第一篇:正数与负数-教学教案
1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2.会初步应用正负数表示具有相反意义的量;
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4.培养学生逐步树立分类讨论的思想;
5.通过本节课的教学,渗透对立统一的辩证思想。教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构
1.正数、负数和零的概念 正数负数零
象1、2.5、、48等大于零的数叫正数 象-
1、-2.5,-48等小于零的数叫负数 0叫做零,0既不是正数也不是负数
2.有理数的分类
三、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如: 一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时,是负数;当 表示0时,就在0的前面加一个负号,仍是0,0不分正负;当 表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如„-6,-4,-2,0,2,4,6„,不能被2整除的数是奇数,如„-5,-4,-2,1,3,5„
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
五、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。教学设计示例 正数与负数(一)
一、素质教育目标
(一)知识教学点
1.了解:正数与负数是实际需要的.
2.掌握:会判断一个数是正数还是负数.
3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.
(二)能力训练点
通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.
(三)德育渗透点
1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.
2.通过正负数的学习,渗透对立、统一的辩证思想.
(四)美育渗透点
通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.
二、学法引导
1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.
2.学生学法:研究实际问题→认识负数→负数在实际中的应用
三、重点、难点、疑点及解决办法
1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.
2.难点:负数的引入.
3.疑点:负数概念的建立.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、自制活动胶片、中国地图.
六、师生互动活动设计
教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.
七、教学步骤
(一)创设情境,复习导入
师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?
学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数„„
师小结:为了实际生活需要,在数物体个数时,1、2、3„„出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?
学生活动:学生们思考,头脑中产生疑问.
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.
(二)探索新知,讲授新课
师:为了研究这个问题,我们看两个实例
(出示投影1)用复合胶片翻四次
在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)
学生活动:看图回答10℃,5℃,零下5℃,零下10℃.
[板书] 5-5-10
师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?
(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).
学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米.
【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位.
教师针对学生回答的情况给与指正. 师:以上实例中出现了-
5、-
10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、℃记作+
5、+
10、+1.6、+,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-
5、-
10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数.
师随着叙述给出板书
[板书]
正数:大于0的数
负数:正数前面加“-”号(小于0的数)
0:既不是正数也不是负数.
第二篇:正数与负数教案
第一课时正数与负数
一、教学内容:
正数与负数。
二、教学目标:
1.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
2.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
3.情感态度与价值观:培养学生积极思考,合作交流的意识和能力。
三、重、难点与关键:
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.
四、教具准备:
投影仪、课件
五、教学过程:
(一)负数的引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,„;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,„就是3,2,0.5,„一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(二)加深对数字0的认识
数字0既不是正数,也不是负数,但0是正数与负数的分界数。
0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
(三)用正负数表示具有相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。
你能再举一些用正负数表示数量的实际例子吗?
例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除 0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.
七、课堂活动。
以小组为单位,说说生活中具有相反意义的量。
八、课时作业设计
(一)填空题。
1.如果向北走5米记作+5,那么向南走10米记作________. 2.如果节约30千瓦•时电记作+30千瓦•时,那么浪费10千瓦•时电记作_____.
3.如果-26.80表示亏损26.80元,那么+100元表示________. 4.如果体重增加1.5千克记作+1.5千克,那么-0.5 千克表示__ ______.
(二)选择题.
5.下列说法正确的是().
A.0是正数
B.0是负数C.0是整数D.0不是自然数 6.有四个数:-5,0,3,-0.3,其中正数的个数是(). A.1
B.2
C. 3
D.4 7.有四个数:-7,5,0,-6.3,下列说法完全正确的是(). A.-7,是负整数
B.5,0,是正数 C.-7,-6.3,是负整数
D.只有-6.3是负分数
(三)解答题.
8.指出下列各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?
0,-2,3,-0.08,-,-4,3.14,77,-103. 9.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,你对此怎样理解?
10.若把公元1997年记作+1997,那么-97表示什么?
第三篇:正数与负数 教学设计 教案
教学准备
1.教学目标
1.在熟悉的生活情境中初步体会正负数的意义。掌握正负数的读、写法。知道0既不是正数,也不是负数。
2.会用正负数表示日常生活中具有相反意义的量。
3.在学习的过程中,体会用正、负数表示的优越性,感受数学的简洁美。
2.教学重点/难点
会熟练运用正负数表示具有相反意义的量,知道正负数所表示的实际含义。
3.教学用具
教学课件
4.标签
教学过程
一、新课导入 1.相反意义的量
⑴ 出示:第8页的第①题的图
师:这里的两个温度计分别显示了海口与哈尔滨冬季某一天的最低气温。你能说说它们分别是几摄氏度吗?
(这一天海口的最低气温是零上12℃,哈尔滨的最低气温是零下25℃。)(师指导:℃读作摄氏度)师:那么它们分别和0℃比有什么特点呢?
(零上12℃比0℃高12℃,零下25℃比0℃低25℃。)小结:零上温度和零下温度是一对具有相反意义的量。
⑵ 出示:第8页的第②题的图 师:世界第一高峰珠穆朗玛峰,那你知道地表的最地点在哪里吗?那是在北太平洋西部的马里亚纳海沟的深度。
你能根据图中显示的说出他们的高度或深度吗?
生:峰珠穆朗玛峰高于海平面8844.43米,马里亚纳海沟低于海平面11034米。小结:海平面以上高度和海平面以下深度也是一对具有相反意义的量。
2.举出现实生活中相反意义的量
问:生活中具有相反意义的量你还能举出例子吗?(收入与支出、盈与亏等)
小结:而这些具有相反意义的量该如何表示呢?
二、今天我们就来学习――正数和负数(出示课题)
三、新课探索
1.探究一--认识正负数 ⑴ 播放《天气预报》片段
问:上海今天的气温是8℃,表示什么意思? 北京今天最低气温是-3℃,最高气温是6℃,沈阳今天的最高气温是-6℃,吉林今天最低气温是-12℃,还有哪些城市今天最低气温在0℃以下?记录下这个温度。⑵ 认识天气预报中的负数。
(板书:-3℃
-6℃
问:这些表示温度的数,与我们原来的数有什么不同? 小结:在表示温度时,为了区别零上温度和零下温度,人们规定在零上温度前面添上符号“+”,而在零下温度前面添上符号“-”。海口的最低气温是零上12℃,℃)
-12就记做“+12℃”,读作:正12摄氏度。哈尔滨的最低气温是零下-25℃,就记做“-25℃”,读作:负25摄氏度。
2.探究二――认识正负数的意义和表示方法。师:+
8、+
21、+32
-
3、-
16、-30 这样表示你觉得有什么好处吗?(书写方便)
像+
8、+
21、+32„„前面有“+”号的数都是正数; 像-
3、-
16、-30„„前面有“-”号的数都是负数。小结:有时候前面的符号“+”还可以省略不写。
例如:+12=12
+25=25 这样书写的时候就怎样?(更方便)那么为了书写方便是否可以将“-”也省略不写呢?为什么? 3.探究三――借助温度计,认识正负数,认识负数与零的关系。师:请大家在温度计上找出0℃。再找出-8℃、-6℃、-12℃。问:在温度计上,-8℃、-6℃、-12℃在0℃的什么方向,说明什么?
学生小组讨论,交流
问:在温度计上找出+8℃、+6℃、+12℃它们在0℃的什么方向,说明什么? 小结:从温度计上观察,0°C以上的温度用正数表示,0°C以下的温度用负数表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。
4.探究四――用正负数来表示生活中相反意义的量 ⑴ 师:在日常生活或生产实际中,我们常用正数和负数来表示具有相反意义的量。
海口的最低气温是零上12℃,哈尔滨的最低气温是零下25℃ 这一对相反意义的量就可以表示为+12℃,-25℃。⑵ 师:用海拔0米表示海平面的平均高度,如果规定海平面以上高度用正数表示,那么海平面以下的深度则用负数表示。
那刚才的峰珠穆朗玛峰和马里亚纳海沟应该怎样用正负数表示。生:峰珠穆朗玛峰高于海平面8844.43米,记作海拔+8844.43米,马里亚纳海沟低于海平面11034米,记作海拔-11034米
四、课内练习1.练习一
读出下列各数,说出下面各数哪些是正数,哪些是负数? +17,-7.5,0,+1,0.05,6.7,-13 学生汇报
2.练习二
小明家上月的收支情况如下:
5月 4日
爸爸工资收入1500元。5月 6日
水、电、煤气支出200元。5月12日
电话费支出120元。5月15日
妈妈工资收入1400元。„„
„„ 师:如果收入记作“+”,支出记作“-”,用正负数表示以上收入和支出金额。学生小组活动,讨论交流。
师:下面是小明家后几天的收支情况,你你说出表示的意义吗? 日期
收支情况(元)
5月18日
+300
5月22日
-450
5月29日
-600 3.练习三:判断
⑴ 0是自然数,0既是正数也是负数。()⑵ 温度0℃就是没有温度。()⑶ 如果向东运动4米,记作+4米,那么向南运动5米,记做-5米。()小结:对于0的认识,在小学阶段我们知道0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有。比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富
课堂小结
五、本课小结
师:今天我们认识了正数和负数,谁来说说看你掌握了哪些知识? 想一想,引入负数对我们的学习、生活有什么意义?
课后习题
六、课后作业 练习册第6页
第四篇:1.1正数与负数教案
1.1正数与负数教案
[教学目标]
1.使学生了解正数与负数是从实际需要中产生的;
2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;
3.初步会用正负数表示具有相反意义的量;
4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
[教学重点和难点]
负数的意义。
[课堂教学过程设计]
一、从学生原有的认知结构提出问题 大家知道,数学与数是分不开的,它是一门研究数的学问。现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、,我们用到整数1,2。
为了表示半小时、四元八角七分、,我们需用到分数 和小数4.87、。
为了表示没有人、没有羊、,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
二、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的。
又如,某仓库昨天运进货物 吨,今天运出货物 吨,运进和运出,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,5℃表示零下5℃。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做正算黑,负算赤。如今这种方法在记账的时候还使用。所谓赤字,就是这样来的。现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进货物 吨,记作;运出货物 吨,记作。
教师讲解:什么叫做正数?什么叫做负数?强调,0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量。并指出,正数、负数的+、-号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
三、运用举例变式练习
例 所有的正数组成正数集合,所有的负数组成负数集合。把下列各数中的
正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4.8,+73,-2.7,,-8.12,此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用图表示集合,也可以用大括号表示集合。
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ },负数集合:{ }。
四、小结
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正
数是大于0的数,负数就是在正数前面加上-号的数。0既不是正数,也不是
负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、作业
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖周中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?
-16, 0.004,,,25.8,-3.6,-4,9651,-0.1。
4.如果-50元表示支出50元,那么+200元表示什么?
第五篇:正数与负数教学设计
正数与负数教学设计
教学目标(三维目标): 知识目标:
1、结合现实情境,了解正、负数的意义,会用正负数表示一些生活中具有相反意义的量,能借助温度计算比较正负 数的大小。
2、在用正负数描述生活中具有相反意义量的过程中,体会正负数的作用。能力目标:培养学生的自学探究能力。
情感目标:激发学习数学的兴趣,培养学生勇于迎难而上的优秀品质。教学过程:
一、情境引入,激发生活需要。
1、(1)听清信息,独立思考。
师:用你的坐姿来告诉老师,你做好上课的准备了吗?
师:课开始前,我们来做一个游戏,考查一下谁的注意力最集中。听要求:老师说一个词,然后你们齐喊出它的反义词。注意听。上()、右()、前()、东()、对()。增加难度,上车()、增加()、上升()、收入()、转入()、盈利()。再增加难度,这次老师说的时候加上数字,而你们当记录员,要把老师说的话用文字或者符号在练习本上记录下来,看谁记得又快又准确。纸和笔准备好(每人发一页30字的稿纸),开始,上车 5人、下车 3人;伸长 5厘米、缩短 3厘米;收入 1500元、支出 500元。能跟上吗?(2)汇报:
第一种:用文字表示
第二种:用笑脸图、哭脸图表示
师:这些符号你写的你明白,我写的我明白,数学语言是要交流的,怎么办?
生:要统一。
第三种:用 +
5、-
3、+
5、-
3、+1500、-500表示
师:老师想问一下,你在哪儿见过这种记录方法? 生:天气预报 师:其他同学在天气预报里见过这种记录方法吗?那么你知道今天的天气情况吗?你怎么想到这种方法?(这两种量有什么关系)引出具有相反意义的量。师:和数学家表达的一样,这种表达有什么好处?
生:简明、清楚。师:它们是什么数? 生:正负数
师:非常正确。是呀,描述具有相反意义的量,可以用正、负数表示。这就是我们今天这节课要认识的数的大家族中的新成员——正、负数。(板书课题)师:会读吗?读一读。谁来试试。
(1)读法:-3℃读作负三度,表示零下3度。+10℃读作正10度,表示零上10度。注意:这里的+不读加号,而读作正号。这里的-不读减号,而读负号。
(2)老师随手擦掉“+”问可以吗?,接着又要擦掉“-”问可以吗?为什么? 强调:负数绝对不可以。
师:下面我们来了解一下负数的历史。
2、介绍负数的历史
课件出示史料,进一步了解负数的历史。中国是世界上最早认识和应用负数的国家。早在 2000多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中,以收入钱为
正,以支出钱为负。在粮食生产中,以产量增加为正,以产量减少为负。古代的人们为区别正、负数,常用红色算筹表示正,黑色算筹表示负。而西方国家认识正负数则要迟于中国数百年。(生谈感受,思想教育。)听完介绍后你有什么感受?
二、学以致用,合作探索,解决现实生活问题。、欣赏图片,发现数学问题。
接下来,我们轻松一下,欣赏几幅美丽的风景图片。你能猜出来这儿是我国的什么地方吗?猜不出来我可以提示大家: 这个地方“(吐鲁番)是我国最热的地方,夏季平均气温在 38℃左右,(盆地中心)有的地方的平均气温达到 49℃以上,有记录的地表最高气温达 82℃。但到了冬天平均气温则降到零下 10度左右。最冷时温度达到零下 40℃,它素有“火洲”之称,堪称中国的“热极”。这里一日的气温差别特别大,3月份,一天中平均最高气温在零上 13℃左右,平均最低气温在零下 3℃左右。有句民谣说: “早穿皮袄午穿纱,围着火炉吃西瓜”说的就是这里。位于新疆的吐鲁番盆地要比海平面低 155米(出示海拔图),是我国地势最低的地方,而被誉为天山 “明珠”的新疆天池,(出示天池图)则比海平面高 1980米(出示海拔图)。现在能猜出这是什么地方了吗?你可真聪明,这的确是新疆的吐鲁番盆地,(出示新疆图片课件)。你是怎么知道的?那咱们同学对吐鲁番还有哪些了解呢?
2、师:图片欣赏完了,那么你能用刚才我们学习的知识来表示出这段文字中的数据吗?
(1)
认识温度计并比较大小。
师:第一条信息里的数据口答。第2条信息里的数据,在纸上写下来。问:零上的温度用什么表示?零下的温度用什么表
示?测量温度要用温度计。老师这里有一个温度计。你会看温度计吗?0正好是零上温度和零下温度的分界点。一个
小格代表1℃,那+13℃在哪里?-3℃?那0呢?比较+13℃和-3℃的大小? 师:第3条信息,写出零下10℃。比较两个温度(-3℃和-10℃)哪个更冷?怎么能说明-10℃比-3℃更冷了?
生:温度计上有表示
生 2:-10℃在-3℃下面。
师:我国新疆地区最冷时温度达到-40℃,大概在温度计的哪儿?
生:比划。
师:用你的动作和表情告诉我-40℃时的感觉。
(2)计算相差多少米:
师:第4条信息。比海平面低 155米是什么意思?而被誉为天山“明珠”的新疆天池,则比海平面高1980米,你能
用正负数表示这两个高度吗?怎样表示?它们又是以谁为分界线的呢? 大胆猜测它们之间相差多少米?、正数、负数和 0。
师:你能说几个正数和负数吗? 生:说。师:能说完吗?怎么办?
生 :用省略号表示。同学都没有提到0,师写下来。所有正数和 0比,有什么关系? 所有负数和 0比,有什么关
系?(板书:负数 <0<正数)
六人小组讨论: 0算正数吗?算负数吗? 结论:0既不是正数,也不是负数。是分界点。
三、借助实例,解释应用。、引导学生举实例,说“生活中的正负数”
师:在我们现实生活中,很多地方都要用到正负数,请同学们回忆一下,你在哪儿见过负数?把你见到的负数告诉
全班同学,好吗?
生:我在妈妈的银行卡上见过。如:妈妈存入 1000元,记作“ +1000”(有时“ +”省略不写)如果取出 1000 元时记作“-1000”
师:观察的真仔细!
生:我和爸爸去过股票市场,股票的“上涨”和“下跌”就是用正负数来表示的。
师:同学们知道的真多,老师也想介绍一些生活中的正、负数。上下楼梯。水饺。2、食品袋上的正负数。(课件出示食品包装袋)
师:老师在食品袋上见到这样的数“ 500克± 5克”,你能说一说它所表示的意思吗?(生分小组讨论交流,汇报 交流结果。)
三、拓展(练习)课件2里面的练习。