三角形的内角和

时间:2019-05-15 06:12:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三角形的内角和》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三角形的内角和》。

第一篇:三角形的内角和

“三角形的内角和”教案设计

教者:李艳波

教学内容:“三角形的内角和”是义务教育课程标准实验教材(人教版)四年级下册第五单元第四课时的内容。教学目标:

知识与能力:让学生亲自动手,通过量、剪、拼等活动,发现、验证三角形内角和是180°,发展学生的空间想象能力和思维能力,并会应用这一知识解决生活中简单的实际问题。过程与方法:通过观察、猜想、验证等活动,探索并发现三角形的内角和是180°,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

情感态度与价值观:在实验活动中,让学生体会先“量一量、算一算”产生猜想,再“拼一拼、折一折”进行验证的数学思想,收获解决问题能力后的成功喜悦,激发学生主动学习数学的兴趣。教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。教学难点:

验证“三角形内角和是180°”,以及这一知识的灵活运用。教法:谈话、激趣设疑、引导等

学法:小组活动、猜想、测量、拼折、验证等。

教具:课件、量角器,学生准备不同类型的三角形各一个等。教学过程:

一、创设情景,引出问题。

1、猜谜语: 形状似座山,稳定性能坚

三竿首尾连,学问不简单

(打一几何图形)三角形(板书)

2、明确三角形内角、内角和概念。

师:前面我们已经学习了三角形的一些知识,这节课我们接着来研究。(板书:三角形的内角和)师(手指课题):这是我们今天要学习的内容,关于这个课题你有什么疑问?你想知道什么?(贴出一个三角形)

老师明确:三角形的这三个角,就叫做三角形的三个内角,为了方便,老师把三角形的每个内角编上序号,这是角1,这是角2,这是角3。三角形三个内角的度数加起来的总和就是三角形的内角和。(你们的问题很精彩!)

二、引导探究,验证猜想

(一)确定研究范围

1.问:研究三角形的内角和,是不是应该包括所有的三角形? 2.想一想:研究哪几类三角形,就能代表所有的三角形?

(请学生找出直角三角形、锐角三角形和钝角三角形并请一生到黑板前贴上。)

3.小结:三角形按角分可以分成直角三角形,锐角三角形和钝角三角形。只要研究这三类三角形的内角和,就能代表所有的三角形。

(二)猜测内角和:你准备的三角形中有这三类吗?

1、师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗? 2、直角三角形与钝角三角形同上。

3、预设(1)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就可以下结论了吗?我们要用严谨的态度去对待数学,所以还需要进一步的验证.你打算用什么方法来验证三角形的内角和是不是180o呢?(学生说一说验证方法。)预设(2)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

(三)探索与发现

1、量一量,完成表格。(1)、师:好,我相信你们!下面我们先用量一量的方法在小组内合作探究,马上开始。如果遇到小组解决不了的问题,别忘了李老师在你的身边。(2)、汇报:有完成的同学已经坐好了,用行动告诉老师他们完成了。好,哪位同学能说一说你们是怎么验证的,结果如何?

2、折一折、拼一拼。(1)、师:没有得到统一的结果。这个办法不能使人很信服,我们再用刚才有的同学提出的撕拼方法来验证一下。(2)、汇报验证结果。(预设师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角把三角形的三个角拼起来是不是一个平角?有什么方法能把三角形的三个内角合并在一起?)(3)、课件演示验证结果。

师:请看屏幕,老师用电脑来验证一下,是不是跟你们得到的结果一样?(播放课件)我们可以得出一个怎样的结论?(三角形的内角和是180°。)(教师板书:三角形的内角和是180°学生齐读一遍。)

师:你们把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,还用了转化的思想,你们真是了不起啊。

3、其他方法。

师:条条大路通罗马,还有别的验证方法吗?(1)、折拼

A、师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?

预设1生:用折的方法

小组合作把剩下的一个三角形的折成一个平角。

师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。课件演示

师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。

B、师:老师这里还搜集了一种方法。师演示:在三角形内做一条高,再沿这个高将顶角剪切下两个角分别与另外两个内角拼成直角,两个直角是180度所以三角形的内角和也是180度。(2)、计算,推理

将正方形纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。

将两个完全一样的三角形拼成了一个长方形,长方形的内角和360°,所以三角形的内角和就是它的一半,是180°。师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之处,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,为什么用测量计算的方法不能得到统一的结果呢?(量的不准。有的量角器有误差。)

(3)小结:同学们用量、拼、折等多种方法,全面验证了各种不同的三角形,现在我们可以非常自信的说任何一个三角形的内角和都是180度。

三、迁移与应用

师:知道了三角形的内角和等于180°,就可以运用它去解决一些问题。我们来“试一试”。(出示“试一试”的题目)你能根据∠1和∠2的度数,算出∠3的度数吗?自己先算一算,再用量角器量一量,看与算出的结果是否相同。

(一)基础练习

1、出示大三角形,小三角形分别说出内角和,再拼在一起说出内角和。

2、你能画出有两个直角或两个钝角的三角形吗?为什么?(课本P89页的第14题)

3、求出三角形中未知角的度数:

①∠1=140°,∠3=25°,求∠2的度数。(课本P85页的“做一做”)

4、分别求出下列三角形各个角的度数。(课本P88页的第9题)

(二)拓展练习

根据三角形的内角和是180度,你能求出下面的四边形和六边形的内角和吗?

四、数学文化:介绍科学家帕斯卡。(放课件)

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还有更严密的方法证明三角形的内角和是180°。知道三角形内角和的秘密最早是由谁发现的吗?早在300多年前,在法国有一位著名的科学家名叫帕斯卡,那时的他就已经验证了任何三角形的内角和都是180度,而他当时才12岁,善于数学发现和思考使帕斯卡走上了成功的道路。这节课才11岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,你们同样了不起,李老师为大家感到骄傲。我相信同学们只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像帕斯卡一样伟大。

第二篇:三角形内角和教案

三角形内角和教案

教学内容:课本第67页。

教学目标:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

通过量一量、剪一剪、拼一拼,培养学生合作能力、动手实践能力和运用新知识解决问题的能力。

使学生体验数学学习的乐趣,激发学生主动学习数学的兴趣。教学重点:探索发现和验证三角形内角和是180度。教学难点:对不同探究方法的指导和学生对规律的应用。教学准备:课件,三角形,量角器。教学设计:

一、复习旧知,引出课题。谁能说说它们分别是什么三角形?

预设:锐角三角形,直角三角形,钝角三角形。

请一位同学分别标出这些三角形的角,其余的同学在自己准备的三角形中标角。独立完成,集体订正。

其实这些角是三角形的内角,谁能大胆猜一猜三角形内角和是多少度? 预设:360°,180°,90°…….今天我们一起来探究三角形内角和。板书课题:三角形内角和

二、探究新知

1、小组合作。

课件展示:活动要求(1)4人一组,每人任选一个三角形用你的方法验证三角形内角和。

(2)小组交流各自的验证方法和验证结果,评选出较好的验证方法并说明理由。(3)每组选派一名同学汇报。

预设:我们组选用的是量角法,依次测量出三角形内角和是170°,185°,180°… 哪一组和这一组验证方法不同?

预设:我们是把三角形的3个角剪下来拼在一起发现得到一个平角因此得知三角形内角和是180°。

你能把你拼的过程给大家说详细一些吗?

预设:选出一个角,再选出一个角使得它的一边与前一个角的一边重合,剩下的角的一边和前一个角的另一条边重合,此时拼出一个平角因此三角形内角和是180°。

我发现你选用的是锐角三角形,那直角三角形,钝角三角形的内角和是怎样的?请同学们尝试用这种方法验证三角形内角和。

预设:直角三角形内角和是180°,钝角三角形内角和是180°。总结:通过撕(剪)拼法,我们验证任意三角形内角和是180°。

追问:同学们我有一个困惑刚才有部分同学通过测量角计算内角和为什么不是180°,问题出在哪里?

预设:测量角的方法不正确。预设:三角形做得不规范。

预设:测量过程中存在误差,导致不精确。

总结:撕(剪)拼法在验证三角形内角和精确性上优胜于量角法。还有没有同学想出不一样的验证方法呢?

预设1:课件展示折拼法,请一位同学说出具体的操作过程。剩下的同学仿照这种方法任选一个三角形验证三角形内角和。

预设2:同学上台展示操作过程,其余同学观察后并自行操作。

总结:

折拼法依然能验证任意三角形内角和是180°。看来解决数学问题的方法不是唯一的,希望同学们在今后的学习当中能多思,多想充分挖掘自己的聪明才智。

三、知识运用,巩固练习。

请同学们独立完成下题。(每题10分共100分。)

1、如图∠1=140°,∠3=25°,∠2=(°)。

2、一个直角三角形,一个锐角是50°,另一个锐角是(°)。

3、一个顶角是50°的等腰三角形的底角是(°)。

4、等边三角形每个角是(°)。

5、等腰直角三角形的一个底角是(°)。

6、在一个三角形中,∠A=90°,∠B+∠C=(°)。

7、一个三角形中,有一个角是65°,另外的两个角可能是(°)和(°)。

8、某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带()去。为什么?

②③①

9、把下面这个三角形沿虚线剪成两个三角形,每个小三角形的内角和是多少度?

10、根据三角形内角和是 180 °。你能求出下面四边形的内角和吗?

四、课后小结

请你谈谈本节课的收获。

五、板书设计

任意三角形内角和是180°。

第三篇:三角形内角和说课稿

《三角形的内角和》说课稿

各位领导、老师:

大家上午好!今天我说课的内容是青岛版小学数学四年级下册第四单元“角与三角形的认识”信息窗2中的第二课时《三角形的内角和》。下面我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价、资源开发七个方面进行说课。

一、教材分析

本册教材依据“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”这四个维度共安排了七个单元,在图形与几何领域本册教材安排了两个单元:第三单元“角与三角形的认识”和第五单元“观察物体”,而第三单元“角与三角形的认识”既是本册教材的教学重点也是教学难点,在整个图形与几何领域起到承上启下的重要地位。上承一年级下册:方位与图形(各种平面图形的认识);二年级下册:角的初步认识(直角、锐角、钝角的认识);三年级上册:图形的周长,下启五年级上册多边形的面积;承上启下,使知识之间循序渐进,螺旋上升。

三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。三角形的稳定性在实践中有着广泛的应用。因此这部分知识的学习不仅可以从形的方面加深对周围事物的理解,发展学生空间观念,而且可以在动手探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。同时也为以后学习图形的面积打下基础。

本单元安排了2个信息窗,信息窗1学习角的认识、大小比较及画法,主要学习习近平角和周角的认识,直观比较角的大小,量角器的认识、角的度量、角的分类以及各种角的之间的关系和角的画法。信息窗2学习三角形的认识,包括三角形的认识及特性,三角形的三边关系,三角形的分类,三角形的底和高及高的画法,三角形的内角和。本单元的教学重点是全面认识角和三角形,教学难点是画角和三角形三边关系的探索。

在这里,我需要指出的是,与人教版和苏教版教材有所不同,青岛版教材不再把角的度量和认识三角形割裂开来,分成两个单元学习,而是按照知识的循序渐进原则把两部分知识放在一个单元中学习,角的度量是角的分类的基础,角的分类又是三角形分类的基础。因此教材安排信息窗1学习角的有关知识,信息窗2学习三角形的有关知识,教材将这部分知识有机地编排在一个单元中学习,符合学生认知特点,有助于学生很好地建构知识体系。

课标对这部分知识的要求是:

1.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。2.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。3.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180度。

三角形的内角和是180度是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

依据课标要求和教材分析及学生的年龄特点,确定本节课的教学目标是:(1)通过“量一量”,“算一算”,“拼一拼”,“折一折”的小组活动的方法,探索发现并验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

(2)通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

(3)知道三角形两个角的度数,能求出第三个角的度数。

(4)发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

本课的教学重点:让学生探究发现并验证三角形内角和等于180度。教学难点是:让学生用不同方法验证三角形的内角和是180度。教具、学具准备 教具:多媒体课件;

学具:锐角三角形、钝角三角形三角形、直角三角形各一个,剪刀,三角板,直尺,量角器,纸。

二、学情分析

学生通过第一学段以及四年级上册对图形与几何内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,但是还缺乏对角和三角形知识的系统深入了解。本节课是学生在学习了各种角,会画角,会量角以及学习了三角形的稳定性、三角形的三边关系,三角形分类的基础上来进行学习的。对于“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来进行验证。因此,我把本节课的教学重点及难点放在三角形内角和的验证上,在学生已有的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。

三角形与日常生活联系紧密,图形直观,所以教学相对而言操作性很强。而学生的数学知识、能力和思考问题的角度存在一定的差异,因此比较容易出现解决问题的策略多样化,这样也对教学的开展提供了很好了研讨环境。

基于此,在教学时,学生的学习主要采取以下两种方法:

(1)动手操作学习法。鼓励学生自己去探索,让学生亲身经历观察、操作、归纳、验证的过程,培养学生探究的意识和能力。

(2)小组合作学习法。通过小组的合作、同桌的合作,让学生共同解决问题,培养团结协作精神。体会知识的产生及发展,使数学知识在充满探索中得到升华。

三、教学模式

新课标指出:教学活动是师生积极参与、交往互动、共同发展的过程。数学教学活动,特别是课堂教学应激发学生学习兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维。对于四年级的学生来说,“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来验证这个性质。如何才能让学生真正理解三角形的内角和为什么是180度,我力图通过:设疑——猜想——验证——提升这四大步去突破。

(一)设疑激趣,创设学生喜欢的学习情境

“良好的开端等于成功的一半”。上课伊始,我给同学们制造了一个小小的矛盾,“既然同学们都会画三角形,请你帮老师画一个有两个直角的三角形”,学生通过动手去画,发现按老师的要求是画不出这样的三角形的,这是为什么呢?从而激发学生的学习热情,激起学生求知的欲望。

(二)重视操作,引导学生形成正确的图形表象,发展空间观念。几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。要让学生动手做数学,而不是用耳朵听数学,让学生带着问题,动手、动口、动脑,调动多种感参与数学学习活动,在活动中获得知识。本节课我通过猜想验证让学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,拼一拼选择一种或几种方法来验证三角形的内角和是180°。

四、教学设计

整节课我预设为4个大的教学环节:

(一)设疑激趣,初步感知。(本环节预计用时5分钟)

1.复习旧知 复习前面学过的锐角三角形,直角三角形,钝角三角形的特征及角的有关知识,特别是复习近平角是180度。

『有效的复习,承上启下,既复习了前面的知识,又为后面的学习做好铺垫』 2.设疑激趣:老师提出要求:让学生帮老师画一个有两个直角的三角形。

3、制造矛盾,引出课题:同学们根本画不出老师要求的三角形,这么看来,三角形的角之间一定藏有很多的奥秘在里面!这节课我们就一起来研究“三角形的内角和”。(板书:三角形的内角和)学习什么是三角形的内角?内角和?

『问题是数学的心脏,问题是最好的老师,学生研究学习的积极性、主动性,往往来自于充满疑问和问题的情境。上课一开始我通过创设“请你帮老师画一个有两个直角的三角形”这一问题情境,在学生求知心理之间制造一种“不协调”,激发学生产生强烈的研究欲望,为后面的学习打下良好的基础。』

(二)操作验证,引导建构。(本环节预计用时25分钟)

1、猜测 老师出示一个三角形,请同学们看一看,猜一猜,它的内角和可能是多少度?

2、验证

(1)动脑想一想 让同学们以小组为单位,先在小组里互相说说你打算用什么样的方法来验证。

(2)动手做一做 利用手中的学具从以上讨论的若干种方法中选择一种你喜欢的方法来进行求和。

【《课程标准》指出:学生学习应当是一个生动活泼的、主动的和富有个性的过程。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。四年级学生经过第一学段以及本单元前面的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此我重点引导学生从“猜测--验证”展开学习活动,让学生感受这种重要的数学思维方式.】

(3)动口说一说 全班汇报交流 a、量一量

①汇报交流 同学们汇报测量求和的结果。

②分析原因(误差的存在)为什么有的正好是180度,有的是在180度左右,这是什么原因呢?

b、拼一拼

①一生上台展示锐角三角形撕下来拼组成一个平角的过程。

②鼓励全班同学尝试 刚才这个同学为我们展示的锐角三角形撕下来拼组的过程,其余的三角形进行这样的操作也会有同样的结果吗?

③生动手操作,验证各种三角形撕下来拼组成平角的过程。④师引导点拨:多媒体课件展示各种三角形撕下来拼组的过程。c、折一折

课件展示各种三角形通过折叠三个角凑成一个平角的过程,再次验证三角形的内角和是180度。

『建构主义认为:学生的建构不是教师传授的结果,而是通过亲身经历,通过与学习环境的交互作用来实现的。用量一量的方法来验证三角形内角和需要进行测量和计算两个过程,略显麻烦又存在误差;采用折一折的方法对于有些同学操作起来又有一定的难度,而拼一拼的方法操作起来既简单又没有误差,还与我们刚刚尝过的平角联系紧密,是全体学生必须掌握的一种方法。』

(三)练习巩固,深化提升(本环节预设用时8分钟)1.第45页“做一做”第8题。

2、第46页“做一做”第12题。3.(1)请同学们回想一下,为什么画不出有两个直角的三角形?(2)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少?

(3)将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少?

4、根据所学的知识,你能想办法求出四边形和五边形的内角和吗?

5、数学文化:向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的教育。

『习题是沟通知识联系的有效手段.我遵循由浅入深的原则,设计了四个层次的练习, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.』

(四)回顾全课,小结延伸:(本环节预设用时2分钟)

今天这节课你学到了什么?有什么收获?关于三角形你还想知道什么? 让学生自己总结重点知识。

五、板书设计

三角形的内角和

量一量 拼一拼 折一折

三角形的内角和等于180度

这样的板书设计,简单明了,直观易懂。不仅突出教学重点,更有利于帮助学生掌握正确的概念。整个设计重点突出,一目了然,画龙点睛。

六、课堂评价 评价包括评价内容和评价方法,从评价内容来看,本节课主要围绕学生的动手操作能力、自主探究能力、合作交流能力、质疑释疑能力、发展空间观念和学习态度六大方面来评价。依据这六大方面,针对四年级学生数学学习过程的评价,我专门设计了这张综合评价量表。表现很好(奖励五颗星)、表现不错(奖励四颗星)、还需加油(奖励三颗星)。以此来激励学生的学习。

评价方法多元化,主要从教师评价、学生互评、自我评价几个角度来评价。评价方式多样化,本节课主要采用课前检测、当堂达标测试、课后开放问题等方法检测学生对知识的理解和掌握程度,并充分发挥小组合作学习的优势,设计表格,由小组长负责做好每一个学生的成长记录。

七、资源开发

资源的开发和利用对学生的学习与成长起着潜移默化的作用,教学本节课时,我注重了以下几个方面:

1.多媒体资源

我们学校已实现了电子白板“班班通”,不仅可以播放各种多媒体课件,还能利用白板软件提供的数学工具画出常见的立体图形来直观演示教学内容。比如画出三角形,然后剪切,移动等,非常方便,效果明显。

2.自制教具、学具

既便于操作,又提高了学生的学习兴趣,增强了学生的动手能力。本节课我提前让学生自制了各种类型的三角形若干个。

3.及时捕捉课堂生成资源

比如:在采用量一量来验证三角形内角和的时候,有的学生通过测量三个内角的度数并相加得出三角形内角和并不正好是180度,而是在180度左右,这个时候,有些同学就认为是自己量错了,还有些同学对三角形内角和是180度产生了怀疑,这时就需要我们及时捕捉这一课堂生成资源,引入对测量误差的认识。

4、开发数学文化资源

数学作为一种文化走进小学课堂,渗入我们的实际教学中。本节课通过向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的熏陶,增长了同学们的知识,激起了学生创新的欲望。以上我从七个方面阐述了自己对本节课的粗浅认识,希望各位老师批评指正,不吝赐教,谢谢大家!

第四篇:三角形内角和说课稿

本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识,这为感受、理解、归纳三角形内角和的概念打下坚实的基础,学好本课,对以后学习几何能起到承前启后的效果。

基于对教材以上的认识以及课程标准的要求,我拟定以下教学目标: 知识目标:使学生理解并掌握三角形内角和是180°。

能力目标:①通过学生画、量、猜、剪、拼、折、观察等活动,培养学生探索、发现、观察以及动手操作能力。

②能运用三角形内角和是180°解决实际问题。

情感目标:让学生体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角和都是180°的过程。让学生在动手实验中得到结论,感悟学习中的快乐

“授之于鱼不如授之于渔”,对于四年级的学生来说应进一步提高他们对问题的思考策略,在研究三角形的内角和是180°这一核心问题时,我先让学生独立思考、然后小组合作,通过量一量、剪一剪、拼一拼、折一折等活动来探究三角形内角和的秘密,完成了对新知识的建构,体现了学生动手实践、合作交流、自主探索的学习方法。既培养了学生的观察能力,同时又培养了学生的探索能力和创新精神。

长期以来,我们的教育进行的是颈部以上的学习,它只强调记忆、思维。荷兰教育家弗来登塔尔认为:数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅看书本、听讲解、观察他人的演示是学不会的。因此将课堂还给学生,努力营造学生在教学活动中自主学习的时间,使他们课堂教学中重要的参与者,与创造者,学生动手实践、合作交流、自主探索的学习方法。本着这样的指导思想,在教学设计上,我力求充分体验以学生发展为本的教育理念,将教学思路拟定为:复习引入、猜想验证、巩固内化、拓展延伸。运用课件教学直观明了便于理解。

强调面向全体学生的同时,关注每个学生个体差异,因材施教、课堂遵循先易后难、先差生后优生的原则,完成大纲目标的同时,也去挖掘优生的潜能,全面提高学生的成绩。

教学的艺术不至于传授知识,而在于唤醒、激发和鼓励,上课伊始,我先让学生复习三角形的有关知识为切入点,以旧引新使学生明确学习方向。学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半甚至没有结果。这时我让学生大胆猜想,形成统一的认识,使后面的探索和验证活动有了明确的目标。为此我精心设计了以下三个问题:什么是三角形的内角?什么是三角形的内角和?同学们先猜一猜三角形的内角和是多少度?可能学生都会猜180°。“那每一个三角形的内角和都是这个度数吗?你敢肯定吗?你能用什么方法去说服别人吗?”估计学生都得把刚才量的三角形的三个角的度数加起来进行验证。根据学生的回答我一一板书。(板书180°、180°、182°、179°、178°)同学们请仔细观察这一个个数据,你有什么发现?可能有的同学会说我们用量的方法得到三角形的内角和有的是180°,有的比180°大,有的比180°小。为什么会出现这种情况:测量时有误差。

“那你还有其他的方法来验证三角形的内角和就是180°吗?请你们利用老师提供的学具先独立思考,然后小组合作验证。”

当学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的探究活动,在活动中,我把“放”和“引”有机的结合,鼓励学生积极开动脑筋,从不同途径探索解决问题的方法。通过一系列“动”的过程,在大量感知的基础上,使学生能自己发现并总结出知识的规律,内化这一活动,使之不仅知其过程而且知其结果,从感性认识上升到理性认识,完成了认识上的飞跃,实现了知识的再创造。

当学生验证有困难时,我会适时的引导。“既然你们都猜三角形的内角和是180°,能不能把它转化成我们上册学过的某个知识点呢?”由于学生已经有了角大小比较的经验,会有一些学生想到把三角形的三个角撕下来拼在一起与平角作比较,从而得到三角形的内角和是180°。我让这些孩子到前面展示并鼓励全班同学都动手做一做,使更多的学生明白这个猜想是正确的。“同学们你们把三角形的三个角撕下来拼在一起得到什么结论?”估计会有下面精彩的回答:各种形状的三角形内角和都是180°;我不用撕,直接折也能得到三角形的内角和都是180°;老师我在验证直角三角形的时候有一个更好的方法,只要把两个锐角折成一个直角与原来的直角相加不也是180°吗;(有创新)老师也用折角的方法验证了各种形状的三角形。(课件……)通过课件的直观演示,又一次证实了学生的猜想是正确的。,每个孩子都是独有的个体,在合作中互补,确实有利于难点的突破。验证三角形的内角和是本节课的难点,所以我让孩子们合作验证。在合作中交流,在合作中相互学习。“同学们,通过刚才的活动,你现在可以肯定的告诉老师三角形的内角和是多少度了吗?这个三角形的内角和是多少度?(出示一个大三角形)把它剪小后问:现在呢?(剪几次)那现在你对三角形的内角和是180°还有怀疑吗?谁能用一句话总结出来?

我这样现场操作,让学生能从视觉上又一次证实了三角形的内角和不管形状和大小统统都是180°。

有人说:教育是一棵树摇动另一棵树,是一朵云推动另一朵云,一个心灵震撼另一个心灵。老师的一个眼神、一个微笑便能给孩子带来幸福和满足。适时的评价更能激起孩子思维的火花。当学生终于发现了三角形的内角和是180°这一秘密时,我会及时给学生评价:“同学们,你们经过画、量、剪、拼、折、观察等活动,自己发现并验证了三角形的内角和是180°(板书完整课题内角和是180°)这一重要规律,多了不起啊,老师由衷的为你们感到高兴。并祝贺你们孩子们。”我想得到老师这样的评价,学生们的高兴劲可想而知,解决问题的欲望也会更加强烈。拓展延伸。

在数学学习的研究中,常常有一些现实的、有趣的富有挑战性的题目呈现在孩子面前,有些题目带有明显的开放性,它把一个不确定的问题转化、分解为多个确定性的问题来解答。应该说这样的问题给孩子的思维空间是非常大的。

“下面三角形,剪掉一个40°的角,不改变其他角的度数,剩下图形的内角和是多少度?”我想会有学生利用自己的经验不假思索就会回答“140”,这时我不做任何评价,微笑着看着大家,“都同意这个答案吗?”引发了学生的再思考,我想最终一定会有学生发现“老师,剪掉这个40°的角以后,实际上就变成了一个四边形,要求四边形的内角和,就把它分割成两个三角形,一个三角形的内角和是180°,那两个三角形就是360°。我进而让学生引导“那么五边形的内角和又是多少度呢?”由于上一题的思路孩子们很快就会分割成三个三角形,即3个180°,共540°。“那六边形、七边形、一百边形的内角和又是多少度呢?”这时孩子会边画、边思考、边讨论,四边形能分割成两个三角形,五边形能分割成三个三角形,那六边形就能分割成四个三角形,最后孩子们终于发现了任意多边形的内角和等于边数减2的差乘180°。教学同时也是一门有遗憾的艺术。我认为对遗憾的态度应该约拿,并不断地探究、不断地改进,为此我思考着、探索着实践着。我想经过自己孜孜不倦的努力,一定会使预设的数学活动过程成为智慧和人格不断生成的过程。最后我希望每一个老师都能利用自己的人格魅力塑造出具有良好的习惯、健全的人格、坚定的信念、卓越成就的学生。布置作业。课后练一练1————5题

本课时间安排:检查上一课作业,练习3分钟。导入2分钟。新授25分钟。拓展,作业5分钟。在教学活动中及时了解学生掌握情况,随时调整教学方案,完成教学任务。

第五篇:三角形内角和教案

三角形的内角和 教学设计

北坊小学 许燕

一、教学内容:人教版义务教育课程标准实验教科书四年级下册第五单元“三角形的内角和”。

二、教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力,发展学生的空间观念。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.培养学生善于倾听、勤于思考的学习习惯和科学严谨的学习态度。

三、教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

四、教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

五、教学过程:

(一)、创设情景,引出问题

1、猜谜语:(课件)

形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)(板书:三角形)(课件演示三条线段围成三角形的过程)。

2、前面我们学习了三角形的有关知识,这节课我们来学习三角形的内角和。板书课题:三角形的内角和

(二)探究新知

1、三角形的内角、内角和

(1)什么是三角形内角,谁先来根据自己的理解说一说?

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠

1、∠

2、∠3,(2)三角形内角和

师:内角和指的又是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

(多让几个学生说一说)

猜想与验证

师:英国数学家牛顿说过:没有大胆的猜想就作不出伟大的发现。请同学们大胆的猜想一下?三角形的内角和会是多少度呢?

师:刚才我们对三角形的内角和进行了大胆的猜测,是不是所有的三角形的内角和都是180°呢?在猜想与事实之间是需要科学、严谨的验证的。同学们能不能想个什么好办法来验证三角形的内角和就是180度呢?

3、操作验证,小组合作。

老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮助你想出好办法。每人现在都认真的想一想,你打算怎样来验证三角形的内角和

不是180o呢?利用课前准备的材料,选自己喜欢的三角形,想办法进行验证。

三角形的形状 ∠1 ∠2 ∠3 三角形的内角和(∠1+∠2+∠3)

钝角三角形

直角三角形

锐角三角形

我们的结论

学生汇报。(课件演示验证结果。)(1)汇报测量结果

为什么用测量计算的方法不能得到统一的结果呢?

(因为测量有误差,所以汇报的测量结果,有的是180°,有的接近180°。)

师:其它小组的方法是怎样的?

(2)剪、拼

a、学生上台演示。你们组是怎么想到把三角形撕下来拼成一个平角来验证的呢?

B、请大家四人小组合作,用他们的方法验证其它三角形。

C、展示学生作品。

D、你们组把本不在一起的三个角,通过移动位置,转化成一个平角来验证,运用了转化的策略,你们组也很会学习。

(3)折拼

师:条条大路通罗马,其它小组的验证方法是怎样的?

师:我在电脑里收索到折的方法,请同学们看一看是怎么折的(课件演示)。

4、科学验证方法

师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,既然任何操作都难以消除误差,那么这个180度是怎样认定的呢?数学家在证明这一猜想时,也用了转化的思想,一起来看(看课件)(出示图片)

师:善于数学发现和思考使帕斯卡走上了成功的道路。成为伟大的数学家。他在12岁时就验证了任何三角形的内角和都是180°(课件)

③铅笔旋转法。

教师:下面请同学们拿出铅笔,我们一起来做一个旋转铅笔的游戏——笔尖向左,旋转第一个锐角,依次旋转第二个锐角,再旋转第三个锐角。师:开始和结束时的笔尖方向有什么变化? 生1:和刚开始上课时的铅笔旋转有点相似。生2:开始笔尖向左,现在的笔尖向右。

师:铅笔绕着三角形三个内角旋转后笔尖、笔尾位置颠倒,这说明铅笔正好旋转了多少度?……

师:看到这些新的验证方法,你有什么感想?

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°。

三、解决相关问题

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

.1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

猜猜∠3有多少度?∠1=40o

∠2=48o

2.爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

3、思考:你能画出一个有两个直角或两个钝角的三角形吗?为什么?

4、通过今天的学习,现在你能解决三角形三兄弟的纷争了吧?你想对它们说的什么?

四、全课总结,完善新知

利用今天的学习方法我们还可以推理出四边形、五边形、六边形,甚至更多边形的内角和,相信同学们只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来你也会像数学家帕斯卡一样伟大。

五、板书设计:

三角形的内角和是180°

∠1+∠2+∠3=180°

度量

剪拼

折拼

下载三角形的内角和word格式文档
下载三角形的内角和.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形内角和教案

    三角形内角和 ----- 08数本 彭春玲 【教学内容】:人教版九年义务教育小学数学四年级下册第95页内容。 【教学目标】: 1、掌握三角形内角和定理,并能进行简单的运用。 2、在探......

    三角形内角和说课稿

    《三角形的内角和》说课稿 【说教材】 1、 说课内容 今天我说课的内容是北师大版九年义务教育小学数学四年级下册第27页的《三角形内角和》。 2、 教材分析 《三角形的内......

    三角形内角和说课稿

    三角形的内角和 各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。 一......

    三角形内角和说课稿

    三角形内角和说课稿 三角形内角和说课稿1 一、说教材说课内容:人教版义务教育课程标准实验教科书数学第八册第85页例5——三角形的内角和。“三角形的内角和”是三角形的一个......

    三角形内角和教案

    三角形内角和教学设计 一、教材分析: 教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于......

    三角形内角和教案

    三角形内角和教学设计 讲课人:闫转 一、 教学内容:三角形内角和(教材85页的例五) 二、 教学目标: 1、 2、 3、 知道三角形的内角和是180°。 正确计算三角形中某一个角的度数。......

    三角形内角和说课稿

    探索与发现(一)-----三 角 形 内 角 和 说 课 稿 一、教材分析 “三角形内角和”是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了三角形的主要特征和三角......

    《三角形内角和》说课稿

    《三角形内角和》说课稿15篇 《三角形内角和》说课稿1 各位评委、老师大家好:我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。......