值观:

①通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。②通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。关键:将实际问题转化为数学模型,利用所学的知识来进行解答。【教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量旗杆高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】

一、知识梳理

1.相似三角形的识别方法:

的两个三角形相似; ◆

的两个三角形相似; ◆

的两个三角形相似。2.相似三角形的性质:

相似三角形的。

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

古希腊,有一位伟大的科学家塔列斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道塔列斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、问题探究

1.如图,某同学想测量旗杆的高度,他在某时刻测得1m长的标杆竖直放置时影子长为1.5m,同一时刻测得旗杆的影子长为12m,你能帮他求出旗杆的高度吗?(温馨提示:太阳光线是平行线)

(通过对这一问题的顺利解决,一方面促使学生经历从实际问题到建立数学模型的过程,明确通过运用相似三角形的判定定理构造相似三角形和运用相似三角形的性质列出比例式求解来解决这类问题;另一方面,让学生品尝解题成功带来的喜悦,从而提高学习数学的兴趣。)

2.如图,另一同学在某时刻测得1m长的标杆竖直放置时影子长为1.6m,同一时刻测量旗杆的影子长时,因旗杆靠近一栋楼房,影子不全落在地面,有一部分落在墙上,他测得落在地面上的影子长为 11.2m,留在墙上的影子高为1m。你能帮他求出旗杆的高度吗?

在学生求出旗杆的高度以后,教师设计两个问题:①能不能把旗杆缩短一点,使它的影子恰好落在地上?②如果把那堵墙拆除,光线照射过来影子落在什么地方?

(通过这一问题的解决,一方面加深学生对“构造相似三角形”的理解和应用,另一方面发散学生思维,促使他们获取更多解决问题的方法。同时,及时总结,比较三种方法,将它们归结为梯形中添加辅助线的两大类型:平移对角线和延长两腰,从而提高学生的认知水平,促使他们获取更多解决问题的策略。)

四、思维拓展 如果没有影子,怎样测量旗杆的高度呢?

1.如图,第三位同学与标杆顶端F、旗杆顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=3米,CD=10米。求旗杆的高度。

EFADCB(在前面一个题目中,通过教师的引导和点拨,大大激活了学生的思维,打开了学生思绪的闸门,通过这一问题的出示,为学生提供了大展身手的机会。在这里,学生通过动手实践,真正领悟“构造相似三角形”的精髓,亲身体验数学建模的过程,在积极参与的过程中享受探索的乐趣。同时,借助实物投影出示部分学生的解题方法,这样,为学生提供了一个展示成果的平台,从而将课堂气氛推向高潮。)

2.如图,第四位同学把一小镜子放在离旗杆(AB)14米的点E处,然后沿着直线BE后退到点B',这时恰好在镜子里看到旗杆顶端A点。再用皮尺量得B' E=2.8米,观察者目高A' B' =1.6米。这时的旗杆高度是多少?你能解决这个问题吗?(温馨提示:根据光的反射定律:反射角等于入射角。即∠1= ∠2)

AA'12BEB'(进一步深化相似三角形的基本知识,形成“构造相似三角形”的基本技能,并尝试独立地写出完整的解题过程,培养学生严谨的学习态度和良好的学习习惯。)

五、回顾小结

1.现在你知道塔列斯是怎样测量大金字塔的高度了吗?

(前呼后应,让学生解决开头提出的实际问题。通过学生的表述,概括出常见的测量旗杆的方法,并且促使学生体验数学来源于生活又服务于生活。)

(结合图形,教师出示塔列斯测量的方法)

O’OA’B’AB

天气晴朗时,塔列斯来到大金字塔旁,在沙地上立起一根棍子,在太阳光的照射下,棍子把影子留在了沙地上,当棍子和他的影子一般长时,塔列斯就把大金字塔的高度测量出来了。

2.这节课你有哪些收获?

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、跟踪练习

1.(2005·陕西)如图,身高1.6m的小华站在距路灯杆5m的C处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为

m.2.(2005·大连)张华同学的身高为1.6m,某一时刻他在阳光下的影长为2m,与他临近的一棵树的影长为6m,则这棵树的高为()

A.3.2m

B.4.8m

C.5.2m

D.5.6m 3.某数学课外实习小组想利用树影测量树高,如图,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB。

4.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。

5.小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。(根据光的反射定律:反射角等于入射角)

七、综合延伸

(2006·深圳)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD•的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,求路灯A的高度。

(分梯度的练习,既落实双基又满足不同层次学生的需求,照顾了学生的个体差异,关注了学生的个性发展。同时,练习的内容紧扣教学要求,目的明确,有针对性;练习的设计有层次,有坡度,难易适中。这样。学生在解题的过程中既巩固和深化了所学知识,形成技能,并且享受了解题成功带来的喜悦。)

【教学设计说明】

相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量旗杆高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量旗杆高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,最大限度地调动学生学习的积极性和主动性。

(责编:姚敬东)

第三篇:《相似三角形》教学设计

《相似三角形》教学设计

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题. 板书: 公式

师:小学里学过哪些面积公式?

板书: S = ah

附图

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1 如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性.

【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

(出示投影3)

例2 如图是一个环形,外圆半径,内圆半径 求这个环形的面积

学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

2.本题实际上是由圆的面积公式推导出环形面积公式.

3.进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

测试反馈,巩固练习

(出示投影4)

1.计算底,高 的三角形面积

2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

3.已知圆的半径,求圆的周长C和面积S

4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

(1)求A地到B地所用的时间公式。

(2)若 千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

七、随堂练习

(一)填空

1.圆的半径为R,它的面积 ________,周长 _____________

2.平行四边形的底边长是,高是,它的面积 _____________;如果,那么 _________

3.圆锥的底面半径为,高是,那么它的体积 __________如果,那么 _________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,V是多少?

八、布置作业

(一)必做题课本第22页1、2、3第23页B组1

(二)选做题课本第22页5B组2

第四篇:三角形相似教学设计

三角形相似教学设计

一、学习目标

知识与技能方面:

探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

过程与方法方面:

培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。情感态度与价值观方面:

让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

二、教学过程:

(一)类比研究,明确目标

师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢? 生:已经研究了相似三角形的定义、判别条件。师:那么我们今天该研究什么了? 生:相似三角形的性质。

(二)提出问题,感受价值,探究解决

师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢? 设计意图:

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材: 给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联? 生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)

(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。

结论:相似三角形的周长之比等于相似比。情境二:

师:相似三角形周长比问题研究完了,下面我们该研究什么内容了? 生:面积比问题。师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。

(三)拓展研究,形成策略,回归生活

拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)拓展研究二:由相似三角形研究拓展到相似多边形研究

师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。

说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。

拓展结论1:相似多边形的周长之比等于相似比; 相似多边形的面积之比等于相似比的平方。

(结合相似五边形研究过程)

拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比; 相似多边形中对应对角线之比等于相似比;

进而拓展到:相似多边形中对应线段之比等于相似比等。

(四)操作应用,形成技能

2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。设计意图:落实双基,形成技能

(五)习题拓展,发展能力

设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

(六)作业(略)

另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

第五篇:相似三角形教学设计

《相似三角形》教学设计

教者:廖德虎

一、知识结构

本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。

二、重难点分析

相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误。

三、教法分析

1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识。

4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解。

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解。

三、教学设计

(一)教学目标

1.使学生理解并掌握相似三角形的概念,理解相似比的概念.2.使学生掌握预备定理,并了解它的承上启下的作用.3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.4.通过学习,培养由特殊到一般的唯物辩证法观点.

(二)课时安排

1课时

(三)教具学具准备

投影仪、胶片、常用画图工具.

(四)教学步骤

【复习提问】

1.什么叫做全等三角形?它在形状上、大小上有何特征?

2.两个全等三角形的对应也和对应角有什么关系?

【讲解新课】

1.相似三角形

相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

定义:对应角相等,对应边成比例的三角形,叫做相似三角形

符号“∽”,读作:“相似于”,记作: ∽,如图所示.∴ ∽

反之亦然.即相似三角形对应角相等,对应边成比例(性质).

∴ ∽

,另外,相似三角形具有传递性(性质).

注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

2.相似比的概念

相似三角形对应边的比K,叫做相似比(或相似系数).

注:①两个相似三角形的相似比具有顺序性.

如果 与

那么 的相似比是K,与

的相似比是

.②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.

3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽

,如图所示.

教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截,本质上与右图是一致的.

两边所得,其中

(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现

的错误,如出现错误,教师要及时予以纠正.

(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.

【小结】

1.本节学习了相似三角形的概念.

2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.

3.重点学习了预备定理及注意的问题.

【布置作业】

教材课后练习题中2,3.【板书设计】

下载相似三角形的应用教学设计word格式文档
下载相似三角形的应用教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形教学设计

    相似三角形教学设计 教学目标: ⒈知识技能达成目标 通过一些具体的情境和应用,深化对相似三角形的理解和认识;进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辨证......

    《相似三角形的应用》课时教学设计

    《相似三角形的应用》课时教学设计 [教学目标] 1.了解平行投影、中心投影、盲区的意义. 2.知道在平行光线的照射下,不同物体的物高与影长成比例. 3.通过测量活动,综合运用判定三角......

    《相似三角形》复习教学设计

    《相似三角形》复习的教学设计 修武县郇封一中 薛海明 一、教材和学生现状的分析 相似三角形判定和性质是本册教材的重点也是难点。在期中考试中时,我发现学生对这部分的知......

    《相似三角形应用举例》教案

    《相似三角形应用举例》教案 一、教学目标 1. 进一步巩固相似三角形的知识.2. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题......

    相似三角形的性质 教学设计

    相似三角形的性质 教学设计 一、教学目标 1.利用前面几节的相关结论经过简单的推导得出相似三角形的各条性质; 2.运用相似三角形性质解决简单的问题。 二、教学重难点 教学重点......

    相似三角形的性质教学设计

    课题:23.3.3相似三角形的性质 课型:新授课 作课人:新安县磁涧镇第一初级中学 侯黎明 【学习目标】: 1、知识与能力:在理解相似三角形基本性质的基础上,掌握相似三角形对应中线、对......

    27.2 相似三角形 教学设计 教案

    教学准备 1. 教学目标 1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力. 2.了解相似比的定义,掌握判定两个三角形相似的方法:平......

    《相似三角形的性质》教学设计

    《相似三角形的性质》教学设计 教学目标:1、知识与技能 (1)、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。 (2)、灵活运用相似三角形的判定和性......