第一篇:生化实验五 原花色素分离纯化及鉴定
原花色素的提取纯化和鉴定
(一)山楂原花色素的提取
(二)原花色素的测定(盐酸-正丁醇法)
原理
原花色素,也称原花青素(proanthocyanidins),是一类从植物中分离得到的在热酸条件下能产生花色素的多酚化合物,它既存在于多种水果的皮,核和果肉中,如葡萄,苹果,山楂等。也存在于如黒荆树,马尾松,思茅松,落叶松等的皮和叶中。
原花色素属于生物类黄酮(flavonoids),它们是由不同数量的儿茶素或表儿茶素聚合而成,最简单的原花色素是儿茶素的二聚体,此外还有三聚体,四聚体等。依据聚合度的大小,通常将二至四聚体称为低聚体,而五聚体以上的称为高聚体。从植物中提取原花色素的方法一般有两种,分别是用水抽提或用乙醇抽提。其抽提物为低聚物,称之为低聚原花色素(oligomeric proanthocyanidins,简称OPC)。
生理功能:
1.最好的心脏保护剂。抵御引发心血管病的诱变因素的冲击。强化血管,有消肿化瘀的功效。减少毛细血管的阻力和改善渗透性,使细胞更容易吸收养分与排除废物。
2.高校抗氧化能力。清除氧自由基的能力比其他天然抗氧化剂如胡萝卜,维生素C和E,儿茶素等强很多。
3.产生组胺的抑制剂,减轻炎症。抗过敏,皮肤保健,抗衰老。
利用低聚原花色素溶于水的特点,用热水煮沸抽提原花色素,再用大孔吸附树脂吸附,洗脱得到原花色素。
D101树脂是一种球状,非极性教练聚合物吸附剂,具有相当大的比表面积和适当的孔径,对皂苷类,黄酮类,生物碱等物质有特殊的选择性,适用于从水溶液中提取泪滴性质的有机物质。
原花色素的检测方法:
1.紫外分光光度法:利用原花色素在波长280nm处具有最大吸收的特点。该方法简便易行,但提取物成分多样,标准难定。
2.香草醛检测法:原花色素在酸性条件下,其组成单元儿茶素的A环上的羟基和香草醛发生缩合反应,在浓酸的作用下形成的产物变为有色的正离子。3.铁盐催化比色法 4.薄层层析法 5.HPLC法
6.HPLC-MS质谱法
试剂:
1)1mg/ml原花色素标准品(实验室提供)
精确称取10.0mg原花色素标准品用甲醇溶解,与10.0ml容量瓶中定容至刻度。2)Hcl-正丁醇(自配)
取5.0ml浓盐酸加入95.0ml正丁醇中混匀。
3)2%硫酸铁铵:称取2.0g硫酸铁铵溶于100.0ml2.0mol/LHCl中。
4)样品液:将上次实验收集的样品溶液用甲醇稀释至一定浓度(1.0~3.0mg/ml)。
操作
1.称取新鲜山楂10.0g,剪成细小块状,置于锥形瓶中,加入40ml蒸馏水,沸水浴45min,间期混匀。冷却后加入20ml蒸馏水,抽滤,滤液备用。2.取一根层析柱(1.5×20cm),洗净,竖直装好,关闭出口,加入蒸馏水约1cm高,用烧杯取一定量已处理好的大孔吸附树脂D-101,搅匀,严管内壁缓慢加入,待柱底积约1cm高时,缓慢打开出口,继续装柱至高度15cm(液面高于树脂约3cm)。3.平衡:用蒸馏水洗2倍体积的柱床体积(约30ml),控制流速在1ml/min左右,至流出液pH显中性。
4.滤液上样(约2ml/min)。上完样后,先用蒸馏水洗2倍柱床体积洗脱(1ml/min 约30min),然后换60%乙醇进行洗脱,控制流速在1ml/min。待有红色液体流出时开始收集,直至收集液无红色为止。
5.将收集液用60%乙醇定容至100ml,留作测定。
注意事项:
1.实验前应检查层析柱是否完好,有无堵塞或漏气现象。
2.装柱要求连续、均匀、没有气泡和断纹,液面不得低于树脂表面,否则应重新装柱。3.洗脱时流速不宜过快。
第二篇:土壤中放线菌的分离和纯化实验
土壤中放线菌的分离和纯化实验
一、实验目的
1、制作MS培养基的方法,掌握母液的保存方法。
2、掌握培养基的灭菌方法。
掌握外植体的消毒和超净工作台的使用。
4、掌握放线菌的分离纯化及染色的基本流程;
5、掌握高氏一号培养基的配制方法;
6、复习分离纯化放线菌的基本操作技术、培养方学会使用高压蒸汽灭菌锅。
7、培养微生物实验的设计思路和动手能力。
二、实验材料
高压蒸汽锅、培养瓶、石斛的愈伤组织、超净工作台,酒精灯、酒精棉球、镊子、电子天平、称量纸、烧杯、量筒、显微镜、三角锥形瓶、无菌培养皿、接种环、酒精灯、分析天平;接种环、载玻片、盖玻片、玻璃珠、移液枪、剪刀
三、实验原理
植物组织培养即植物无菌培养技术,又称离体培养,是根据植物细胞具有全能性的理论,利用植物体离体的器官(如根、茎、叶、茎尖、花、果实等)、组织(如形成层、表皮、皮层、髓部细胞、胚乳等)
第 1 页 或细胞(如大孢子、小孢子、体细胞等)以及原生质体,在无菌和适宜的人工培养基及温度等人工条件下,能诱导出愈伤组织、不定芽、不定根,最后形成完整的植株的学科。
四、实验步骤
1、配制MS培养基8L,称取马铃薯1600g、香蕉400g、蔗糖240g、活性炭8半勺、琼脂80g、配制 母液。
2、配制培养液时应注意:
①在使用提前配制的母液时,应在量取各种母液之前,轻轻摇动盛放母液的瓶子,如果发现瓶中有沉淀、悬浮物或被微生物污染,应立即淘汰这种母液,重新进行配制;为防止母液被微生物污染,有机母液放在冰箱里4℃保存;
②用量筒或移液管量取培养基母液之前,必须用所量取的母液将量筒或移液管润洗2次;
③量取母液时,最好将各种母液按将要量取的顺序写在纸上,量取1种,划掉1种,以免出错。溶化琼脂 用粗天平分别称取琼脂9 g、蔗糖30 g,放入1 000 mL的搪瓷量杯中,再加入蒸馏水750 mL,用电炉加热,边加热边用玻璃棒搅拌,直到液体呈半透明状。然后再将配好的混合培养液加入到煮沸的琼脂中,最后加蒸馏水定容至1 000 mL,搅拌均匀。
需要注意的是,在加热琼脂,制备培养基的过程中,操作者千万不能离开,否则沸腾的琼脂外溢,就需要重新称量、制备。此外,如果没有搪瓷量杯,可用大烧杯代替。但要注意大烧杯底的外表面不能沾水,第 2 页 否则加热时烧杯容易炸裂,使溶液外溢,造成烫伤。调pH 用滴管吸取物质的量浓度为1 mol/L的NaOH溶液,逐滴滴入溶化的培养基中,边滴边搅拌,并随时用pH试纸测培养基的pH,一直调到培养基的pH为6(5.8~6.5)左右为止。培养基的分装 溶化的培养基应该趁热分装。分装时,先将培养基倒入烧杯中,然后将烧杯中的培养基倒入锥形瓶(50 mL或100 mL)中。注意不要让培养基沾到瓶口和瓶壁上。锥形瓶中培养基的量约为锥形瓶容量的1/5~1/4。每1 000 mL培养基,可分装25~30瓶。培养基分装完毕后,应及时封盖瓶口。用2块硫酸纸(每块大小约为9 cm×9 cm)中间夹1层薄牛皮纸封盖瓶口,并用线绳捆扎。最后在锥形瓶外壁贴上标签。
3、高压灭菌 培养基的高压灭菌包括以下几个步骤。
第一,码放锥形瓶。将装有培养基的锥形瓶直立于金属小筐中,再放入高压蒸气灭菌锅内。如果没有金属小筐,可以在两层锥形瓶之间放一块玻璃板隔开。
第二,放置其他需要灭菌的物品。将其他需要灭菌的物品也放入高压蒸气灭菌锅内,如装有蒸馏水的锥形瓶、带螺口盖的玻璃瓶、烧杯、广口瓶(以上物品都要用牛皮纸封口),用报纸包裹的培养皿、剪刀、解剖刀、镊子、滤纸、铅笔等。
第三,灭菌。待需要灭菌的物品码放完毕,盖上锅盖。在98 kPa、121 ℃下,灭菌20 min。灭菌后取出锥形瓶,让其中的培养基自然冷却凝固后再使用。
第 3 页 4,、再在操净工上进行消毒,先用紫外线照射30MIN,然后送风,关闭紫外灯,改 用日光灯,对手用酒精进行消毒,对培养基表面也要用酒精进行消毒。准备工作好了,就进行接种。并且要在酒精灯旁边进行操作,避免污染。镊子要在双孔灭菌器上进行灭菌。
4、接种完成后要整理工作台,并且把培养瓶拿到培养架上进行日光培养。
五、放线菌的提取步骤
5、(1)称取土样2.00g,在火焰旁加到一个盛有48ml无菌水并装有玻璃珠的100ml锥形瓶中。振荡20-30min,使样品的菌体、芽孢或孢子均匀分散。静止20-30s,标记为编号1。
6、(2)按照一定的梯度进行稀释(该实验采用10倍梯度)
①取3个各装有9.5ml无菌水的25ml锥形瓶,分别按照顺序标记好2、3、4.②在超净工作台上,用微量移液器从1号锥形瓶中移取0.5ml土壤悬液加到2号锥形瓶中,摇匀后,再用微量移液器从2号锥形瓶中移取0.5ml土壤悬液加到3号锥形瓶中,依此类推,7、分别将土壤悬液制成10-
1、10-
2、10-
3、10-
4、10-
5、10-
6、10-
7、10-
8、10-
9、10-10的土壤稀释液。
六、稀释涂布法分离土壤中放线菌
8、(1)倒平板
9、将配制好并且灭菌的高氏一号培养基加热融化,待冷却至55—60℃时,往高氏1号培养基中加入1ml的0.5%重铬酸钾, 然后分别倒平板。方法是在超净工作台,右手持盛培养基的三角烧瓶,置火焰旁
第 4 页 边,左手拿平皿并松动瓶塞,用手掌边缘和小指、无名指夹住拔出。令三角瓶瓶口在火焰上灭菌,左手将培养皿盖在火焰附近打开一缝,迅速倒入培养液约15ml,加盖后轻轻摇动培养皿,使培养基均匀分布,平置于桌面上,待冷凝后即成平板。共制备6个平板(一个稀释度做3个平行样品)。
10、(3)涂布平板
11、用1ml无菌吸管分别精确地吸取10-
4、10-
5、10-6的稀释菌液1ml,对号放入编好号的无菌培养皿中,每一浓度对应两个平板。用无菌涂布棒(从浓度小液开始)将加入平板培养基上的土壤稀释液在整个平板表面涂匀,涂完一个平板用酒精灯灭菌。
12、(4)倒置平板
13、将培养基平板倒置(防皿盖的冷凝水下滴),置于28度培养箱中培养3d14、15、5、放线菌的纯化
16、(1)倒平板
同上
17、(2)平板划线
18、将蘸有菌种的接种环在平板培养基上做以Z字行划线,每划完一次要充分燃烧接种环烧掉残余微生物,再从上一次划线处末点开始下一次划线。划线完毕后盖上培养皿盖,倒置与恒温箱中培养。
6、放线菌的观察玻璃纸法
19、将玻璃纸剪成培养皿大小,用旧报纸隔层叠好后灭菌。
第 5 页 20、将高氏一号琼脂培养基熔化后在火焰旁倒入无菌培养皿内,每皿倒15ml左右,待培养基凝固后,在无菌操作下用镊子将无菌玻璃纸履盖在琼脂平板上即制成玻璃纸琼脂平板培养基。
21、(3)用接种环挑取纯化后的放线菌,在玻璃纸上划线接种。
22、(4)将接种的玻璃纸琼脂平板置28—30℃下培养。
23、(5)在培养至3天,5天,7天时,从温室中取出平皿。在超净工作台上,打开培养皿,用无菌镊子将玻璃纸与培养基分离,用无菌剪刀取小片玻璃纸置于载玻片上用显微镜观察。
7、放线菌保藏
斜面低温保藏法
长后,棉塞部分用油纸包扎好,移至 2—8 ℃的冰箱中保藏,保存 2—4 个月,移种一次。
将纯化培养后的放线菌接种在适宜的固体斜面培养基上,待菌充分生
第 6 页
第三篇:酸奶菌种的分离及鉴定
酸奶菌种的分离及鉴定
乳酸菌是指一群通过发酵糖类,产生大量乳酸的细菌总称。乳酸从形态上可分为球菌和杆菌,并且均为革兰氏染色阳性、在缺少氧气的环境中生长良好的兼性厌氧性或厌氧性细菌。目前,对乳酸菌的应用研究,着重于食品(如发酵乳制品、发酵肉制品和泡菜)和医药工业等人类生活密切相关的领域。
目前市售的各种酸奶制品中, 作为发酵剂的乳酸菌, 通常为保加利亚乳杆菌和嗜热链球菌这两株菌。用嗜热链球菌和保加利亚乳酸杆菌混合培养发酵的乳酸饮品能补充人体肠道内的有益菌,维持肠道的微生态平衡,且含有易于吸收的营养素,具有抑制腐败菌、提高消化率、防癌及预防一些传染病等功效,并能为食品提供芳香风味,使食品拥有良好的质地。
保加利亚乳杆菌(L.Bulgarius):长杆形,直径1-3mm左右,能产生大量的乳酸。酸碱度方面,为耐酸或嗜酸性,因低 pH能防止一些微生物的生长;温度方面,为嗜温至少许嗜热,最适生长温度在37-45℃之间,对低温非常敏感。
嗜热链球菌(S.thermophilus):卵圆形,直径0.7-0.9微米,呈对或链状排列,无运动性。为健康人肠道正常菌群,可在人体肠道中生长、繁殖。可直接补充人体正常生理细菌,调整肠道菌群平衡,抑制并清除肠道中对人具有潜在危害的细菌。
本研究对市售主要品牌酸奶中(河南花花乳业生产的酸奶)乳酸菌进行了分离鉴定,并进一步探讨制备酸奶条件(温度、时间等),以达到最佳的天然酸奶质量效果。
一、实验内容
(1)乳酸菌的分离纯化
1.无菌操作倒平板、十倍稀释、划线分离,恒温培养
2.菌落观察与镜检 3.筛选生产用菌株(2)优化酸奶制作条件
1.制备发酵液
2.不同条件下,接种发酵菌剂并发酵生产 3.观察发酵情况
4.品尝发酵产品,进行质量评价 5.记录结果
二、实验器材
1)菌种:新鲜乳酸饮料(标记只含有保加利亚乳杆菌和嗜热链球菌)
2)试剂:脱脂奶粉、蔗糖、1.6%溴甲酚绿乙醇溶液(溴甲酚绿、无水乙醇)、酵母膏、琼脂、革兰氏染液(结晶紫染液、卢戈氏碘液、95%乙醇、沙黄)、75%乙醇、香柏油、1mol/L NaOH、1mol/L HCl、碳酸钙;
0.4gNaOH固体、4.2ml浓HCL(分析纯)、20gCaCO3固体、酵母膏20g、琼脂30g
香柏油、脱脂奶粉100g、蔗糖10g;
3)仪器:高压蒸汽灭菌锅、恒压干热灭菌箱、超净工作台、光学显微镜、培养箱、pH试纸、酸乳瓶、培养皿(φ9或φ12)、试管、300ml三角瓶(带玻珠)、移液管、天平、牛角匙、电炉、量筒、漏斗、漏斗架、玻璃棒、棉塞、吸管、线绳、标签、500ml锥形瓶、250ml锥形瓶、250ml烧杯、酒精灯、石棉网、接种针(环)、擦镜纸
四、实验方法
4.1乳酸菌的分离纯化 4.1.1分离
(1)配制BCG牛乳培养基,分装三角瓶,包扎,灭菌备用。
BCG牛乳培养基配制
A溶液:脱脂乳粉100g,水500ml,加入1.6%溴甲苯酚绿(BCG)乙醇溶液1ml,80℃灭菌20min。(1.6%溴甲苯酚绿(BCG)乙醇溶液用1.6g溴甲酚绿加入20ml无水乙醇中,再加水至100ml制成)
B溶液:酵母膏10g,水500ml,琼脂20g,PH6.8,121℃湿热灭菌20min。以灭菌操作趁热将A溶液和B溶液混合均匀后倒平板。(2)样品的处理
按照无菌操作要求,从市售新鲜酸乳中吸取10ml检样,放入装有90ml无菌水的三角瓶内,振摇混匀。(3)分离方法 ①倒培养基
在无菌室,先用紫外线照射半小时把表面菌灭了,在通风10min后,每培养皿倾注约15ml左右已溶化的BCG牛乳培养基,立即放在桌上摇匀,冷却凝固后即成平板。②十倍稀释法
将检样充分摇匀后,用十倍稀释法稀释成10-
1、10-
2、10-
3、10-
4、10-5各种稀释度的样品液。目的是为了确定哪个稀释度最适宜。一般在培养基上长处50-300个菌落的稀释度为最佳。③分离
在BCG牛乳培养基琼脂平板上划线分离,每稀释度做两个平皿。置40℃培养箱中培养48h。如出现圆形稍扁平的黄色菌落及周围培养基变为黄色者初步定为乳酸菌。4.1.2鉴别
(1)配制脱脂乳试管培养基,分装试管,包扎,灭菌备用。脱脂乳试管培养基成分:20g脱脂奶粉,285ml灭菌水。配制好的脱脂乳培养基分装到15支试管中。
(2)选取经初步鉴定的乳酸菌典型菌落,用接种环挑取转至脱脂乳试管中,40℃培养箱中培养8~24h。若牛乳出现凝固,无汽泡,呈酸性,涂片镜检细胞为杆状或链球状(两种形状的菌种分别选入),革兰氏染色显阳性,则可将其连续传代4~6次,最终选择出在3~6h能凝固的牛乳管,作菌种待用 4.2优化酸奶制作条件(1)乳酸菌培养基的制作
将脱脂乳和水以1:7(W/V)的比例,同时加入6%的蔗糖,充分混合,于80~85℃灭菌10~15min,冷却至35~40℃,作为制作饮料的培养基质。即脱脂乳14.3g,无菌水100ml,蔗糖6g。(2)接种
将纯种嗜热乳酸链球菌、保加利亚乳酸杆菌及两种等量混合菌液作为发酵菌剂,均以2~5%的接种量分别接入培养基质中即为饮料发酵液。接种后摇匀,分装到已灭菌的酸乳瓶中,每一种菌的发酵液重复分装12瓶,将瓶盖拧紧密封。(3)发酵
将接种后的酸乳瓶置30℃,36℃和42℃培养箱中培养2或4h时。培养时注意观察,出现凝乳后停止培养。然后转入4~5℃冰箱中冷藏24h以上。经此后熟阶段,达到酸度适中(pH4~4.5),凝块均匀致密,无乳清晰出,无汽泡,获得较好口感和特有风味。(4)发酵产物鉴定——纸层析法 将分离的纯菌种接种到乳酸菌葡萄糖发酵培养基上,40℃培养48h。取产酸不产气的液体试管中发酵液做纸层析。展开剂:水30mL、苯甲醇150mL、正丁醇150mL、甲酸3.3mL。显色剂 : 将1.6%的溴酚蓝酒精溶液用0.1 mol/L的 NaOH调pH到6.7。显色后,分别测定发酵液与2%标准乳酸的Rf值,确定发酵产物中是否有乳酸
五、预期结果
1.分离鉴定获得嗜热乳酸链球菌、保加利亚乳酸杆菌
2.获得酸奶制作的最佳条件
六、实验进度
第四篇:多糖的提取纯化及分析鉴定方法研究
多糖的提取纯化及分析鉴定方法研究
王霄
(合肥工业大学 生物与食品工程学院,安徽 合肥230009)
摘要:详细介绍了动植物多糖的常见提取纯化方法的最新研究进展,并比较了各种方法的优缺点。每种方法都有各自的优缺点,在提取时应根据所选材料的性质选用不同的方法,有些方法在一定的条件下可与别的方法协同作用,并对糖的含量测定及分析鉴定方法的研究进展作了概述。
关键词:多糖;提取;纯化;分析鉴定;研究进展 中图分类号:TU 411.01文献标识码:A
Progress of Polysaccharides Extraction, Purification and Identification Methods
WANG Xiao
(School of Biological and Food Engineering, Hefei University of Technology, Hefei 230009, China)
Abstract: This paper reviews the extraction, purification and identification methods of animal and plantpolysaccharides, and compares the advantages and disadvantages of each mothed.Each mothed has its own advantages and disadvantages, appropriate mothed should be selected according to the nature of the chosen material, and some of these methods can be synergy with other methods under certain conditions.In addition, analysis and identification of polysaccharides are outlined.Key words: polysaccharides;extraction;purification;analysis and identification;research progress
菌来源的糖缀合物具有广泛的药理及生物活性
0多糖概述
多糖(polysaccharide)是由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖高分子碳水化合物。由相同的单糖组成的多糖称为多糖,如淀粉、纤维素和糖原;以没的单糖组成的多糖称为杂多糖,如阿拉伯胶是由戊糖和半乳糖等组成。多糖不是一种纯粹的化学物质,而是聚合程度不同的物质的混合物。多糖类一般不溶于水,无甜味,不能形成结晶,无还原性和变旋现象。多糖也是糖苷,所以可以水解,在水解过程中,往往产生一系列的中间产物,最终完全水解得到单糖。
近年来,国际上对糖及糖复合物的研究己成热点,糖类结构测定和生物活性研究取得了明显的进展。大量实验事实揭示糖类是重要信息分子,参与许多生理和病理过程
[1-2]
[3]。
在对各种中药材化学成分研究的过程中,人
们逐步提高了对植物多糖的关注。植物多糖研究比较深入的是茶多糖、菜籽多糖、南瓜多糖、苦瓜多糖、银杏叶多糖、枸杞多糖等等,植物多糖在抗生素替代物及保健品领域已经取得很好的应用。多糖作为重要的生物活性物质具有调节免疫、抗肿瘤、降低糖脂、延缓衰老等活性,在医疗保健、食品、动物养殖等领域有着广阔的应用前景
[4-7]。
1多糖的提取工艺
1.1 水提醇沉法
水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最
。到目前为止。己有
300余种多糖类化合物从天然产物中被分离出来,其中从中草药、食药用菌中提取的水溶性多糖最为重要。已发现有100多种中草药、食药用
终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:提取温度、浸提料液比、提取时间以及提取次数等。为此,研究者对影响多糖提取工艺的这些因素进行了大量研究。林娟[8]
等研究表明水提法提取甘薯多糖的优化工艺条件为:提取温度85℃,加水比1:7,提取时间2.5h,提取率为26.71%。刘永[9]
等研究表明:最佳提取条件为95℃,料液比1:20(g:mL),提取时间2h,提取3次,茶叶多糖含量为35.92 mg/g。
水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高[10]。
1.2酶法提取
酶技术是近年来广泛应用到有效成份提取中的一项生物技术,使用酶可降低提取条件,在比较温和的条件下分解植物组织,加速有效成分的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等非目的产物。此法可使后续的浓缩和脱蛋白工艺更简易、省时,粗多糖的纯度更高。但会提高生产成本,对提取条件要求较高。杨云
[11]
等人采用的单酶法和复合酶法提取大枣多糖,单酶法提取多糖含量最高可达44.69%,而复合酶法多糖最高含量可达68.13%。1.3超声波提取
超声法是利用超声波对细胞组织的破碎作用来提高多糖浸出率的,具有快速、安全、简便、成本低、多糖提取率高,成分又不被破坏等优点,但对提取设备要求较高。李进伟
[12]
等通过响应面
分析法考察超声波功率、提取时间、提取温度、料液比对枣多糖得率与纯度的影响,得出枣多糖最佳的提取工艺条件为:超声波功率86~96W,提取温度45~53℃,提取时间20min,料液比1:20(g:ml),枣多糖得率7.63%,纯度35.57%。与传统的水浴浸提法相比,该方法不仅缩短了提取时间,且提高了枣多糖得率与纯度。1.4微波提取
微波萃取是高频电磁波穿透萃取媒质,到达被萃取物料的内部,能迅速转化为热能使细胞内部温度快速上升,细胞内部压力超过细胞壁承受力,细胞破裂,细胞内有效成分流出,在较低的温度下溶解于萃取媒质,通过进一步过滤和分离,获得萃取物料。赵怡红
[13]
等研究表明北冬虫夏草
多糖微波提取最佳条件:微波功率550W、固液比l:30、提取时间30s、提取1次,多糖收率3.67%。刘青梅
[14]
等研究结果表明:对于紫菜多糖
提取微波提取优于热水提取,微波冻融提取效果最佳,提取率最高达7.45%,而热水提取率为2.05%.影响微波浸提的主要因素为浸提时间,其次是微波功率和液固质量比。优选方案为微波功率200W、提取时间8 min、水与紫菜液固质量比40:1。
1.5超临界流体提取
超临界流体提取法根据某些气体在超临界状态下具有特殊的液相性质,对一些组分有较好的溶解性,用来提取目的产物。一般采用CO2超临界萃取多糖组分。朱俊玲
[15]
通过超临界CO2流体
萃取处理芦荟多糖,多糖得率为85.1%,是传统方法的1.5倍。超临界萃取的最佳工艺条件是乙醇用量为250 ml/100g芦荟、萃取压力为25 MPa、萃取温度为35℃。1.6超滤法
超滤是一种膜分离技术。该技术应用于多糖的提取,具有不损害活性、分离效率高、能耗低、设备简单、可连续生产、无污染等优点[16]。
1.7酸提法
有些多糖适合用稀酸提取,并且能够得到更高的提取率。如赵宇等
[17]
对海蒿子多糖的提取方
法研究发现,从多糖提取得率来看,酸提法优于传统的水提法。不过此方法只在一些特定的植物多糖提取中占优势,目前报道的并不多。不过在操作上还是应该严格控制酸度,因为在酸性条件下可能引起多糖中糖苷键的断裂。1.8碱提法
与酸提法类似,有些多糖在碱液中有更高的提取率,尤其是含有糖醛酸的多糖及酸性多糖。不过,也应控制碱的浓度,因为有些多糖在碱性较强时也会发生水解。
2多糖纯化方法
2.1除蛋白
根据蛋白质在氯仿等有机溶剂中变性的特点,用V(氯仿)∶V(戊醇或正丁醇)为5∶1 或4∶1,混合物剧烈振摇20~30 min,蛋白质变性生成凝胶,离心分离,分去水层和溶剂层交界处的变性蛋白质。此种只能除去少量蛋白质,效
率不高,须反复多次,多糖有损失。但此方法比较温和,在避免多糖降解上效果较好,如配合加入一些蛋白质水解酶,用Sevage 法效果更佳。李婉婷
[18]
研究结果表明木瓜蛋白酶-Sevage法除
去款冬花多糖中的蛋白最为理想,该法的最佳工艺条件为:木瓜蛋白酶的酶底比为l%,pH值7.0,先在50℃水浴中酶解2h,再经Sevage法脱蛋白3次,其蛋白脱除率为88.95%,多糖保留率为92.63%。2.2透析法
透析法是利用一定孔目的膜,使无机盐或小分子糖透过,而将大分子的多糖截留下来从而达到纯化多糖的目的。此法的关键是要选择孔目合适的透析膜。纤维膜孔径为2~3nm,可使单糖分子通过,分离效果较好,透析时常需要多次换水,溶液的pH值维持在6.0~6.5范围内。2.3凝胶柱层析法
凝胶柱层析法主要是根据多糖分子的大小和形状不同而达到分离目的。但溶液流经多孔性凝胶柱时,小分子已扩散人孔中,各溶质依分子量大小顺序依次流出。此方法快速、简单、条件温和。常用的凝胶有葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sephamse),以不同浓度的盐溶液和缓冲溶液作为洗脱剂。此法还可进行多糖相对分子量的测定。王赫
[19]
采用Sephadex G-100凝胶色谱柱
分离纯化,从龙胆水溶性多糖中分离纯化得到2 种不同的均一多糖组分TP-
1、TP-2。2.4纤维素住层析法
纤维素阴离子交换剂柱层析对多糖的分离是利用pH 6时,酸性多糖能吸附于交换剂上,中性多糖不吸附,用pH相同离子强度不同的缓冲液将酸性强弱不同的酸性多糖分别洗脱出来。常用的阴离子交换纤维素有DEAE-纤维素和ECTEOLA纤维素。张兰杰
[20]
等就采用DEAE-纤维素柱分离
北五味子多糖,分别得到了白色结晶和黄色粉末两种多糖产物。
3多糖的分析
3.1含量的测定
测定方法:硫酸-苯酚法、硫酸-蒽酮法、比色定量法、分光光度法、纸色谱法、离子交换色谱法、yaphe [21]
法、薄层色谱法、酶法、原子吸
收法
[22]、HPLC法、凝胶电泳法、亲和电泳法连、续流动分析法检测法
[23]、次亚碘酸盐定量法、蒽
酮-硫酸法(总糖)、DNS法
[24]
(还原法)、磷钼
比色法、邻钾苯胺比色法等。每种方法只对某些多糖的测量效果好。比色法分光光度法离子交换色谱法酶法和电泳法等可同时用于多糖的定性定量分析。3.2纯度鉴定
多糖是高分子化合物,其纯品微观上是不均一的,通常所说的多糖纯品实质上是一定分子量范围的均一组分。多糖纯度鉴定的常用方法:超离心、高压电泳、凝胶层析、HPLC法等。现在应用较多的是HPLC法,旋光度测定[25]
也是纯度
测定的一种方法。3.3分子量的测定
多糖分子量的测定是研究多糖性质的一项重要工作常用方法:渗透压法、蒸气压渗透剂法、端基法、粘度法、光散射法、凝胶色谱法、超过率法、沉淀法、凝胶电泳法、HPLC法、超离心分析法、分子筛色谱法、GPC法
[26]。
4多糖的鉴定
4.1 多糖一级结构测定
多糖的一级结构分析,主要是分析组成多糖的单糖类型、数目连接方式及苷建构型。常用化学法和仪器分析法。多糖组分与分子比例测定法:部分酸解法、完全酶解法、色谱法;吡喃、呋喃环形式结构的分析:红外光谱;连接次序:选择性光谱法、糖苷键顺序水解、核磁共振; α-β-异头异构体:糖苷酶水解核磁共振;羟基被取代情况:甲基化反应、气相色谱、过碘酸氧化、Smith降解法和测硫酸基法(terho法)、核磁共振、质谱法;糖链、肽链连接方式:单糖与氨基酸组成、稀碱水解法、肼解反应;多糖结构的分析方法很多,迄今没有一种方法可以单独完成多糖结构的分析。仪器分析与化学方法相结合是常用的多糖结构测定方法。4.2多糖高级结构测定
目前研究多糖的二级结构常用的手段是NMR技术,如2D-NMR,13C谱,通用的方法是将现代NMR技术与理论计算相结合通过一定的理论计算筛选构象,主要的理论计算方法有从头计算、丰度经验计算及经验力场计算
[27]
。圆二色
谱法(CD)也可用于糖的构象分析,张丽萍等
[28]
应用谱测定了金顶侧耳多锗的水溶液构象近年来,以精确三维结构知识为基础揭示重要生命活
动的规律已达到前所未有的深度和广度[29],多糖
作为一类重要的生物活性大分子其结构的研究势
必推动对多糖的认识向深层次发展。多糖的应用展望
我国对多糖的研究起步较晚,但近年来的工作取得了较大的进展,愈来愈多的多糖被发现并证实它们具有复杂广泛的生物活性和功能。随着对多糖生物活性的深入研究,多糖的生物活性机理,功效因子会更加明确,它的应用领域也将会更加拓宽。然而,由于多糖本身结构比较复杂,种类繁多,其结构测定和分离纯化有很大的难度;有些多糖在天然植物中的含量低且不易分离及多糖的药理作用与诸多因素有关,给多糖的研究和应用带来许多的挑战,这需要相关行业的人士共同应对。
[参考文献]
[1] Benzie, I., and Strain, J.The Ferric Reducing Ability ofPlasma(FRAP)as a Measure of Antioxidant Power.AnalyticalBiochemistry.1996.239:70–76.[2] Wang, C., Sun, Z.Earthworm polysaccharide and its antibacterialfunction on plant-pathogen microbes in vitro.European Journal of
Soil Biology.2007.43:S135-S142.[3] Zhang, Z., et al.(2011).Isolation and antioxidant activities ofpolysaccharides extracted from the shoots of Phyllostachys edulis
(Carr.).Int.J.Biol.Macromol.49(4): 454-457.[4] Li, R., et al.(2009).Extraction, characterization of Astragaluspolysaccharides and its immune modulating activities in rats withgastric cancer.Carbohydrate Polymers 78(4): 738-742.[5] Li, S.-g., et al.(2008).Characterization and anti-tumoractivity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz.Carbohydrate Polymers 73(2): 344-350.[6] Mazumder, et al.(2002).Isolation, chemical investigation and antiviralactivity of polysaccharides from Gracilaria corticata(Gracilariaceae,Rhodophyta).Int.J.Biol.Macromol.31(2002)87-95
[7] Chen, X., et al.(2011).Extraction, purification, characterization andhypoglycemic activity of a polysaccharide isolated from the root ofOphiopogon japonicus.Carbohydrate Polymers 83(2): 749-754.[8] 林娟, 邱宏瑞, 林霄,等.甘薯多糖的提取纯化及成分分析[J].中国粮油学报, 2003, 18(2): 64-66.[9] 刘永, 成战胜.茶叶多糖的提取纯化及其单糖组分的鉴定[J].食品与发酵工业, 2005, 31(6): 134-136.[10] 徐翠莲, 杜林洳, 樊素芳,等.多糖的提取分离纯化及分析鉴定方法
研究[J].河南科学, 2009., 27(12): 1524-1529.[11] 杨云.酶法提取大枣多糖的研究[J].食品科学, 2003,10(24): 93-95.[12] 李伟进, 丁霄麟.超声波提取金丝小枣多糖的工艺研究[J].林产化
学与工业, 2006, 26(3): 73-76.[13] 赵怡红, 邱玉华.微波法与传统工艺提取北冬虫夏草多糖的比较研究[J].内蒙古农业科技, 2009(3): 68-69.[14] 刘青梅, 杨性民, 邓红霞.采用微波技术提取紫菜多糖的工艺研究[J].农业工程学报, 2005, 21(2): 153-156.[15] 朱俊玲.超临界流体萃取芦荟多糖的研究[J].农产品加工,2011(7):67-68.[16] Hanju Sun,Ding Qi,Jiaoyun Xu.Fractionation of polysaccharides
from rapeseed by ultrafiltration: Effect of molecular pore size and operation conditions on the membrane performance.Separation and Purification Technology, 2011,80:670-676.[17] 赵宇, 李志富, 任少红, 等.海蒿子多糖的提取方法研究[J].泰山医学院学报, 2004, 25(5): 429-430.[18] 李婉婷.款冬花多糖提取及分离纯化研究[D].西安: 西北大学硕士学位论文, 2010.[19] 王赫.龙胆多糖的提取纯化及其组成糖分析[J].中国医药指南,2011, 9(21): 250-251.[20] 张兰杰, 张维华, 赵珊红.北五味子果实中多糖的提取纯与化研究
[J].鞍山师范学院学报, 2002, 4(1): 94-96.[21] 李 锋, 唐凤翔, 林海英, 等.耳突麒麟菜多糖的提取分离及表征
[J].福州大学学报, 2003, 31(1): 106-110.[22] 武 云, 张 驰.富硒黑木耳中硒多糖提取分离工艺的优化[J].湖北
农业科学, 2007, 46(5): 821-823.[23] 沈光林, 孔浩辉, 张心颖, 等.流动注射分析仪在烟草分析中的应
用[J].理化检验-化学分册, 2000, 36(11): 490-492.[24]
刘 强, 石丽花, 尹利端, 等.松花粉多糖提取检测方法研究进展
[J].农产品资源, 2007, 35(24): 45-48.[25] 聂凌鸿, 宁正祥.广东淮山水溶性多糖的分离纯化及体外抗氧化活
性的研究
[J].食品科学, 2003, 24(11): 129-133.[26] 刘 荣, 孙 芳, 陈秀丽, 等.松仁多糖化学结构的初步分析[J].林
产化学与工业, 2008, 28(4): 115-117.[27] 来鲁华, 杨显婷.寡糖的构象分析[J].生物化学与生物物理进展,1992, 22(4): 290-294.[28] Reinhold V N, Reinhold B B, Costello C E.Carbohydrate
molecular weigh profiling:sequence, linkage, and brunching
data:Es-CID [J].Anal Chem, 2005,67(1), 1772-1784.[29] Mock K K, Davey M, Cottrell J S.The analysisifunderivatized oligosacchridesby matrix ssisted laser deaorption mass
spectrometry[J].Biochem Biophys Res Comm, 2011, 177(2):
644-651.
第五篇:粗提技术论文:坛紫菜R-藻红蛋白的分离纯化工艺与分析鉴定
粗提技术论文:坛紫菜R-藻红蛋白的分离纯化工艺与分析鉴定
【中文摘要】藻红蛋白作为坛紫菜中的一种重要生理活性物质,已广泛应用到食品、轻工业、化妆和医药等行业,具有很高的经济价值。目前藻红蛋白主要是从红藻中分离提取获得,现已报道的分离纯化工艺多为破壁粗提,盐析沉淀粗分离再结合多步色谱层析纯化获得,这种工艺存在多种问题,比如细胞破碎不充分,提取效率较低、盐析沉淀操作步骤繁琐、多步柱层析成本较高等等,使得藻红蛋白生产难以工业化,高纯度藻红蛋白价格十分昂贵,极大限制了藻红蛋白的广泛应用。故本文针对坛紫菜R-藻红蛋白分离纯化存在的一系列问题,对比了多种破壁粗提技术并加以条件优化,结合两步色谱层析,建立了坛紫菜R-藻红蛋白分离纯化新工艺,为藻红蛋白大规模开发和利用提供了理论基础和科学依据。(1)坛紫菜R-藻红蛋白是胞内蛋白,破壁技术作为藻红蛋白提纯的第一步直接关系到原料的利用率和藻红蛋白的生产成本,具有十分重要的意义。故本研究比较了4种具有大规模提取应用前景的粗提技术——溶胀法、化学处理法、超声波法和搅切法对坛紫菜R-藻红蛋白的提取效果,以R-藻红蛋白提取得率、纯度和提取时间为参数,确定搅切法为最佳粗提技术,并对这种方法的物料比、搅切转速和搅切时间进行了优化,结果表明当物料比为1:...【英文摘要】As an important physiological active substance of Porphyra haitanensis, R-phycoerythrin is widespread applied
in food, cosmetics and pharmaceutical industry with a very high economic value.At present phycoerythrin is mainly separated from the red algae.There are many reports of the separation and purification about it at home and abroad.Conventional protein purification procedures involve three steps:pretreatment of the sample to allow the intracellular material to become liberated, making a crude extract...【关键词】粗提技术 离子交换色谱 凝胶过滤色谱 坛紫菜R-藻红蛋白 分离纯化
【英文关键词】Extraction and Purification Ion Exchange Chromatography Gel Filtration R-phycoerythrin Analysis 【目录】坛紫菜R-藻红蛋白的分离纯化工艺与分析鉴定4-611-1212-17Abstract6-7
目录8-11
引言
摘要1 文献综述12-241.1 藻红蛋白的概论
12-13
1.1.2 藻红1.1.1 藻红蛋白与藻胆蛋白
13-15蛋白的结构与组成15-16
1.1.3 藻红蛋白的分类
16-17
1.2 藻红蛋1.1.4 藻红蛋白的理化性质白的应用17-1917-1818
1.2.1 在免疫荧光技术方面的应用1.2.2 在食品行业和精细化工方面的应用1.2.3 在医药保健药物开发方面的应用18-19
1.3.1 破壁粗提
1.4 藻红蛋白的分离纯
1.3 藻红蛋白的提取与粗分离19-2119-201.3.2 粗制方法20-21
化21-22221.4.1 吸附层析21-221.4.2 离子交换层析1.4.3 凝胶柱层析221.5 本文研究内容及技术路线22-2424-362424-252525-2729-3235-3636-553637-382 坛紫菜R-藻红蛋白的粗提技术的比较2.1 材料与方法24-25
2.1.1 材料与试剂2.1.3 细胞破碎方法2.1.2 仪器及设备242.1.4 坛紫菜R-藻红蛋白得率和纯度的计算2.2 结果与讨论25-352.2.2 化学处理法27-292.2.4 搅切法32-35
2.2.1 溶胀法
2.2.3 超声破碎法2.3 本章小结3 坛紫菜R-藻红蛋白的分离纯化工艺的建立3.1 材料与方法36-383.1.2 仪器与装置36-373.2 结果与讨论38-53
3.1.1 材料与试剂3.1.3 实验方法3.2.1 离子交换介质种
3.2.3 类的选择39-40起始缓冲液pH的优化44-47化47-48
3.2.2 缓冲液种类的选择40-4242-44
3.2.4 洗脱液盐浓度的优化
3.2.6 洗脱流速的优
3.2.8 不3.2.5 上样体积的优化473.2.7 离子交换层析的放大48-49
49-50
3.2.9 凝胶过滤层析同孔径超滤膜的选择50-533.3 本章小结53-554 坛紫菜R-藻红蛋白的分
4.1.1 材料与试析鉴定55-65剂5555-58
4.1 材料与方法55-584.1.2 仪器与设备554.2 实验结果58-63
4.1.3 实验方法4.2.1 紫外可见吸收光谱
分析58-604.2.2 荧光光谱分析60-62
62-63
4.2.3 Native
结论和SDS-PAGE电泳分析与展望65-67
4.3 本章小结63-65
参考文献67-71
致谢72-73
攻读硕士学位期间发表学术论文情况71-72