第一篇:高中数学《函数的奇偶性》说课稿
《函数的奇偶性》说课稿
老师、同学们,大家上午好。我是教育技术专业的邓彩红,今天我的说课题目是函数的奇偶性。下面开始我的说课。
一、教材分析
本节内容选自人教A版高中数学必修一第一章第3.2节。函数是高中数学的起始课程,同时也是重点和难点,函数的思想贯穿于整个高中数学之中。函数是描述事物运动变化的重要模型,函数的奇偶性是除单调性以外的另一个重要特征,它为我们之后学习它不仅与现实生活中的对称性密切相关联,而且为后面学习指数函数、对数函数、幂函数的性质作好了坚实的准备和基础,也常常使复杂的不等问题变得简单明了。
本节课的学生是高一学生,之前已经学习过函数的单调性,因此,对于探索函数的奇偶性有良好的认识基础,而且学生初中阶段已经学习过函数的轴对称性和中心对称性,这也为本节课的学习奠定了基础。但是学生对于使用抽象的数学语言表示轴对称性和中心对称性这些具体的几何特征感到一定的困难,就需要教师进行有效引导。
基于以上对教材和学生的分析,我将教学目标定为以下三点: 二.教学目标 1.知识与技能方面:
(1)教会学生用数学符号语言描述偶函数和奇函数的概念,并能够理解其几何意义。
(2)能够利用定义判断函数的奇偶性。
(3)学会运用函数图象理解和研究函数的性质。
(4)通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。2.过程与方法方面:
(1)让学生经历数学概念的精确化和数学化过程,体会数学化原则这个重要的数学原则。
(2)让学生体会从具体到抽象、从特殊到一般的数学思维过程,以及数形结合的重要数学思想和方法。3.情感态度价值观方面:(1)让学生感受生活中的数学美,也让学生感受函数的变化规律,数列运动变化的唯物主义辩证观点。
(2)通过小组合作交流培养学生团结互助的精神。三.教学重点和难点:
教学重点:偶函数和奇函数的概念、几何意义及利用定义判断函数的奇偶性。
教学难点:对偶函数和奇函数的概念从图形表象到具体的数量关系这个精确化、数学化过程的推导。
四、教学方法
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数 学与现实的距离,教师提出问题,让学生主动探究答案,激发学生求知欲,调动学生主体参与的积极性。
2、采用多媒体辅助教学方法,注意多媒体课件的使用。
3、在讨论环节,以学生为主体,鼓励学生主体参与的同时,不可忽视教师的主导作用。
五、学习方法
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
3、在学习过程中,学生主要采用了自主探究法、合作交流法等方法。六.教学过程
(一)创设情景 引入新课
在概念教学时,教师要为学生提供一些思维情境,因此我将先从生活中的一些数学现象引入,比如建筑物、汽车标志、蝴蝶等具有对成性的图形。“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,通过这种方式引入新课。
(二)逐步探索 发现新知
在这个步骤中,将通过f(x)x2 和f(x)|x|两个具体的函数来引入观察这两个函数的图像有什么特征,对于它们的几何特征又如何用数学符号语言来描述,从而慢慢得到偶函数的概念,并通过具体的例子强调概念中的几个注意点,比如定义域关于原点对称以及“任意”两个字怎么理解(如果对于函数f(x)的 定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。)。这样从特殊到一般的学习过程更有利于学生概念的形成。接下来根据新课程的教学理念,课堂教学中要提倡合作学习,我将让学生通过小组交流学习的方式,让他们类比偶函数概念的得到过程,从而得到奇函数的概念。
(三)课堂练习评价反馈
通过例1让学生学习通过定义去判断函数的奇偶性,并总结利用定义判断函数奇偶性的一般步骤,来强化学习内容。通过设计例2让学生感受到运用函数的奇偶性这一重要性质在解决实际问题时有非常重要的作用,从而体会数学的应用价值。
(四)课堂小结 反思提高
先让学生进行小结,然后教师进行补充,在这个过程中既有利于学生巩固本节课所学的知识,也有利于教师对学生的学习情况的了解,可以进行适当的反思,为下一节的教学做准备。
(五)布置作业 分层练习
这个过程就是形成形成性评价的过程,采用分层练习,既能面向全体同学,也能让学有余力的同学获得进一步的提高。
以上就是我的说课内容,谢谢大家。
第二篇:《函数奇偶性》说课稿
《函数奇偶性》说课稿
《函数奇偶性》说课稿 1
尊敬的各位老师:
大家好,我是1号考生。我说课的题目是《函数的奇偶性》(板书课题),根据新课标的理念,以教什么,怎么教,为什么这样教为思路,我从6个方面进行说课。
一、说设计理念
根据新课程教学理念,在教学中,我以领悟为目的,练习为主线,引导学生自主学习,合作探究,在教学中,注重培养学生逻辑思维能力、创新能力、合作能力、归纳能力、及数学联系生活的能力。即实现数学教学的知识目标,又实现育人的情感目标。
二、说教材
《函数的奇偶性》是人教版第一章集合与函数概念单元的重要知识点。全面介绍了偶函数的定义及判定,奇函数的定义及判定等两部分知识。为后面学习指数函数、对数函数、三角函数等知识奠定了基础。
(一)教学目标:
依据本节课的知识特点及新课标要求,本课的三维教学目标是:
1.知识与技能目标是:理解函数的奇偶性及其几何意义,掌握判断函数奇偶性的方法。
2.过程与方法目标是:通过学生自主探索,合作学习,培养学生的观察、分析和归纳等数学能力,渗透数形结合的数学思想。。
3.情感态度与价值观目标是:让学生了解数学在生活中运用的广泛性和实用性,引发学生学习数学知识的兴趣。
(二)重点、难点:
重点是:函数的奇偶性及其几何意义。
难点是:判断函数的奇偶性的方法。
(三)学情分析
本课的授课对象是高一年级的学生,他们思维活跃,求知欲强,他们已经初步认识了函数的概念,高一年级的学生有自主学习、合作探究的能力,但仍需要教师的指导。
三、教法学法
教法:本节课采用自主探究法、启发式教学法、讨论交流法等。
学法:引导学生探究合作,归纳总结,注重对学生自主探究问题能力的培养,发挥学习小组的合作作用。
四、教学准备
教师制作多媒体课件,编印导学案;学生预习课文,观察生活中具有对称美的物体或图像。
五、教学过程
本节课我从导、研、练、拓、升五个环节进行说课。
环节一:创设情境,导入新课。(导3)、
该环节,用多媒体向学生展示现实生活中蝴蝶、太阳、湖面倒影等具有对称性的图像,再让学生举例函数图像是否有类似的属性?通过评价学生回答,引出本节课的标题:函数的奇偶性。
本环节的设计意图是:采用问题探究导入法,有效地引起学生的注意,激发学生学习本节课的兴趣,便于环节二的开展。本环节需要3分钟
环节二:合作探究,获取新知(研20)
该环节,我分两个模块进行。
模块一:完成偶函数的定义。(板书知识点的小标题)。该模块中,让学生观察课本图1.3.7并思考,两个函数图像有什么共同特征?相应的对应表是如何体现这些特征的?进而让学生观察讨论,得出结论:当自变量x取一对相反数时,相应的函数值相同,并引导学生归纳总结出偶函数的定义:定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
模块二:完成奇函数的定义。(板书知识点的小标题)。该模块中,学生已经学习了偶函数的定义,根据偶函数相同的教学方法引导学生推导出奇函数的定义,即:定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
模块三:完成例题5讲解。在引导学生复述偶函数、奇函数的定义的基础上,师生共同完成例题5中的`1)2)小题。在这个过程中教师要提醒学生注意函数定义域的范围,掌握函数奇偶性判定的方法。在完成1、2小题的基础上,让学生独立完成3)4)两个小题。然后在小组内讨论交流,教师巡视,以便发现问题,解决问题。
本环节的设计意图是:采用讲授、研讨、探究、评价、训练、等多种教学手段,达成本节课的三维目标。本环节需要25分钟
环节三:强化训练,目标达成。(练12)
该环节,让同学们拿出之前下发的练习题,每个小组选出一位同学到黑板板演。然后教师对板演情况进行讲评,其他同学小组内互相批阅。
本环节的设计意图是:采取自评和他评相结合的方法,检查学生的学习效果,便于及时对学生进行查缺补漏。本环节需要12分钟
环节四:联系生活,拓展延伸(拓5)
这根据所学知识,让学生联系生活,列举在教室中具有奇偶性的具体实物,提高学生将知识联系生活的能力。
环节五:总结提升,布置作业(升5)
教师对本节课知识点进行梳理。完成课堂达标测评试题,然后启发学生思考这一课的收获。最后布置两种作业。基础型作业为总结本节课的所学知识完成相关练习。扩展型作业为学生自主查询函数奇偶性的相关资料。
本环节通过梳理总结,使本课知识要点化,系统化,给学生以强化记忆。所布置的作业,既可以巩固所学知识,又能把课堂所学应用于实践当中,从而达到教学的目的。
六、说板书设计
我的板书直观具体形象地将本节课的学生重点呈现在黑板之上,方便学生理解掌握。
我的说课到此结束,谢谢各位专家老师!
附:板书设计
《函数奇偶性》说课稿 2
一、说教材
《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的奇偶性,尝试运用“列表”和“画示意图”等解决问题的策略,发现规律,解决生活中的一些问题。让学生经历探索加法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,体验研究方法,提高推理能力。
二、说学情:
五年级学生在学习过程中已经具备一定的观察能力,分析交流等能力。进行小组合作和交流时,大多数学生能较清晰地表达出自己的主张和见解。绝大部分学生愿意通过自主思考,小组内和全班范围内交流的学习方式来提升自己对问题的认识。
三、说教法:
为适应数学学科“实践与应用”的需求,根据培养学生的求知欲和自我实现的需要,这节课我以学生自主合作探究为主要教学策略,扶放结合,把课堂中更多的时间留给学生去探究和发现,使他们能自主的总结规律、解决问题。
四、说学法:
1、通过动手操作,运用列表法和画图法发现数的奇偶性变化规律。
2、运用观察、猜测、验证方法得出结论,探索加法中奇偶的变化的过程,在过程中发现规律。
五、说目标:
1、在具体情境中,通过实际操作,尝试运用“列表”“画示意图”等方法发现数的奇偶性规律,并运用其解决生活中的一些简单问题。
2、经历探索加减法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。
3、使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
六、说重、难点:
1、掌握加法中数的奇偶性的变化规律。
2、能应用数的奇偶性分析和解释生活中一些简单问题。
七、说流程:
(一)、旧知回顾:
1、什么是奇数?什么是偶数?
2、下面的数哪些是奇数?哪些是偶数?(课件出示)
16 51 430 592 98 105
3、判断:自然数不是奇数就是偶数。
在此处设计导语:在我们研究的自然数中,可以把它们按奇偶性分为奇数和偶数两类,我们还可以用这些数的奇偶性来解决生活中的简单问题呢。这节课我们就来上一节数学活动课,继续探究一下有关“数的奇偶性”的问题(板书课题)
(二)、创设情景,引出问题。
师:同学们,在南方的水乡,有很多地方的交通工具是船,有很多人以摆渡为生,请看王伯伯的船,最初小船在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。船摆渡11次后,船停在南岸还是北岸?
(1)探究小船所在的位置:
师:你准备用什么方法来分析。(生口答)
师:请同学们选出其中一种分析方法,把分析过程写在草稿纸上。
小组交流,汇报。
摆渡次数 船所在的位置
1 北岸
2 南岸
3 北岸
4 南岸
...... ......
得出结论:奇数次停在北岸,偶数次停在南岸。
提示:如果最初小船在北岸呢?
教师引导学生讨论得出:奇数次与初始位置相对,偶数次与初始位置相同。
出示问题:小船摆渡100次以后,停在哪里?为什么?
师小结并进行学法指导,刚刚同学们用列表法和画图法(板书)对小船的位置进行了探究,这两种分析方法在数学学习中经常会用到,你发现了吗?运用这样的方法可以把一些繁琐的问题简单化和直观化。
巩固训练:
试一试:探究杯口的方向:
师:把杯子口朝上,放在桌上,翻动1次后杯子口朝下,翻动2次后杯口朝上。翻动10次后,杯口朝。请同学们分析一下吧。那翻动19次呢?
生自主探究,汇报交流。
发散思维训练:
师:自然数奇偶性很有趣吧?那么刚刚我们利用杯子玩了个小游戏,你还能利用数的奇偶性的这一特点给同学们设计个小游戏吗?
生回答。
师小结:是的`,我们可以利用数的奇偶性解决生活中的一些简单问题。那么请同学继续观察和探究:看看老师出示的数有什么特点。
(2)探究加法中数的奇偶性的变化:
引导学生观察圆形和正方形里面的数有什么特点?(问:你发现什么?)
()
出示研究一:
猜测:从圆中任意取出两个数相加,和是什么数?
验证:任意写出两个偶数,它们的和是偶数。(学生举例)师板书
结论:偶数+偶数=偶数(学生总结)师板书
(依次写出观察--猜测---验证—结论的探究方法)。
师生小结探究方法。
学生自主探究方块中的奇数加奇数有什么规律。一个奇数加一个偶数有什么规律。
独立完成后小组交流并汇报发现的奇偶数规律。
(奇数+奇数=偶数、奇数+偶数=奇数)
(三)运用新知解决问题:
1、完成数学书p15第(7)题。
2、皮皮和牛牛在练习打球呢,皮皮先来,打一次后到牛牛那,打第二次到皮皮这,那打到第20次时球在哪边?
3、15个苹果两个小朋友分,若每个小朋友都分得奇数,能分吗?为什么?
4、有三只杯子,全部杯口朝上,每次翻转2只杯子,能否经过若干次翻转,使得杯口全部朝下,为什么?
5、小明的爸爸是1路公共汽车的司机。每天早上六点准时从牧羊场发车开往二马路,1个小时后又从二马路开往牧羊场。这样来回往返。请问中午11:30小明要给爸爸送饭,应送到哪儿呢?
(四)课堂小结:(1)这节课同学们有什么收获?
(2)你用什么方法掌握了知识?
(3)学了这节课,你还想研究奇偶数的什么规律?
(五)拓展作业:
1、今天我们探究的是加法中奇偶性的变化,那么减法中呢?乘除法中呢?数的奇偶性是如何变化的呢?请同学们课下继续探究,好吗?
2、奇数+奇数+奇数+奇数+……奇数=?数(“偶数”个)
奇数+奇数+奇数+奇数+……+奇数=?数(“奇数”个)
八、说板书:
在板书中反映出本课的两个主要知识点以及相应的学习方法:一是运用画图和列表法,通过摆渡活动得出的结论:初始位置与奇数次相对,与偶数次相同。二是运用观察、猜测、验证探究出的奇数和偶数在加法中的变化结论。具体如下:
数的奇偶性
画图法列表法 初始位置与奇数次相对
与偶数次相同
观察
猜测
验证
结论偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数
《函数奇偶性》说课稿 3
尊敬的各位评委、老师们:
大家好!
今天我说的课是人教A版必修1第一章第3节第2课时“函数的奇偶性”。我将从教材分析、教法和学法的分析、教学过程三个方面来阐述我对本节课的理解与设计。
首先,来看一下教材分析:
一、教材分析
1.教材所处的地位和作用
“奇偶性”是人教A版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。
2.学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题. 3.教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1.能判断一些简单函数的奇偶性。
2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 【过程与方法】
经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】
通过自主探索,体会数形结合的思想,感受数学的对称美。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验f(x)f(x)或f(x)f(x)成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把“函数的奇偶性概念”设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
2、学法
让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节内容相对独立,专题性较强,所以我采用了“开门见山”导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、形成概念
在这一环节中共设计了2个探究活动。
探究1.2
数学中对称的形式也很多,这节课我们就以函数f(x)x2和f(x)=2-︱x︱以及f(x)x和f(x)1x为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律?
引导学生先把它们具体化,再用数学符号表示。借助课件演示(令, 再令,得到比较得出等式) 让学生发现两个函数的对称性反应到函数值上具有的特性,f(x)f(x) (f(x)f(x))然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三) 学生探索、领会定义
探究3
下列函数图象具有奇偶性吗?
yx3,yx[4,3]yyx2,x[3,2]4O3x3O2x
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是——定义域关于原点对称。(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1判断下列函数的奇偶性
(1) f(x)x4
(2) f(x)x5
(3) f(x)x
(4) f(x) 2xx
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。
例1设计意图是归纳出判断奇偶性的步骤:
(1) 先求定义域,看是否关于原点对称;
(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。
例2 判断下列函数的奇偶性:
f(x)x2x
例3判断下列函数的奇偶性:
f(x)0
例2.3设计意图是探究一个函数奇偶性的可能情况有几种类型?
例4(1)判断函数f(x)x3x的'奇偶性。
(2)如果给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。
(五)总结反馈 在以上课堂实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1.3A组第6题。
思考题:课本第39页习题1.3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。
以上是我对教学设计的六个环节的简要说明。 下面是我的板书设计:
为了简洁明了的给出本节课的知识点及讲解,我将黑板版面分为四部分,其中第一部分是本节课的主要知识点:函数的奇偶性定义;第二部分用来演练例题;第三部分用来学生黑板演练习题;第四部分用来进行课堂总结及布置作业。
想要成为一名优秀的教师,任重而道远,在此引用一句古人的诗句自勉:“路漫漫其修远兮,吾将上下而求索”。
以上就是我说课的全部内容,谢谢各位评委老师! 说课完毕。
《函数奇偶性》说课稿 4
教学目标
1.使学生理解奇函数、偶函数的概念;
2.使学生掌握判断某些函数奇偶性的方法;
3.培养学生判断、推理的能力、加强化归转化能力的训练;
教学重点
函数奇偶性的概念
教学难点
函数奇偶性的判断
教学方法
讲授法
教具装备
幻灯片3张
第一张:上节课幻灯片A。
第二张:课本P58图2—8(记作B)。
第三张:本课时作业中的预习内容及提纲。
教学过程
(I)复习回顾
师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。
生:(略)
师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。
(II)讲授新课
(打出幻灯片A)
师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性?
生:(关于y轴对称)。
师:从函数y=f(x)=x2本身来说,其特点是什么?
生:(当自变量取一对相反数时,函数y取同一值)。
师:(举例),例如:
f(-2)=4, f(2)=4,即f(-2)= f(-2);
f(-1)=1,f(1)=1,即f(-1)= f(1);
……
由于(-x)2=x2 ∴f(-x)= f(x).
以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。
一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。
例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。
(打出幻灯片B)
师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?
生:(也是一对相反数)
师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?
生:(函数的图象关于原点对称)。
师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。
一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。
例如:函数f(x)=x,f(x) =都是奇函数。
如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。
注意:从函数奇偶性的定义可以看出,具有奇偶性的.函数:
(1)其定义域关于原点对称;
(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。
首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。
(III)例题分析
课本P61例4,让学生自看去领悟注意的问题并判断的方法。
注意:函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函数又是偶函数。
(IV)课堂练习:课本P63练习1。
(V)课时小结
本节课我们学习了函数奇偶性的定义及判断函数奇偶性的方法。特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。
(VI)课后作业
一、课本p65习题2.3 7。
二、预习:课本P62例5、例6。预习提纲:
1.请自己理一下例5的证题思路。
2.奇偶函数的图角各有什么特征?
板书设计
课题
奇偶函数的定义
注意:
判断函数奇偶性的方法步骤。
小结:
教学后记
《函数奇偶性》说课稿 5
一、教材与学生
1、教材
《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。
2、学生
五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力。但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。
二、教学目标
1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;
2.运用设疑——猜想——验证—运用的教学模式,培养的自主探究的能力;
3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。
三、教法和学法
主要是自主探究与开放式教学相结合。
1、让学生自主探索规律,并全程参与。
我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?!
2、大胆开放,抛弃束缚。
我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的国度,应该是平等的,自由的。这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?
因此我打破了教材的局限,设计了一个崭新的思路——
四、教学设计和思路
(一)游戏导入,感受奇偶性
1、游戏一:6只小鸭子、5只蝴蝶找伴
2、游戏二:转轮盘
(1)讲要求:指针停在几上就再走几步;
(2)独白:
A请他们全班去吃饭,地方吗
B学生开心极了,当听到是东方饺子王………一片赞叹。
C结果:乘兴而来,败兴而归,有的指责我—骗人
(我—我怎么骗人了?)
讨论:为什么会出现这种情况呢?
如果游戏一是感知数的'奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。
(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)
3、板书课题,加以破题,加以过渡。
(二)猜想验证,认识奇偶性
1、为什么没有人中奖呢?(学生猜想,教师板书)
2、真的是这样吗?(教师加以验证)
(我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力)
(而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我——————,哈哈不服气,你来呀!)
(三)大胆猜想,细心求证
1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?)
2、小组合作验证纠偏
3、小组展示(满满的一黑板,加减乘除都有。而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性。)
(四)坡度练习,层层加深
1、填空
2、判断(这些内容,由浅入深,由难及易,层层推进)
3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律。)
4、动手(有动脑的,动口的,这里的翻杯子就是动手了。)
五、课堂小结,课后延伸
1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的?
2、思考题
那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
《函数奇偶性》说课稿 6
一、教材分析
函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。
二、教学目标
1、知识目标:
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。
2、能力目标:
通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
3、情感目标:
通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。
三、教学重点和难点
教学重点:函数的`奇偶性及其几何意义。
教学难点:判断函数的奇偶性的方法与格式。
四、教学方法
为了实现本节课的教学目标,在教法上我采取:
1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与
已知的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
五、学习方法
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
六、教学程序
(一)创设情景,揭示课题
“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?
观察下列函数的图象,总结各函数之间的共性。
f(x)= x2 f(x)=x
x
通过讨论归纳:函数是定义域为全体实数的抛物线;函数f(x)=x是定义域为全体实数的直线;各函数之间的共性为图象关于轴对称。观察一对关于轴对称的点的坐标有什么关系?
归纳:若点在函数图象上,则相应的点也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等。
(二)互动交流研讨新知
函数的奇偶性定义:
1、偶函数
一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数。(学生活动)依照偶函数的定义给出奇函数的定义。
2、奇函数
一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数。
注意:
1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质。
2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称)。
3、具有奇偶性的函数的图象的特征
偶函数的图象关于轴对称;奇函数的图象关于原点对称。
(三)质疑答辩,排难解惑,发展思维。
例1、判断下列函数是否是偶函数。
解:函数不是偶函数,因为它的定义域关于原点不对称。
函数也不是偶函数,因为它的定义域为,并不关于原点对称。
例2、判断下列函数的奇偶性
解:(略)
小结:利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定;
③作出相应结论:
若;
若。
例3、判断下列函数的奇偶性:
①
②
分析:先验证函数定义域的对称性,再考察。
解:(1)>0且>= < <,它具有对称性。因为,所以是偶函数,不是奇函数。
(2)当>0时,—<0,于是
当<0时,—>0,于是
综上可知,在r—∪r+上,是奇函数。
例4。利用函数的奇偶性补全函数的图象。
教材p41思考题:
规律:偶函数的图象关于轴对称;奇函数的图象关于原点对称。
说明:这也可以作为判断函数奇偶性的依据。
例5。已知是奇函数,在(0,+∞)上是增函数。
证明:在(—∞,0)上也是增函数。
证明:(略)
小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致。
(四)巩固深化,反馈矫正
(1)课本p42练习1.2 p46 b组题的1.2.3
(2)判断下列函数的奇偶性,并说明理由。
①
②
③
④
(五)归纳小结,整体认识
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
(六)设置问题,留下悬念
1、书面作业:课本p46习题a组1.3.9.10题
2、设>0时,试问:当<0时,的表达式是什么?
《函数奇偶性》说课稿 7
各位老师,大家好!
今天我说课的课题是高中数学人教A版必修一第一章第三节“函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析
(一)教材特点、教材的地位与作用
本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)重点、难点
1、本课时的教学重点是:函数的奇偶性及其几何意义。
2、本课时的教学难点是:判断函数的奇偶性的'方法与格式。
(三)教学目标
1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;
2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。
3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教法、学法分析
1.教学方法:启发引导式
结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。
2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。
三、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学
四、教学过程
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。
(一)设疑导入,观图激趣
让学生感受生活中的美:展示图片蝴蝶,雪花
学生举例生活中的对称现象
折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。
问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开。观察坐标喜之中的图形:
问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
(二)指导观察,形成概念
这节课我们首先从两类对称:轴对称和中心对称展开研究。
思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何
给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律
借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。
思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征
引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
(1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 (同时打出 y=1/x的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:
(2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数
强调注意点:“定义域关于原点对称”的条件必不可少。
接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论
给出例题,加深理解:
例1,利用定义,判断下列函数的奇偶性:
(1)f(x)= x2+1
(2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?
得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数
接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)
然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:
函数f(x)是奇函数=图象关于原点对称
函数f(x)是偶函数=图象关于y轴对称
给出例2:书P63例3,再进行当堂巩固,
1,书P65ex2
2,说出下列函数的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数
(三)学生探索,发展思维。
思考:1,函数y=2是什么函数
2,函数y=0有是什么函数
(四)布置作业: 课本P39习题1.3(A组) 第6题, B组第3
五、板书设计
第三篇:《函数的奇偶性》说课稿
《函数的奇偶性》说课稿
《函数的奇偶性》说课稿1
一、教材分析
函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。
二。教学目标
1.知识目标:
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。
2.能力目标:
通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
3.情感目标:
通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。
三。教学重点和难点
教学重点:函数的奇偶性及其几何意义。
教学难点:判断函数的奇偶性的方法与格式。
四、教学方法
为了实现本节课的教学目标,在教法上我采取:
1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与
已知的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
五、学习方法
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
六。教学程序
(一)创设情景,揭示课题
“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?
观察下列函数的图象,总结各函数之间的共性。
f(x)= x2 f(x)=x
x
通过讨论归纳:函数 是定义域为全体实数的抛物线;函数f(x)=x是定义域为全体实数的直线;各函数之间的共性为图象关于 轴对称。观察一对关于 轴对称的点的坐标有什么关系?
归纳:若点 在函数图象上,则相应的点 也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等。
(二)互动交流 研讨新知
函数的奇偶性定义:
1.偶函数
一般地,对于函数 的定义域内的任意一个 ,都有 ,那么 就叫做偶函数。(学生活动)依照偶函数的定义给出奇函数的定义。
2.奇函数
一般地,对于函数 的定义域的任意一个 ,都有 ,那么 就叫做奇函数。
注意:
1.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质。
2.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个 ,则 也一定是定义域内的一个自变量(即定义域关于原点对称)。
3.具有奇偶性的函数的图象的特征
偶函数的图象关于 轴对称;奇函数的图象关于原点对称。
(三)质疑答辩,排难解惑,发展思维。
例1.判断下列函数是否是偶函数。
(1)
(2)
解:函数 不是偶函数,因为它的定义域关于原点不对称。
函数 也不是偶函数,因为它的定义域为 ,并不关于原点对称。
例2.判断下列函数的奇偶性
(1) (2) (3) (4)
解:(略)
小结:利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定 ;
③作出相应结论:
若 ;
若 .
例3.判断下列函数的奇偶性:
①
②
分析:先验证函数定义域的对称性,再考察 .
解:(1) >0且 >= < < ,它具有对称性。因为 ,所以 是偶函数,不是奇函数。
(2)当 >0时,-<0,于是
当<0时,->0,于是
综上可知,在r-∪r+上, 是奇函数。
例4.利用函数的奇偶性补全函数的图象。
教材p41思考题:
规律:偶函数的图象关于 轴对称;奇函数的图象关于原点对称。
说明:这也可以作为判断函数奇偶性的依据。
例5.已知 是奇函数,在(0,+∞)上是增函数。
证明: 在(-∞,0)上也是增函数。
证明:(略)
小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致。
(四)巩固深化,反馈矫正
(1)课本p42 练习1.2 p46 b组题的1.2.3
(2)判断下列函数的奇偶性,并说明理由。
①
②
③
④
(五)归纳小结,整体认识
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
(六)设置问题,留下悬念
1.书面作业:课本p46习题a组1.3.9.10题
2.设 >0时,
试问:当<0时, 的表达式是什么?
《函数的奇偶性》说课稿2
各位老师,大家好!
今天我说课的课题是高中数学人教A版必修一第一章第三节“函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析
(一)教材特点、教材的地位与作用
本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)重点、难点
1、本课时的教学重点是:函数的奇偶性及其几何意义。
2、本课时的教学难点是:判断函数的奇偶性的方法与格式。
(三)教学目标
1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;
2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。
3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教法、学法分析
1.教学方法:启发引导式
结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。
2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。
三、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学
四、教学过程
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。
(一)设疑导入,观图激趣
让学生感受生活中的美:展示图片蝴蝶,雪花
学生举例生活中的对称现象
折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。
问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开。观察坐标喜之中的图形:
问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
(二)指导观察,形成概念
这节课我们首先从两类对称:轴对称和中心对称展开研究。
思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何
给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律
借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。
思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征
引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
(1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 (同时打出 y=1/x的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:
(2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数
强调注意点:“定义域关于原点对称”的条件必不可少。
接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论
给出例题,加深理解:
例1,利用定义,判断下列函数的奇偶性:
(1)f(x)= x2+1
(2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?
得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数
接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)
然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:
函数f(x)是奇函数=图象关于原点对称
函数f(x)是偶函数=图象关于y轴对称
给出例2:书P63例3,再进行当堂巩固,
1,书P65ex2
2,说出下列函数的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数
(三)学生探索,发展思维。
思考:1,函数y=2是什么函数
2,函数y=0有是什么函数
(四)布置作业: 课本P39习题1.3(A组) 第6题, B组第3
五、板书设计
《函数的奇偶性》说课稿3
一、说教材
《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的.奇偶性,尝试运用“列表”和“画示意图”等解决问题的策略,发现规律,解决生活中的一些问题。让学生经历探索加法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,体验研究方法,提高推理能力。
二、说学情:
五年级学生在学习过程中已经具备一定的观察能力,分析交流等能力。进行小组合作和交流时,大多数学生能较清晰地表达出自己的主张和见解。绝大部分学生愿意通过自主思考,小组内和全班范围内交流的学习方式来提升自己对问题的认识。
三、说教法:
为适应数学学科“实践与应用”的需求,根据培养学生的求知欲和自我实现的需要,这节课我以学生自主合作探究为主要教学策略,扶放结合,把课堂中更多的时间留给学生去探究和发现,使他们能自主的总结规律、解决问题。
四、说学法:
1、通过动手操作,运用列表法和画图法发现数的奇偶性变化规律。
2、运用观察、猜测、验证方法得出结论,探索加法中奇偶的变化的过程,在过程中发现规律。
五、说目标:
1、在具体情境中,通过实际操作,尝试运用“列表”“画示意图”等方法发现数的奇偶性规律,并运用其解决生活中的一些简单问题。
2、经历探索加减法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。
3、使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
六、说重、难点:
1、掌握加法中数的奇偶性的变化规律。
2、能应用数的奇偶性分析和解释生活中一些简单问题。
七、说流程:
(一)、旧知回顾:
1、什么是奇数?什么是偶数?
2、下面的数哪些是奇数?哪些是偶数?(课件出示)
3、判断:自然数不是奇数就是偶数。
在此处设计导语:在我们研究的自然数中,可以把它们按奇偶性分为奇数和偶数两类,我们还可以用这些数的奇偶性来解决生活中的简单问题呢。这节课我们就来上一节数学活动课,继续探究一下有关“数的奇偶性”的问题(板书课题)
(二)、创设情景,引出问题。
师:同学们,在南方的水乡,有很多地方的交通工具是船,有很多人以摆渡为生,请看王伯伯的船,最初小船在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。船摆渡11次后,船停在南岸还是北岸?
探究小船所在的位置:
师:你准备用什么方法来分析。(生口答)
师:请同学们选出其中一种分析方法,把分析过程写在草稿纸上。
小组交流,汇报。
《函数的奇偶性》说课稿4
一、教材与学生
1、教材
《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。
2、学生
五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力。但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。
二、教学目标
1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;
2.运用设疑——猜想——验证—运用的教学模式,培养的自主探究的能力;
3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。
三、教法和学法
主要是自主探究与开放式教学相结合。
1、让学生自主探索规律,并全程参与。
我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?!
2、大胆开放,抛弃束缚。
我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的国度,应该是平等的,自由的。这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?
因此我打破了教材的局限,设计了一个崭新的思路——
四、教学设计和思路
(一)游戏导入,感受奇偶性
1、游戏一:6只小鸭子、5只蝴蝶找伴
2、游戏二:转轮盘
(1)讲要求:指针停在几上就再走几步;
(2)独白:
A请他们全班去吃饭,地方吗
B学生开心极了,当听到是东方饺子王………一片赞叹。
C结果:乘兴而来,败兴而归,有的指责我—骗人
(我—我怎么骗人了?)
讨论:为什么会出现这种情况呢?
如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。
(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)
3、板书课题,加以破题,加以过渡。
(二)猜想验证,认识奇偶性
1、为什么没有人中奖呢?(学生猜想,教师板书)
2、真的是这样吗?(教师加以验证)
(我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力)
(而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我——————,哈哈不服气,你来呀!)
(三)大胆猜想,细心求证
1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?)
2、小组合作验证纠偏
3、小组展示(满满的一黑板,加减乘除都有。而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性。)
(四)坡度练习,层层加深
1、填空
2、判断(这些内容,由浅入深,由难及易,层层推进)
3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律。)
4、动手(有动脑的,动口的,这里的翻杯子就是动手了。)
五、课堂小结,课后延伸
1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的?
2、思考题
那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
《函数的奇偶性》说课稿5
一、说教学内容及农远资源说明。
《数的奇偶性》是北师大版教材五年级上册第一单元《倍数与因数》最后一课时;是在学生掌握奇数、偶数特点等知识基础之上的一次延伸;是让学生学会用数学策略解决生活问题的一次尝试。因此,本课时教学资源的使用目的主要是帮助学会解决问题的策略,体验猜想结果—举例验证—得出结论这种数学研究方式。农远资源我主要应用于课前的情境创设;教学中对学生体验猜想结果—举例验证—得出结论数学研究方式的辅助;以及学生应用数学模型解决问题中的游戏等环节。
二、说教学目标。
我从知识与技能角度确立目标一:尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。从过程与方法角度确立目标二:通过活动让学生经历猜想结果—举例验证—得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。从情感、态度和价值观角度确立目标三:让学生在活动中体验研究方法,感悟解决问题的不同策略,提高推理能力。
三、说设计理念及农远资源的辅助使用。
本课我是四个方面进行设计的。
第一,我从故事引入,创设一个以摆渡为生的船夫想请学生们帮他解决一个问题这一情境。学生遇到这样一个以前从未见过的问题,便产生认知上的冲突,激发了学生的学习兴趣,也调动了学生学习的积极性,在情境创设中,多媒体资源的辅助使用,有效的调动了学生的求知欲,牢牢地把学生吸引在对未知内容的探究之上了。
第二,我组织学生分小组合作,动手操作,感受数的奇偶性,理解解决问题的不同策略,经历猜想结果—举例验证—得出结论这一数学研究方式。
这部分内容是本课教学的重点也是难点,我安排三个活动,层层推进,帮助学生学习。
活动一:对于船夫提出的划11次船在南岸还是北岸这一问题,我组织学生讨论,寻找解决问题的办法。引导学生尝试用不同的方法来解决,全班汇报交流时,利用媒体展示“列表”、“画示意图”等方式让学生理解解决问题的不同策略。
活动二:让学生翻动自己准备的纸杯子,通过动手操作进一步发现数的奇偶性规律,同时让学生想若把“杯子”换成“硬币”你能提出怎样的问题,并试着回答这些问题,再用硬币操作验证。安排这一活动目的是培养学生提出假设问题—猜想结果—再实践验证的数学研究习惯,发展学生主动探究能力。
活动三:是让学生合作探究加法中数的奇偶性,让学生体验猜想结果—举例验证—得出结论的`数学研究方式。本活动主要是让学生相互之间加强交流,形成自主、合作、探究的数学学习课堂。的使用有效的帮助学生建构出数学模型。
第三,运用数学模型,解决实际问题。
这一部分我安排三个内容。第一个内容是出示几个算式,让学生判断结果是奇数还是偶数。这一内容在学生已有数的奇偶性特征这一数学模型经验之后,独立完成已经没有障碍。第二个内容是有3个杯子全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转使得3个杯子全部杯口朝下。这一内容是对前面同一问题的拓展,目的是让学生进一步理解奇偶性,同时培养学生动手实践能力。第三个内容,我安排的是一个游戏,也是一个实际问题,游戏是用骰子掷一次得到一个点数,从A点开始,连续走两次,走到哪一格,那一格的奖品归你。通过这个游戏让学生明白无论掷几,走两次都是偶数,而奖品都在奇数区域里,所以不论怎样都不能获得奖品。让学生运用学过的数学知识解开其中的奥秘,获得情感体验。
第四,总结反思,交流收获,同时进一步拓展知识视野,让学生将学习的知识与生活实际联系起来,培养学生初步的数学应用能力。
以上四步骤,让学生经历从情境创设到建构数学模型,再到运用模型解决解决问题三个阶段,三种层次。学生学会用自己的策略解决问题。媒体资源的辅助使用,让学生的体验更深刻,教学效果更显著,完全实现了课前确立的教学目标
《函数的奇偶性》说课稿6
教学目标
1.使学生理解奇函数、偶函数的概念;
2.使学生掌握判断某些函数奇偶性的方法;
3.培养学生判断、推理的能力、加强化归转化能力的训练;
教学重点
函数奇偶性的概念
教学难点
函数奇偶性的判断
教学方法
讲授法
教具装备
幻灯片3张
第一张:上节课幻灯片A。
第二张:课本P58图2—8(记作B)。
第三张:本课时作业中的预习内容及提纲。
教学过程
(I)复习回顾
师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。
生:(略)
师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。
(II)讲授新课
(打出幻灯片A)
师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性?
生:(关于y轴对称)。
师:从函数y=f(x)=x2本身来说,其特点是什么?
生:(当自变量取一对相反数时,函数y取同一值)。
师:(举例),例如:
f(-2)=4, f(2)=4,即f(-2)= f(-2);
f(-1)=1,f(1)=1,即f(-1)= f(1);
……
由于(-x)2=x2 ∴f(-x)= f(x).
以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。
一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。
例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。
(打出幻灯片B)
师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?
生:(也是一对相反数)
师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?
生:(函数的图象关于原点对称)。
师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。
一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。
例如:函数f(x)=x,f(x) =都是奇函数。
如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。
注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:
(1)其定义域关于原点对称;
(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。
首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。
(III)例题分析
课本P61例4,让学生自看去领悟注意的问题并判断的方法。
注意:函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函数又是偶函数。
(IV)课堂练习:课本P63练习1。
(V)课时小结
本节课我们学习了函数奇偶性的定义及判断函数奇偶性的方法。特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。
(VI)课后作业
一、课本p65习题2.3 7。
二、预习:课本P62例5、例6。预习提纲:
1.请自己理一下例5的证题思路。
2.奇偶函数的图角各有什么特征?
板书设计
课题
奇偶函数的定义
注意:
判断函数奇偶性的方法步骤。
小结:
教学后记
第四篇:函数的奇偶性说课稿
函数的奇偶性(说课稿)
同心县回民中学 马万
各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析
(一)教材特点、教材的地位与作用
本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)重点、难点
1、本课时的教学重点是:函数的奇偶性及其几何意义。
2、本课时的教学难点是:判断函数的奇偶性的方法与格式。
(三)教学目标
1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;
2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。
3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教法、学法分析 1.教学方法:启发引导式
结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.
2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习.
三、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学
四、教学过程
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序:温故导新,指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。
(一)温故导新,指导观察,形成概念
这节课我们首先从两类对称:轴对称和中心对称展开研究.思考:请同学们做出函数y=x2和y=|x|图象,并观察这两个函数图象的对称性如何?
给出图象,然后问学生初中是怎样判断图象关于轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律借助课件演示,学生会回答自变量互为相反数,函数值相等.接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示.思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征(通过课件展示的几个函数的图像,使学生发现图像关于y轴对称了则定义域关于原点对称)引导学生发现函数的定义域一定关于原点对称.根据以上特点,请学生用完整的语言叙述定义,同时给出板书:(1)函数f(x)的定义域为I,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数
提出新问题: 再以学生熟悉的两个函数 y=1/x和y=x的图象让学生观察这两个函数的图像有怎样的对称性?
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:(2)函数f(x)的定义域为I,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数
强调注意点:“定义域关于原点对称”的条件必不可少.结论:什么是函数的奇偶性?并注意函数的奇偶性是函数的一个整体性质,不同于函数的单调性。
(二)通过刚才的学习让学生试着总结奇偶函数都有哪些性质,老师补充。(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。
(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.
(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.
(4)偶函数:f(x)f(x)f(x)f(x)0, 奇函数:f(x)f(x)f(x)f(x)0;(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
(6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。
(三)探究函数奇偶性的判断方法: 方法一:图像法
方法二:定义法。根据前面所授知识,归纳步骤:(1)求出函数的定义域,并判断是否关于原点对称(2)验证f(-x)=f(x)或f(-x)=-f(x)3)得出结论
给出例题,加深理解: 例1:判断下列函数的奇偶性:(教师以第一个小题为例,给出具体的解题步骤 其余几个留给学生独立解决,发现问题及时纠正)通过练习:提高学生解题的熟练程度。
(四)让学生为本节课小结,老师补充完善
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.学习的过程中还用到了数形结合,归纳猜想,类比的数学思想方法.布置作业:练习1,2小题。
第五篇:《函数的奇偶性》说课稿——获奖说课稿
《函数的奇偶性》说课稿
尊敬的各位评委、老师们:大家好!
今天我说的课是人教A版必修1第一章第3节第2课时“函数的奇偶性”。我将从教材分析、教法和学法的分析、教学过程三个方面来阐述我对本节课的理解与设计。
首先,来看一下教材分析:
一、教材分析
1.教材所处的地位和作用
“奇偶性”是人教A版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。
2.学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题. 3.教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1.能判断一些简单函数的奇偶性。
2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。【过程与方法】
经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】
通过自主探索,体会数形结合的思想,感受数学的对称美。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验f(x)f(x)或f(x)f(x)成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把“函数的奇偶性概念”设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
2、学法
让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节内容相对独立,专题性较强,所以我采用了“开门见山”导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、形成概念
在这一环节中共设计了2个探究活动。
探究1、2 数学中对称的形式也很多,这节课我们就以函数f(x)x2和f(x)=2-︱x︱以及f(x)x和f(x)1x为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令
, 再令 ,得到
比较
得出等式)让学生发现两个函数的对称性反应到函数值上具有的特性,f(x)f(x)(f(x)f(x))然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。最后给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三)学生探索、领会定义
探究3 下列函数图象具有奇偶性吗?
yx3,yx[4,3]yyx2,x[3,2]4O3x3O2x
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是——定义域关于原点对称。(突破了本节课的难点)
(四)知识应用,巩固提高 在这一环节我设计了4道题
例1判断下列函数的奇偶性
(1)f(x)x4(2)f(x)x5
11(3)f(x)x(4)f(x) 2xx选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。
例1设计意图是归纳出判断奇偶性的步骤:(1)先求定义域,看是否关于原点对称;(2)再判断f(-x)=-f(x)还是 f(-x)=f(x)。例2 判断下列函数的奇偶性: f(x)x2x例3 判断下列函数的奇偶性: f(x)0
例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型? 例4(1)判断函数f(x)x3x的奇偶性。
(2)如果给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。
(五)总结反馈 在以上课堂实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。选做题:课本第39页习题1.3A组第6题。思考题:课本第39页习题1.3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。
以上是我对教学设计的六个环节的简要说明。下面是我的板书设计:
为了简洁明了的给出本节课的知识点及讲解,我将黑板版面分为四部分,其中第一部分是本节课的主要知识点:函数的奇偶性定义;第二部分用来演练例题;第三部分用来学生黑板演练习题;第四部分用来进行课堂总结及布置作业。
想要成为一名优秀的教师,任重而道远,在此引用一句古人的诗句自勉:“路漫漫其修远兮,吾将上下而求索”。
以上就是我说课的全部内容,谢谢各位评委老师!说课完毕。