第一篇:人教版(新课标)五年级美术第九课《写意蔬果》计3
人教版(新课标)五年级美术第九课《写意蔬果》
什字学区 青岗铺小学 冯亚妮
教学目标:
1.了解写意蔬果的一些基本知识,学习描绘果、叶、茎的初步技能。
2.体验写意蔬果的临摹方法、步骤,掌握用笔、用墨、用色的初步技能。3.培养热爱大自然美好事物的情景,在观察、表现事物时形成一丝不苟、胆大心细的态度和作风。
教学重点:用写意技法表现蔬菜瓜果的练习。教学难点:造型的准确、下笔的肯定
教学方法:讲解演示法、实际操作探究法 教学准备:笔墨纸砚等相应工具材料。教学时数:第1课时 教学过程:
一、欣赏导入
欣赏国画作品,感受作品在选材、构图、用笔、用墨等方面的特点,体会画家崇尚自然、热爱生活和追求真、善、美的思想感情。
二、讲授新课
1.什么是中国画?
国画(宣画):即用颜料在宣纸或绢上的绘画,是东方艺术的主要形式。这种画 种被称为“中国画”,简称“国画”。2.中国画的分类
(1)按题材分人物,花鸟,山水等(2)按技法分工笔、写意 3.看看写意画与工笔画的区别
工笔:用细致的笔法制作,工笔画着重线条美,一丝不苟,是工笔画的特色。写意:心灵感受、笔随意走,视为意笔,写意画不重视线条,重视意象,与工笔的精细背道而驰。
三、演示范作范画,开拓视野
分析具体作品的作画步骤,指导学生进行临摹练习。
1演示和体验毛笔的用笔方法,包括中锋、侧锋、逆锋等的具体运用; 2.演示荔枝的绘画步骤。
四、学生操作,教师辅导
学生在课堂上在教师的指导下进行临摹练习。⒈作业要求:在生宣纸上临摹一幅蔬果写意画。
⒉教师引领:注意欣赏画家作品,认真领会水墨写意画的特点。
五、作品展评,体会成功
展示有代表性的学生作品,并加以点评。人教版(新课标)五年级美术第九课《写意蔬果》
什字学区 青岗铺小学 冯亚妮
教学目标:
1.了解写意蔬果的一些基本知识,学习描绘果、叶、茎的初步技能。2.体验写意蔬果的临摹方法、步骤,掌握用笔、用墨、用色的初步技能。3.培养热爱大自然美好事物的情景,在观察、表现事物时形成一丝不苟、胆大心细的态度和作风。
教学重点:用写意技法表现蔬菜瓜果的练习。教学难点:造型的准确、下笔的肯定 教学方法:讲解演示法、实际操作探究法 教学准备:笔墨纸砚等相应工具材料。教学时数:第1课时 教学过程:
一、欣赏导入
欣赏国画作品导入课题
二、讲授新课
1.什么是中国画? 2.中国画的分类
(1)按题材分人物,花鸟,山水等(2)按技法分工笔、写意 3.看看写意画与工笔画的区别
三、演示范作范画,开拓视野
分析具体作品的作画步骤,指导学生进行临摹练习。
1,演示和体验毛笔的用笔方法,包括中锋、侧锋、逆锋等的具体运用。2.演示荔枝的绘画步骤。
四、学生操作,教师辅导
学生在课堂上在教师的指导下进行临摹练习。
⒈作业要求:在生宣纸上临摹一幅蔬果写意画。
⒉教师引领:注意欣赏画家作品,认真领会水墨写意画的特点。
五、作品展评,体会成功
展示有代表性的学生作品,并加以点评。
第二篇:(人教新课标)五年级美术下册教案 微观世界
微观世界
教学目标:
1.通过对微观世界的认识、了解,引导学生从不同角度来省视、探究事物的另一构造世界,培养学生细致观察的习惯。
2.让学生尝试运用不同的表现方式,自由表达自己领略到的微观世界画面,体验观察与绘画的乐趣。
3.提高学生对抽象美的认识和熏陶。教学重难点:
1.微观事物的细致观察与表现。
2.微观世界的表现。教具学具:
显微镜、放大镜、可观察的动植物图片及实物 教学过程:
一、组织教学:
二、讲授新课:
(一)引导阶段
1.多媒体欣赏几种海洋与陆地的动、植物(如:海星、海螺、多种植物的根、茎及昆虫等)在不同生存环境中的生活情境,观察它们外在的形状、颜色和质感
2.欣赏与比较的几种方法
由远到近的观察对比方法:
A.海星外在的整体形状是多角形刺状。
B.局部观察时面部凹凸有致。
C.在显微镜下表面呈各式星状且形态各异,还参差着无规则的小圆点。
剖面观察法:
A.两种不同植物的根、茎横切,虽都以圆为元素,但由于它们的轨迹不同,形成两种截然不同的图象
------小学资源网投稿邮箱: xj5u@163.com-----
--1--
B.螺是一种贝类海洋动物,其质的坚实外表由外往里是旋状纹样。横剖切后,是发射式渐变状,色彩也从蓝灰逐渐变成黄灰色。
(二)发展、表现阶段
A.通过线条的粗细、蔬密、曲直组织,能表达出微观物体的运动态势。
B.以点的大小为排列基数,通过运动轨迹来体现形象的节奏感。
C.运用色彩要素体现各种不同的色彩倾向或冷暖变化,使学生懂得色彩能传递人们的思想感情。
D.注入自身的情感,更能创造出美丽丰富的微观世界,并从美的角度进行塑造,使其更具艺术性。
三、布置课堂作业
根据所观察的对象,用笔把见到的微观世界描绘下来。
四、学生作业,教师辅导
五、作品展示与评价
1.作品让学生通过教学多媒体开展自评、互评与师评活动
2.谈运用哪些奇思妙想与作画方式来完成作业?
3.通过微观世界的观察与描绘你们有何收获?
六、教学廷伸与拓展
通过仔细观察和大胆想象相结合,鼓励学生运用点、线、面和色彩方法来组织表现许多抽象作品,描绘出更多的微观世界画幅。
------小学资源网投稿邮箱: xj5u@163.com-------2--
第三篇:人教新课标五年级教学反思
今年我任五
(二)班的语文,有的学生是我从三年级就开始带着的,我对他们以及他们对我都很了解了。
2009年9月22日,星期二早上,我精神百倍地走进教室,上回顾拓展一的交流平台。要求交流学习这组课文后的体会和收获,我让学生自读了交流要求,又带着他们回顾课文,有感情地朗读了两篇精读课文,阅读课文让他们喜欢哪里读哪里。目的是再读课文,让学生有新的体会,有可说的内容,我在心里暗自高兴,想着这次发言肯定各抒己见,滔滔不绝,课堂气氛不用说是多么的活跃。
可是事情没有像我想象的一样发展,他们一言不发,我再鼓励时他们更加着急了,一个个像犯了错似的。有的塌下身子,低着头,生怕我叫到他,有的坐直身子,聚精会神的样子。看到这些,心中顿时烧起了无名烈火,刚才的激情淡然无存了。让我气愤又让我纳闷,于是就问:“是不懂吗?”没人理我。“是害怕吗?”也没人理我,我随便点名问这到底是为什么?低着头站起来也是不说话,我不服气再叫了一位女生,她终于说话了:“我怕说错了同学笑话。”有人打破了这种僵局,听到我没有批评他们就七嘴八舌地说了起来。“我怕说错了老师批评。”“我还没想好,等我想好了,我一定站起来说。”“有一次我说错了,下课后同学们一直笑我。”“说错了,我们班的同学还会去告诉五(1)班的同学,我害怕回答。”“我怕说错字音被同学笑话,有一次我说错了,他们就笑我。”“我怕回答错了,下课后同学不跟我玩。”同学们好像找到了可以诉说的对象,一吐为快,我也找到了沉默的原因。
随着下课铃响这件事情就这样结束了,但是它一直萦绕在我的脑海,我庆幸当时给孩子们说内心话的时间,要不然我永远也找不到原因。五年级的学生开始或已经进入了青春期,开始注意自己了,注意同伴对自己的评价,希望得到别人的肯定。自尊心和独立性也增强了,在以后的教学中我要注意自己的言行,也许自己无意的一句话会让一个孩子走向自卑,多看一些有关青少年心理的书籍。
第四篇:(人教新课标)五年级数学下册教案 欣赏设计3
欣赏设计
教学内容:教材第7——11页。教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、旋转等现象,会利用图形的变换设计一些美丽的图案。
2.通过学习让学生体会图形变换在生活中的应用。利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
教学重、难点:
利用平移、旋转、对称变换来设计一些美丽的图案。
教具准备:
准备一些漂亮的图案,剪刀和蜡刀纸。
教学过程:
一、欣赏图案。
1.(出示课文第2页的主题图)同学们,在我们伟大中华民族上下五千年的历史中,人们创造了很多灿烂的文化,它们就像一颗颗璀璨的明珠镶嵌在人类历史的星空。请同学们一起来欣赏这些漂亮的图案。这些美丽的图案都是由一个图形经过若干次的变化得来的。那么,我们已经学习过哪几种图形变化?它们之间又有什么不同点?(引导学生从特征和性质入手分析、对比)2.这些漂亮的图案是如何设计出来的?它们分别是由哪个图形平移或旋转得到的?哪幅图是对称的?(先让学生边观察讨论,再进行交流。)3.汇报。
二、独立设计。
1.学习借鉴
观察第7页下面方格纸中的两幅图,它们分别是由哪个基本图形通过怎样的变化得到的? 2.独立绘制
通过观察分析,我们发现很多漂亮的图案都是用简单的图形通过变换得来的。咱们也可以根据自己的想法,设计出更多像这么美丽的图案。下面就来动手试一试吧!请同学们先构想一个基本图形,然后用这个基本图形在方格纸上通过各种变化设计一个美丽的图案。
提示设计思路:可通过平移来设计,可通过旋转来设计,也可以通过对称来设计,还可以几种方法同时使用来设计。
3.放手让学生独立设计,再进行交流。
三、巩固知识。
1.第8页3题。
仔细观察这几个图案是由哪个图形经过什么变换得到的?
四、全课总结。对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
板书设计:
欣赏和设计
平移(图案1)学生作品1 图形的变化 对称(图案2)学生作品2 旋转(图案3)学生作品3
教学反思:
一课三有
看似简单的教学内容,平淡无奇的教学设计却在学生们张扬的个性中变得有生有色起来。这“生”与“色”缘自何方?我反思教学,归纳为“一课三有”。
教师:有思考价值的提问
———“我们已经学习过哪几种图形变化?它们之间又有什么不同点?”
价值1:简单明了的两个问题促使学生对图形的变化进行了系统回顾与梳理。平移是二下的教学内容,本单元前两课时基本没有涉及,复习回顾,使学生在头脑中形成正确的认知编码。
价值2:有对比就有鉴别,虽然平移、旋转和对称都属图形的变化,但它们有着各自不同的特征和性质。通过对比,促使学生同中求异,正确区分知识点,有效避免知识的混淆。
学生:有敢于质疑的精神
和谐的课堂氛围、融洽的师生关系,使孩子们在课堂中不迷信教材,不盲从别人的观点。今天这节课在许多图案的分析上都存在激烈的争论。就是这些争论,最大程度地促使大家学有所思、思有所获。
争论1:铜镜中的图形到底旋转了4次还是3次?
旋转3次的同学认为图形旋转3次后就已完整形成铜镜的图案。旋转4次的同学认为旋转应由开始回到原位,所以共计4次。双方争执不下,最后我将教材“把图形旋转了4次”改为“把图形旋转了4次回到原位”才尘埃落定。
争论2:旋转与对称的争论?
铜镜是通过旋转得到的无容置疑,但也有部分学生提出质疑“铜镜也是轴对称图形,如果以下面这条直线为对称轴,那么直线的两边能够完全重合。”
那么它是否也可以说是轴对称图形呢?大家依据轴对称图形的特征和性质最后判定这一说法也是正确的,在表述时只要说清哪条直线是这个图形的对称轴即可。
但类似的图案再次发生争论,这次争论点在于对称是仅于图形的形状有关,还是既与形状有关,又与颜色有关。因为如果按下面的直线为对称轴,两侧的图形形状完全重合,但颜色却正好相差。这是否算轴对称图形呢?请大家发表自己的观点。
争论3:平移与对称的争论?
花边是通过连续平移得到的,大家都表示赞同。但也有部分学生提出不同观点:花边的图案也是轴对称图形,它的对称轴是长方形的中垂线。通过讨论,最终大家认同了这种观点。
但类似的图案又发生了争论。这次争论点在于观察图案是否考虑边框。因为这幅图的左右两条宽的线条比中间垂直线条要粗得多。如果不考虑,那么它可以通过平移得到;如果考虑,那么它只能是轴对称图形。您认为这里的图案需要应该考虑边框吗?
反馈:有一批优秀的作品
课标强调教学要注重过程,但结果同样不可忽视
第五篇:(人教新课标)五年级数学教案 下册3的倍数的特征
(人教新课标)五年级数学教案 下册3的倍数的特征
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。教学重、难点:
是3的倍数的数的特征。教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l
3、l 6、19都不是3的倍数。生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗? 生:也没有规律,1~9这些数字都出现了。师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗? 生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。师:十位数加
1、个位数减1组成的数与原来的数有什么相同的地方? 生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢? 生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。学生先自己写数并验证,然后小组交流,得出了同样的结论。全班齐读书上的结论。
三、巩固练习: 完成p19做一做
四、课堂小结:
这节课你有什么收获 教学反思: