正数和负数教案

时间:2019-05-13 21:55:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《正数和负数教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《正数和负数教案》。

第一篇:正数和负数教案

正数和负数教案

一、教学目标

1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、学会用正负数表示实际问题中具有相反意义的量。

二、教学重点和难点 重点:正负数的概念 难点:负数的概念

三、教具

投影片、实物投影仪

四、教学内容

(一)引入

师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4„„这些数,我们把它叫做什么数?

生:自然数

师:为了表示“没有”,又引入了一个什么数?

生:自然数0 师:当测量和计算的结果不是整数时,又引进了什么数?

生:分数(小数)

师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。请学生用数表示这些量,遭遇表示困难。

师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:

1、1正数与负数]

(二)新课教学

1、相反意义的量

师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)(1)汽车向东行驶2.5千米和向西行驶1.5千米;(2)气温从零上6摄氏度下降到零下6摄氏度;(3)风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义

请学生举出一些相反意义的量的实例。

教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、正数与负数

师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢? 由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗? 生:(讨论后得出)不能。

师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

(三)、练习

1、学生完成课本第4页练习1,2,3

2、补充练习

(1)在-2,+2.5,0,-0.35,11中,正数是,负数是 ;

(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼„„就表示为0,1,2„„那么地下第二层表示为。

(四)小结

1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

(五)作业

见作业1.1节作业。

认识负数

河南省许昌市实验小学 张红娜

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例

1、例2。

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知

道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联

系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学

态度。

教学重、难点:

负数的意义。

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有

赢„„你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起

来看几个例子(课件出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升

米,冬季水位下降

米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补

充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

„„

(3)展示交流。

„„

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:„ „)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况

(课件出示)。

哈尔滨: -15 ℃~-3 ℃

北京: -5 ℃~5 ℃

深圳: 12 ℃~23 ℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表

示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)

为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负

数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重

新分类:

(完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数

学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7.负数的历史。

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放): “中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百

年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

课件逐一出示:

1.表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作

_____________。

2.表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下

150℃,记作_____________℃。

3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪

个按钮?如果到储藏室取东西呢?

4.表示时间。(练习一第3题。)

5.“净含量:10±0.1kg”表示什么意思?

四、总结延伸

1.学生交流收获。

2.总结。

简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

第二篇:正数和负数教案

1.1正数和负数

(第一课时)

一、教学目标

1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2、能区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

二、教学重点、难点

1、正确区分两种不同意义的量。

2、两种相反意义的量

三、教学过程

先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

材料:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%„

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生活动:思考,交流。)

总结:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗?

(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流,从而引入了负数:一种前面带有“-”的新数。问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?(这阶段主要是让学生学会正数和负数的表示.)

让学生带着这些问题看书自学,然后师生交流.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含

两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数

量,而且是同类的量.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?

请举例说明.

四、课堂练习:教科书第5页练习

五、课堂小结:

围绕下面两点,以师生共同交流的方式进行:

1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范

围就扩大了;

2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以

前学过的0以外的数前面加“-”。

六、作业

教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。)

七、教学后记:

1.1正数和负数

(第二课时)

一、教学目标:

1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发

学习数学的兴趣。

二、教学重点、难点:

1、正数、负数概念的理解。

2、了解和表示向指定方向变化的量。

三、教学过程:

1、知识回顾与深化

(1)、回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了

区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这

就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负

数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?(学生思考并讨论)

(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易

理解,可视学生的讨论情况作些启发和引导。)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度

用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度

是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于

零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数•

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?

“数0既不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除

了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。

(举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.)

分析问题,决问题

问题2:教科书第6页例题

说明是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表

示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以

重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢? 等等。

三:巩固练习:教科书第6页练习

四:阅读思考:教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论

交流

五:小结与作业

六:课堂小结:问题的形式,要求学生思考交流:

1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2、怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指

定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变

化的量规定为负数.)

七、作业、教科书第7页习题1.1第3,6,7,8题

教学后记:

第三篇:《正数和负数》教案

1.1 正数和负数

教学目标:

1、通过学习认识负数;

2、认识生活中的负数,让正数和负数融入现实生活;

3、区别正数、负数、零之间的关系。

教学重点:

1、认识负数,了解负数在生活中的作用;

2、学会用正数和负数表示生活中的相反量。

教学难点:

1、区别正数、0、负数的关系;

2、体会负数的意义。

教学过程:

1、问题引入

(1)总结所学过的数的产生

A 由记数、排序,产生数1,2,3,··· B 由表示“没有”“空位”,产生数0 C 由分物、测量,产生分数

11,··· 23(2)通过生活中常见的问题引入负数,是同学们对负数产生认识。

2、新课讲授

(1)通过问题引入正数和负数

A 北京冬季某天的温度为-3℃~3℃,它的确切含义是什么?

B 有三个队参加的足球比赛中,红队胜黄队(4∶1)黄队胜蓝队(1∶0),蓝队胜红队(1∶0), 三个队的净胜球分别是2,-2,0, 如何确定排名顺序? C 2006年我国花生增产1.8%,油菜籽比上年增产-2.7%,这里增产-2.7%表示什么意思? 说明:在预报天气中,我们把零上规定为正,同时也把前进、上升、收入等规定为正,而把相反的量规定为负。

(2)正数和负数的定义

正数:像3、2、1.8%等这样大于0的数叫做正数

(即以前学习的除0以外的所有数)

负数:像-

3、-

2、-2.7%等这样在正数前面加上负号“-” 的数叫做负数。

(即在以前学习的除除0以外的所有数前加“-”的新数)注意:A 0既不是整数,也不是负数;

B 根据需要,有时也在正数前面加上“+”; C 在日常生活中,“+”通常被省略; D “+”“-”叫做数的符号。

(3)如何利用正数和负数表示下列问题中的数学量

A 如果规定向东为正,那么,汽车向东行驶5km,向西行驶3km; B 温度为零上20℃和零下18℃; C 水位上升1.5m和下降1.8m; D 收入1000元和支出500元。

注:上面问题的各个量都可以用正数和负数来表示,并且知道,正数和负数可以表示具有相反意义的量。

(4)通过对正数和负数的认识,解释下列问题

A 如果向东走3km,记为3km,那么-2km表示什么?

B 如果买进自行车100辆记为100辆,那么-20辆表示什么? C 如果向南行2km表示-2km,那么2km表示什么?

D 如果支出100元表示-100元,那么200元表示什么?(5)深入了解0的意义

提问:0除了可以表示“没有”“空位”“起点”之外,还可以表示什么? 0℃表示什么意思? 10000中0的作业是什么?

解答:0℃表示温度为0℃,它是零上和零下的一个分界点; 10000中的零表示位数,起着占位的作用。

3、巩固练习(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)2001年下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7.5%。

写出这些国家2001年商品进出口总额的增长率。

解:(1)这个月内,小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg;

(2)六个国家2001年商品进出口总额的增长率: 美国-6.4%, 德国 1.3%, 法国-2.4%, 英国-3.5%, 意大利-0.2%, 中国 7.5%。

4、课堂小结

本节课我们学习了正数和新数负数,了解了正数和负数的意义,并且知道正数和负数可以表示具有相反意义的量,反过来,具有相反意义的量可以用正数和负数来表示。而且我们还深入学习了0,知道0可以表示“没有”“空位”“一个分界点”“占位”。

5、布置作业

习题1.1中的1、2题

第四篇:正数和负数教案

正数和负数教案

本资料为woRD文档,请点击下载地址下载全文下载地址

2.1正数和负数(第一课时)

教学目标:

知识与技能:通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。

过程与方法:通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。

情感态度与价值观:通过归纳,让学生体会思维的一般过程是从具体到抽象;从特殊到一般的过程,使他们培养良好的思维习惯和探索精神,通过对学生进行爱国主义思想教育,培养学生良好的个性品质。

教学重点:会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义。

教学难点:理解负数、数0表示的量的意义。

教村分析:会判断正数、负数及理解对数0表示量的意义,能为下一节课讲述有理数的分类,大小的比较等打下基础,因此成为本节课的重点,由于用负数表示实际问题对学生来说很不习惯,因此成为本节课的教学难点。本节课是在小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接,而且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节课从学生熟悉的实例出发,通过一系列探索和讨论过程,着重培养学生学会观察、分析、总结和归纳,使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且让他们在学习过程中获得愉快和进步,同时培养他们爱国主义精神。

教学方法:情境教学法、启发式教学法、讨论法

课时安排:一课时

具:投影仪(电脑)

环节

教师活动

学生活动

设计意图

创设情境导入新课

鼓励每组派两名同学到讲台前,按照教师的指令进行表演活动,看哪一组获胜。

教师说出指令:

向前一步,向后一步;

向前两步,向后两步;

向前三步,向后一步;

向前四步,向后两步;

教师根据学生的活动情况,也参与表演,适当加以引导启发,用符号(加减号)表示。

活动后,评选出速记最快,方法最好的同学。

一、初步了解,认识具有相反意义的量

启发学生举出生活中常遇到的一些具有相反意义的量,教师针对学生列举的例子给予适当点评,鼓励。

判断一些量是否具有相反意义:(出示幻灯片一)

1、判断下面各对量是不是具有相反意义的量

(1)

温度是零上25℃和零下18℃;

(2)

某条河的水位上升0.7米和下降1.2米。

(3)

珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米。

教师针对学生的答题情况给予评价。

二、具有相反意义的量的表示方法:

教师综上进行引导:

一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这量的前面放上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上一个“-”(读作“负”)来表示(零除外)

鼓励学生任意结组,举例说明,巩固练习。

做一做:(出示幻灯片二)、请你仿照天气预报中对气温的表示方法,完成下表:

向东走1.8千米

向西走3千米

收入14200元

支出4745元

水位上升30厘米

水位下降50厘米

+1.8千米

+14200元

+30厘米

2、请你把下面句子中的量用“+”或“-”的数表示出来

(1)一辆公共汽车在一个停车站下去10个乘客

(2)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米

(3)商品价格上涨10%和下降15%.教师对学生的回答,给予鼓励性评价,最后板书答案。

三、观察归纳、理解正数和负数

议一议:(出示幻灯片三)

观察由前面的问题得到的数:

-3,4745,50,18,+8844。43,-155,+10%,-15%哪些数的形式与以前学过的数有区别?

教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。

在已学过的数(0除外)的前面添上“-”得到的这样的数叫做负数;在已学过的数(0除外)的前面添上一个“+”得到的,这样的数叫做正数。

教师强调两点:

、0既不是正数,也不是负数。

2、正数中的“+”可以省略不写。

四、巩固训练(出示幻灯片四)

、下面哪对量是具有相反意义的?

(1)在知识竞赛中,加20分和扣10分。

(2)一座水库水量增加10000立方米和减少1XX立方米。

(3)某汽车站开进汽车28辆和开出汽车24辆。

(4)长方形的周长是24厘米和面积是27平方厘米。

2、写出与下列各量具有相反意义的量:

(1)飞机上升200米,____________________

(2)铅球的质量低于标准质量2克,_________

(3)木材公司购进木材XX立方米,________

3、判断下列各数哪些是正数,哪些是负数

+12,-3,19,+0.4,0,3.14,+,-,-0.01

五、应用迁移,拓展升华

(出示幻灯片五)

填空:-1,2,-3,4,-5,_____,_____,_____,_____„„

第81个数是_______,第XX个数是_______.教师针对学生的回答进行点评,并适当鼓励。

下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”)

星期

+16

+5.0

-1.2

-2.1

-0.9

+10

-2.6

(1)

本周小张一共用掉了多少钱?存进了多少钱?

(2)

储蓄罐中的钱与原来的相比多了还是少了?

(3)

如果不用正负数的方法记账,你还可以怎样记帐?比较各种记帐方法的优劣。

教师参与学生的讨论,对学生的回答给予鼓励性的评价。

六、学习总结:

这节课你有哪些收获?有什么体会?

教师简要点评,同时对学生的总结给予适当的评价和鼓励,最后告诉学生,负数最早记载于中国的《九章算术》中,比国外早一千多年,借此向学生进行爱国主义思想教育。

1、课堂检测(包括基础题和能力提高题)

2、开放探究:

同学聚会,约定在中午12点开会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?

一名学生按老师的指令表演,另一名学生在黑板上速记,其他同学参与,帮助本组的同学。

教师让多个学生自由发言

学生独立思考,举手发表个人见解,其他同学可以互相补充。

每组同学之间相互合作,交流,一同学说有关相反的两个量,由其他同学表示。

让学生抢答,尽量照顾不同层次的学生参与的积极性在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。

学生独立思考,举手回答,教师尽量选多名学生回答。

学生分组讨论,相互交流意见,选派代表回答。

同桌或小组学生讨论,合作探究,对于第(3)问同学们可以各抒已见。

学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

综合考查学以致用

通过活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。

培养学生敢于发表自己见解的精神,激发学生学习的兴趣。

进一步加深巩固具有相反意义的量的意义,同时培养学生的语言表达能力

巩固具有相反意义的量的表示方法,培养学生合作交流意识。

在练习中进一步巩固具有相反意义的量的表示方法。

在这一活动中有助于培养学生的观察能力,合作探究意识和语言表达能力,可调动不同层次学生的积极性。

巩固所学的知识,让多名学生回答,可调动不同层次的学生的积极性。

通过学生的讨论交流,培养学生合作意识及总结归纳能力。

通过这一实际问题,有助于提高学生运用所学的知识解决实际问题的能力,同时体现了运用正、负数表示的优越性。

学生尝试小结,自由发表学习心得,能培养学生的语言表达能力和归纳概括能力,同时向学生进行爱国主义思想教育。

考查学生对知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力。

附板书设计:

2.1正数和负数

(一)正数

像+1.8,+14200,+30,+10%等在已学过的数

(0除外)的前面添上

“+”的数叫正数。

教学反思:

本节课采取启发式教学法和情感教学,创设问题情境,引导学生主动思考,总结和归纳,取得了较好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养,重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师,但在引入正负数概念时,学生由得到的具体数总结归纳时,仍然感到有些难度,教师有些包办代替,还是应该多举些实例,完全由学生得出更好。

2.1正数和负数

(二)教学目标:

知识与技能:理解有理数的意义;能把给出的有理数按要求分类;了解数0在有理数分类中的作用;理解相反数的意义;给一个数,能求出它的相反数。

过程与方法:通过本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力。

情感态度与价值观:通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。

教学重点:有理数的分类,理解相反数的意义

教学难点:掌握有理数的两种分类

教材分析:正确进行有理数的分类,理解相反数的意义,可为今后绝对值的学习,有理数大小比较及有理数的运算打下基础。同时可培养学生对事物进行分类讨论的思想,因此成为本节课的重点。两种分类是按不同标准划分的,学生很容易混淆,因此成为本节课的难点,本节课是继负数引入后的一节课,它把以前所学的数作了梳理和归纳,使得知识系统化,能培养学生分类讨论的思想。同时相反数的意义可为以后的学习作准备,本节课旨在通过学生观察、思考、探索、总结知识,培养学生的讨论、交流、总结、归纳能力和合作探究意识,树立分类讨论思想。

教学方法:情境教学法、生生互动法

课时安排:一课时

具:投影仪(电脑)

环节

教师活动

学生活动

设计意图

合作探究一

课堂反馈

现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。大家讨论一下,到目前为止,你已经认识了哪些类型的数。

教师板书学生说出的数。然后引出新课并板书课题:2.1正数和负数

(二)议一议:

你能把这些数分类吗?

教师对学生的回答给予鼓励性的评价,同时指出:我们把所有的这些数统称为有理数。

一、讨论与交流,归纳有理数的分类:、试一试:你能对以上各种类型的数作出一张分类表吗?

教师启发诱导,参与讨论,最后师生共同完成。

教师板书:

2、做一做:

以上按整数和分数来分,那么可不可以按性质(正数、负数)来分呢?

教师对学生的回答进行适当点评和鼓励,加以引导。

板书:

教师强调两种分类的区别:

第一种分类是先把有理数按“整”和“分”来分类,再把每类按“正”和“负”来分类。

第二种分类是把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类。

二、观察与思考:了解相反数:

(出示幻灯片一)

下列各组数有哪些相同点和不同点?请说说你的想法,并和同学进行交流。

(1)4,-4(2)3,-3(3)2.5,-2.5

教师针对学生的回答,给予鼓励性评价,并根据学生的发言讲解出相反数的概念(板书:只有符号不同的两个数,称其中一个数是另一个数的相反数,0的相反数规定为0)

(出示幻灯片二)

例2:(1)分别写出8和-12的相反数

(2)指出-11.2和各是什么数的相反数。

教师尽量照顾不同层次的学生参与的积极性,对学生的回答给予鼓励,利用幻灯片出示答案。

三、巩固基础,加强训练

(出示幻灯片三)

、把下列各数填入相应的集合内:

,-,0.618,+15,-0.3,-12

正整数

负整数

正数集合负数集合 集合 集合

2下列说法中,正确的个数为()

①0是最小的正整数②0是最小的有理数

③0不是负数

④0既是非正数,也是非负数

A、1个

B、2个

c、3个

D、4个

3、填空:

(1)4.5的相反数是

.(2)-2的相反数是

.(3)

的相反数是2

(4)

的相反数是0

教师针对学生的答题情况给予适当评价和鼓励。

四、应用迁移,巩固提高

(出示幻灯片四)、如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数。

2、请你在下面的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集。

教师参与学生的讨论,启发、鼓励学生的动手尝试,对学生的答案给予鼓励性评价。在讲台上展示不同学生的答案。

五、学习总结:

提问:今天你获得了哪些知识?

教师参与互动,并给予鼓励性评价

教师简要点评:今天我们学习了有理数的意义和两种分类的方法及相反数的概念,我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法。

、课堂检测

2、生活中,我们也常常对事物进行分类,请你举例说明。

学生同桌讨论、交流,自由发言

学生踊跃发言,相互补充

学生观察思考,分组讨论,尝试归纳

学生进一步讨论、交流、总结、归纳

学生观察思考,小组讨论,交流发现和概括出“相反数”

学生抢答 1、3题学生抢答,尽量照顾不同层次的学生参与的积极性;

2题学生讨论、交流选代表回答。

题学生可动手实际操作

同桌或小组讨论合作研究完成学生相互交流自己的收获和体会

综合考查

学以致用

对所学过的数作了梳理和回顾,自由发言激发了学生学习的热情和求知欲。

为有理数的分类作准备

培养了学生观察、思考、总结、归纳的能力,同时培养学生对数分类讨论的观点

通过再分类培养学生树立对立与统一的思考方法,对学生进行辩证唯物主义教育。

培养学生观察能力,合作探究意识,总结、归纳的能力和语言表达能力。

在练习中进一步巩固相反数的概念。

巩固所说的知识

通过练习培养学生的动手操作能力和团结协作的精神,有助于提高学生运用所学知识解决实际问题的能力。

锻炼学生的语言表达能力和归纳概括能力

考查学生对本节知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力

附板书设计:

2.1正数和负数

(二)、有理数的两种分类:

(1)

(2)

教学反思:

本节课通过情境教学导入新课,并且在教学过程中,教师扮演的是组织者、引导者、合作者的角色,学生成为了学习的主人,主动去观察、讨论、交流、总结、归纳,体现了新课程理念,但在整个的教学过程中还缺乏与实际生活的联系,教师在此方面还须努力挖掘这方面的素材,让学生真正体会到数学知识于生活,又反作用于生活。

第五篇:正数和负数教案

中国的热极——认识正、负数

教学目标:

1、结合现实生活,了解正、负数的意义,会用正、负数表示生活中的现象。

2、感受数学与生活的联系,培养对数学的兴趣。教学重点:

了解正负数的意义 教学难点:

会用正、负数表示生活中的现象 教学方法:

探索活动法 教学准备:多媒体课件 教学课时:2课时 教学过程:

一、导入

师:同学们喜欢旅游吗?都去过哪些地方? 生:烟台 ……(3个即可)

师:同学们去的地方可真不少,那老师说出3条信息,你能不能猜猜这是我国的哪个地方?(注意说话语气,挑起学生的兴趣)生:好。(师出示课件)

师:“这个地方素有“火洲”之称,夏季平均气温在38℃左右,盆地中心的气温达到49℃以上,有记录的地表最高气温达82℃,是中国最热的地方,堪称中国的“热极”。知不知道是什么地方? 生:不知道。

师:那我们继续看第二条信息。“早穿棉袄午穿纱,围着火炉吃西瓜”说的就是这个地方,3月份日平均最高气温在零上13℃,日平均最低气温在零下3℃左右。猜出来了吗? 生:没有。

师:“这里比海平面低155米,是我国地势最低的地方。“猜出来了吗? 生:还是不知道。

师:那老师再提醒以下,这里盛产葡萄。生:新疆。

师:具体的说呢,这是新疆的吐鲁番。(课件出示新疆地图)师:你对新疆还有哪些认识?

生:这里很热,有《西游记》中的火焰山。……

(如果学生在第一条信息就猜出了地方,师:同学们真聪明,一下子就猜出来了,那你对吐鲁番还有哪些认识。生:……

师:老师这里也准备了一些信息,我们一起看看。)

二、新授

1、师:我们一起来观察这些信息,你发现在这些信息中什么出现的次数最多? 生:温度。(师点课件表明)

师:如果让你把这些温度分类,你想怎么分? 生:零上温度,和零下温度。(师板书,左右写)

师:零上13℃,零下3℃表示什么意思? 生:0℃以上是零上,0℃以下就是零下。

师:让我们借助温度计看看什么是零上温度,和零下温度。(课件演示)

师:我找同学上来找找0℃在哪里?(指名上黑板指)

师:零上温度就应该在0℃以上,能不能指出零上13℃在哪里?(生指)从0℃往上上升了13个小格,对吗? 生:对。

师:零上13℃比0℃要? 生:高

师:那零下3℃呢?(生指),从0℃下降了3个小格,表示零下3℃,对吗? 生。师:零下3℃要比0℃? 生:低

师:零上13℃,零下3℃,在温度计上会表示,那在纸上你会表示出来吗? 生:会。

(学生在纸上表示出零上13,零下3℃,师巡视,收集学生记录单,集体订正)师:你能不能说说你的想法,为什么这么写? ① 零上13℃,零下3℃。② +13℃,—3℃。③ 13℃,—3℃。……

师:(指后第二种写法)你在哪里见过这种写法? 生:在书上。

师:为什么这么表示? 生:……

师:你知道这两个数应该怎么读吗? 生:“正13,负3” 师:你知道这是什么数吗? 生:不知道

师:像“+13”这样的数叫做正数,像“-3”这样的数叫做负数。(板书:正数,负数)

师:(指第3种写法)这两种写法的区别在哪里? 生:13℃前少了个“+“号。板书:+13℃,—3℃

师:我们用正数表示零上温度,用负数表示零下温度,分界线是0℃。这里的“+”不是加号,而是“正号”;“—”也不是减号,而是“负号”。正号可以省略,省略正号后这个数仍是正数。那负号能省略吗?为什么? 生:不能。

生:负号省略后就变成正数了。师:那大家觉得用“+”“—”表示零上,零下温度好不好? 生:好。

2、师:其实在天气预报中的温度就经常用“+”“—”表示温度,那老师说温度,你能用数记录下来吗? 生:能。

师:好,在你的记录写下来。(生在发下的记录单上写)

师:北京零下3℃,上海10℃,哈尔滨零下14℃,台北17℃,吐鲁番零下5℃,威海零下2℃。

(师收集学生记录单,集体订正)师:温度最高的是哪一个? 生:台北。

师:温度最低的是哪一个? 生:哈尔滨。生:威海。

师:威海是“—2℃”,哈尔滨是“—14℃”,这两个气温哪个低?为什么? 生:“—2℃”是从0℃向下数2格,而“—14℃”是从0℃向下数14个小格,所以哈尔滨温度低。师:说的不错。

师:如果从威海到上海,你觉得是增加衣服还是减衣服?为什么? 生:减衣服,因为温度上升,变热了。

师:从北京到哈尔滨是增加衣服还是减衣服?为什么? 生:加衣服,因为变冷了。

3、师:吐鲁番不但是我国最热的地方,还是我国地势最低的地方,比海平面低155米,而号称“高原明珠”的天池高于海平面1980米。(课件演示:海平面)

师:你能不能用认识的正负数来表示这两个数? 生:能。

(学生在练习本上写,指名到黑板上写)板书:+1980米,—155米。师:能不能说一下为什么这么写?

生:把海平面看作“零分界线“,海平面以上就是正数,海平面以下就是负数。

4、师:生活中有很多用正负数表示的例子,老师说你看看能不能写下来,好吗? “山东鲁能队和上海申花队进行一场足球赛,进球2个,丢球1个。上学期我们学校转来12人,转走8人。

王阿姨开店,上个月赚了4000元,这个月赔了3000元。“(指名到黑板写)

师:正数,负数表示的两种量有什么特点? 生:表示的意义是相反的。

师:正负数是用来表示相反意义的两种量,生活中有哪些? 生:电脑游戏赚分就是正数,输了就是负数。……

师:你能具体的说说正数有多少个,负数有多少个吗?前后四人讨论一下。生:正数的个数,负数的个数都有无数个。师:那你用什么符号表示呢? 生“……“省略号。

师:我想找同学到黑板上圈出所有的正数和负数。(指名到黑板圈)

师:0正数,负数都不圈,有意见吗? 生:……

师:0既不属于正数也不属于负数,那它比正数大还是小?比负数大还是小? 生:0比负数大,比正数小。

三、总结

师:我国研究正负数已经有很长的时间了,早在公元100年时,我国数学名著《九章算术》中就明确提出了负数的概念,以及正、负数的运算。比西方要早1000多年。所以身为中国人应该为我们的祖先感到? 生:骄傲

师:课后你可以自己查阅一下资料,再深入的了解一下正负数,这节课就上到这。板书:

中国的热极

正数 负数 +13-3 +2-1 +3000-2000 …… …… 课后记:

在刚开始时让学生用不同符号表示“零上”和“零下”的温度,学生很多都提前预习

下载正数和负数教案word格式文档
下载正数和负数教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    1.1正数和负数教案范文大全

    人教版义务教育教科书◎数学七年级上册 1.1 正数和负数(第1课时) 内容简介 1.《正数和负数》是人教版义务教育教科书七年级数学第一章第一节. 2.“正数与负数”是“有理数”......

    人教版正数和负数教案

    教学目标: 1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2.能区分两种不同意义的量,会用符号表示正数和负数; 3.体验数学发展的一个重要原因是生活实......

    《正数和负数》教案(含5篇)

    教学目标: 1、正确理解正、负数及零的意义,会用正、负数表示具有相反意义的量,能简单说出正数和负数的意义。 2、借助生活中的实例理解正数、负数的意义,体会负数引入的必要性......

    2.1正数和负数教案

    教学内容:2.1正数和负数 教学目标: 1.通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量; 2.通过正负数的学习,培养学生应用数学知识的意......

    正数和负数 有理数教案

    正数和负数 有理数教案 【理论支持】 引入负数是数的范围的一次重要扩充,是实际的需 要,也是学习后续教学内容的需要.学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应......

    正数与负数 教案(精选合集)

    1.1 正数与负数 教案 (第1课时) 署名 一、 教学目标知识与技能:使学生了解正数与负数是从实际需要中产生的;过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是......

    七年级正数和负数教案

    襄城一高初中部七年级数学学案(1) 课型:新授课 执笔:张霞审核:审批: 班级:姓名:1.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( ). A.赢利16.8元 B.亏本3元 C.赢利3元 D......

    正数与负数教案

    第一课时正数与负数 一、教学内容: 正数与负数。 二、教学目标: 1.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。 2.过程与方法:借助生活中......