机械工程材料教案1

时间:2019-05-15 06:26:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械工程材料教案1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械工程材料教案1》。

第一篇:机械工程材料教案1

第一章材料的性能

一、教学目的及要求

通过本章学习,使学生掌握材料的力学性能、物理和化学性能以及工艺性能,为以后各章中研究结构与性能关系打下良好的基础。

二、主要内容

1. 材料的力学性能; 2. 材料的物理化学性能; 3. 材料的工艺性能。

三、学时安排:2学时

四、教学重点:

1. 材料的力学性能指标及其物理意义; 2. 不同硬度指标的优缺点及其应用场合。

五、教学难点:

材料的性能。

六、教学过程:(见讲稿)

七、思考题:

1. 零件设计时,选取σ0.2(σS)还是选取σb,应以什么情况为依据? 2. δ与ψ这两个指标,哪个能更准确地表达材料的塑性? 3. 常用的测量硬度的方法有几种?其应用范围如何?

4. 有一碳钢制支架刚性不足,有人要用热处理强化方法;有人要另选合金钢;有人要改变零件的截面形状来解决。哪种方法合理?为什么? 5. 举例说明机器设备选材中物理性能、化学性能、工艺性能的重要性。

八、作业题

1. 一铜棒的最大拉应力为70MPa,若要承受2000kg的载荷,它的直径是多少?

2. 有一钢棒在无塑性变形时所能承受的最大载荷11800kg,问它的强度是多少。

3. 1根2米长的黄铜棒温度升高80℃,要使该棒有同样的伸长,问需要作用多少力? 4. 一根焊接钢轨在35℃时铺设并固定,因此不能发生收缩。问当温度下降到9℃时,钢轨内产生的应力有多大?

九、教学参考书

1.金属力学性能.束德林.机械工业出版社,1997年10月

第二篇:机械工程控制基础教案

第一章 绪论

[教学内容]

1.控制理论学科的发展概况

2.控制理论的研究对象

3.控制系统的工作原理及基本要求

4.学习目的和学习方法

[教学安排]

安排的教学时数:4学时

[知识点及基本要求]

了解机械控制工程理论的由来和发展,了解其在机械制造领域中的作用。熟悉有关“反馈与反馈控制”的基本概念。学习分析具体控制系统的组成环节,知道系统的被控对象、被控量、扰动量、控制量等,会画工作原理方框图。

[重点和难点]

反馈与反馈控制;

控制系统的概念;

[教学法设计]

应用多媒体课件,开展案例教学。

第二章 控制系统的数学模型

[教学内容]

1.控制系统动态微分方程的建立以及非线性方程的线性化;

2.传递函数的概念及传递函数方块图的简化方法;

3.典型环节的传递函数;

[教学安排]

本章安排的教学时数:6学时

2.1.1 线性系统与非线性系统;2.1.2 线性系统微分方程的列写;2.1.3系统非线性微分方程的线性化。安排2学时。

2.2.1 传递函数的定义;2.2.2传递函数的常见形式;2.3.1控制系统的基本联接方式;2.3.2扰动作用下的闭环控制系统。安排2学时

2.3.3 传递函数方块图的绘制;2.3.4传递函数方块图的变换;2.3.5传递函数方块图的简化。安排2学时。

2.4 典型环节的传递函数。安排2学时。

[知识点及其基本要求]

2.1 控制系统的微分方程

线性系统与非线性系统,以质量-弹簧系统等为例引出线性系统与非线性系统的概念,让学生对概念有明确的理解;

线性系统微分方程的列写,是本次课的重点,通过力学、电学等方面的实例让学生掌握动态系统建模的方法;

系统非线性微分方程的线性化,让学生理解非线性动态微分方程线性化的处理方法。

2.2 传递函数

传递函数的定义,是本次课的重点讲解内容,通过实例让学生理解为什么要引入传递函数表述动态系统;

传递函数的常见形式,让学生了解它的多种表达方式;

控制系统的基本联接方式,主要掌握串联、并联和反馈控制等基本联接方式;

扰动作用下的闭环控制系统。

3.3传递函数方块图的绘制;

传递函数方块图的变换,是学生掌握的重点和难点;

传递函数方块图的简化,通过大量的训练能熟练掌握。

2.4典型环节的传递函数

了解每一个典型环节的传递函数表达的含义,并能熟练掌握传递函数的表达式。

[重点和难点]

传递函数的定义;

传递函数方框图的变换和简化。

[教学法设计]

多种实例分析贯穿本章教学始终,做到举一反三,全面理解和熟练应用。

[应用]

以例子穿插讲解。

[板书设计]

结合多媒体课件,进行教学。

第三章 控制系统的时域分析

[教学内容]

1.时间响应的基本概念及其组成,几种典型的输入信号;

2.一阶系统的时间响应,二阶系统的时间响应;

3.控制系统的动态性能指标;

4.控制系统的稳定性。

[教学安排]

本章安排的教学时数:8学时

3.1.1 时间响应及其组成;3.1.2 典型输入信号;3.2一阶系统的时间响应。

安排2学时。

典型输入信号:单位阶跃信号、单位斜坡信号、单位加速度信号、单位脉冲信号、单位脉冲信号、单位正弦信号;

一阶系统的时间响应介绍一阶系统在单位阶跃信号和单位脉冲信号输入下的响应。

3.3 二阶系统的时间响应。安排2学时

介绍二阶系统的数学模型以及二阶系统在单位阶跃信号和单位脉冲信号输入下的响应。

3.5 控制系统的动态性能指标。安排2学时。

介绍欠阻尼状态下的二阶系统在单位阶跃输入的响应下瞬态响应指标:上升时间、峰值时间、最大超调量、调整时间,并举例求响应的响应指标。

3.6 控制系统的稳定性。安排2学时。

稳定性的基本概念及线性系统稳定的充要条件,Routh(劳斯)稳定判据

[知识点及其基本要求]

3.1 时间响应与典型输入信号

时间响应的概念,以质量-弹簧系统为例介绍时间响应的组成:瞬态响应与稳态响应,为单位反馈系统时,其偏差与误差相等。

选取典型输入信号的基本原则,单位阶跃信号、单位斜坡信号、单位加速度信号、单位脉冲信号、单位脉冲信号、单位正弦信号等典型信号的产生与数学表达式及其拉氏变换;

3.2 一阶系统的时间响应

一阶系统的微分方程及其传递函数,一阶系统的单位阶跃响应及其性能参数,一阶系统的单位脉冲响应。

3.3 二阶系统的时间响应

二阶系统的微分方程及其传递函数,分情况讨论欠阻尼系统、临界阻尼系统、过阻尼系统、零阻尼系统。

二阶系统的单位阶跃响应,讨论二阶系统在不同阻尼情况下的单位阶跃响应。二阶系统在不同阻尼情况下的单位脉冲响应。

3.5 控制系统的动态性能指标

瞬态响应的性能指标,根据欠阻尼状态下的二阶环节对单位阶跃输入的时间响应,性能指标包括上升时间、峰值时间、最大超调量、调整时间。举例进行介绍如何理解与求解这些性能指标。

3.6 控制系统的稳定性

稳定性的基本概念,线性系统稳定的充要条件,判断控制系统稳定性的方法有两大类:直接求解系统特征方程,根据极点分布来判定系统稳定性,另一类是不求解特征方程的间接方法—Routh(劳斯)稳定判据。

[重点和难点]

二阶系统时间响应;

控制系统的动态响应指标。[教学法设计]

时间响应基本概念以及典型输入信号通过直接法给出;

通过实例分析计算控制系统的时间响应以及时间性能指标的计算,Routh(劳斯)稳定判据的计算。

[应用]

以例子穿插讲解。

[板书设计]

结合多媒体课件,进行教学。

第四章 控制系统的频域分析

[教学内容]

(1)频率特性的基本概念

(2)频率特性图示方法(典型环节Nyquist图和Bode图)

(3)频率特性的特征量、最小相位系统

(4)系统稳定性的初步概念、Routh判据

(5)Nyquist稳定性判据和Bode稳定性判据、(6)系统的相对稳定性 [教学安排]

计划学时数:8 学时

(1)频率特性的基本概念,2学时;

(2)频率特性图示方法(典型环节Nyquist图和Bode图),4学时;

(3)频率特性的特征量、最小相位系统,2学时;

(4)系统稳定性的初步概念、Routh判据,2学时;

(5)Nyquist稳定性判据和Bode稳定性判据,4学时;

(6)系统的相对稳定性,2学时;

[知识点及其基本要求]

了解频率特性的定义及求法;熟悉典型环节频率特性的Nyquist图和Bode图;掌握一般系统Nyquist图和Bode图的画法(注意画图步骤和图面标注);能应用代数判据和几何判据完成系统稳定性的判别;理解系统频域性能指标及其与时域指标的关系;理解什么是相对稳定性,掌握稳定裕量的计算方法。

[重点和难点]

典型环节的Nyquist图和Bode图;

稳定性的几何判据;

稳定裕量的计算

[教学法设计]

通过工程实例引入频率特性的概念;

使用MATLAB仿真案例

[板书设计]

结合多媒体课件,进行教学。

第五章 控制系统的误差分析

[教学内容]

1.控制系统的误差与偏差以及两者之间的对应关系;

2.瞬态过程与稳态过程、瞬态误差与稳态误差、静态误差与动态误差;

3.静态误差和动态误差的计算。

[教学安排]

本章安排的教学时数:6

5.1 误差的概念;5.2 系统的类型。安排2学时。

结合定义强调误差与偏差的不同以及两者的对应关系;

结合定义强调各误差不同、影响因素;

5.3 静态误差;5.4 动态误差。安排2学时。

不同类型系统的静态误差系数、不同输入信号作用下的静态误差;结合实例进行控制系统的静态误差的计算。

系统的动态误差系数计算;结合实例进行控制系统的动态误差的计算。[知识点及其基本要求]

5.1 误差的概念

一、误差与偏差

控制系统的误差是系统的实际输出与期望输出的差;控制系统的偏差是系统的输入信号与反馈信号的差。两者定义是不同的,但是它们都是表示控制系统精度的量,都反映控制系统的稳态性能,并且它们之间具有确定的对应关系。控制系统为单位反馈系统时,其偏差与误差相等。

二、瞬态过程与瞬态误差

瞬态过程反映控制系统的动态响应性能,主要体现在系统对输入信号的响应速度和系统的稳定性这两个方面;对于稳定的系统,实际上瞬态误差在时间大于调整时间后可以认为基本衰减为零。

控制系统的误差主要是稳态误差。

三、稳态过程与稳态误差

稳态过程反映控制系统的稳态响应性能,它主要表现在系统跟踪输入信号的准确度或抑制干扰信号的能力上;稳态误差是评价控制系统稳态性能的主要指标,是随时间变化的量,与系统及其输入信号的特性有关。它分为静态误差和动态误差两类。

四、静态误差和动态误差

静态误差是系统稳态误差的极限值,其大小取决于系统静态误差系数;动态误差是控制系统稳态误差的过程量,反映稳态误差的变化规律,其大小取决于系统的动态误差系数和输入信号及其各阶导数。

5.2 系统的类型

静态误差为零的系统是无差系统,系统是有差系统还是无差系统取决于系统的类型和输入信号的形式。

5.3 静态误差

一、不同类型系统的静态误差系数

二、不同输入信号作用下的静态误差

三、结合实例进行控制系统的静态误差的计算。

5.4 动态误差

一、系统的动态误差系数计算

二、结合实例进行控制系统的动态误差的计算。

[重点和难点]

系统的动态误差系数计算;

控制系统的动态误差的计算。

[教学法设计]

采用对比分析各定义的异同,逐步引出静态误差、动态误差;

通过实例分析计算控制系统的静态误差、动态误差。

[应用]

例1:已知系统1和系统2的开环传递函数分别为

试计算其静态误差系数和动态误差系数。

例2:对于上例,试计算当控制输入信号分别为

时的静态误差和动态误差。

[板书设计]

结合多媒体课件,进行教学。第六章 控制系统的综合与校正

[教学安排]:

教学时数 6;

教学手段:多媒体教学与仿真试验;

教辅工具:仿真软件MATLAB与MULTISIM;

教学法:形象比喻、设疑、思考、启发、仿真演示与结论;

[知识点及其基本要求]

滞后与超前的含义;

滞后容易理解,但系统为什么能做到超前(因为系统信号是有规律的);

系统为什么不稳定,不稳定的实质是什么:系统反映过慢,对高频不能做出及时响应。

系统要稳定,有两种情况,(1)系统反映很快,在高频时,幅值与相位误差均很小;(2)系统反映较慢,在高频时,幅值与相位误差均很大,既对高频不敏感。比喻:大雪天不摔跤的两种人:反映快或反映慢走路很小心的人。

然后搞清楚校正的实质是什么?

举例说明超前顺馈校正提高稳定性与响应快速性的方法。

[重点和难点]

掌握系统不稳定的实质;

校正的实质。

[教学法设计]

一、用matlab仿真:(1)相位差超过180度,而幅值仍然大于1的系统;(2)观察这种情况下的反馈系统稳定性;分析原因,提出解决方案,同时理解校正的概念;

用电路仿真,学生观察信号的超前与滞后,并理论计算超前角与滞后角,与仿真结果相比较;

二、设计PID校正,并分析输入与输出的关系;

用电路仿真,观察输入与输出的情况,比对学生的思考。

[应用]

超前顺馈校正举例说明提高稳定性与响应快速性的方法。

第三篇:机械工程英语翻译

Unit 1 材料的种类

(1)材料的分类方法很多。科学家常用的典型的方法是根据它们的状态分类:固体,液态或气态。材料也分为有机(可再生)和无机材料(不可再生)。

(2)工业上,材料划分为工程材料或非工程材料。工程材料用于制造和加工成零件的材料。非工程材料是化学药品,燃料,润滑剂和其它用于制造又不用来加工成零件的材料。

(3)工程材料可进一步细分为:金属,陶瓷,复合材料,聚合材料,等。Metals and Metal Alloys 金属和金属合金

(4)金属有好的导电好导热性,很多金属有高的强度,高硬度和高的延展性。象铁,钴,镍这些金属有磁性。在非常低的温度下,一些金属和金属互化物变成超导体。

(5)合金和纯金属有什么区别?纯金属在元素周期表的特殊区域。例如用于制造电线的铜和做锅和饮料罐的铝。合金含有两种以上的金属元素。改变金属元素的比例可以改变合金的性质。例如,合金金属的不锈钢,是由铁,镍,和铬组成。而黄金珠宝含有金镍合金。

(6)为什么要使用金属和合金?很多金属和合金有很高密度并用在要求质量与体积比高的的场合。一些金属合金,象铝基合金,密度低,用在航空领域可以节省燃料。很多合金有断裂韧度,可以承受冲击,且耐用。金属有哪些重要属性?

(7)【密度】 质量除以体积叫做密度。很多金属有相对高的密度,特别的,象聚合体。高密度的材料常是原子量很大,象金或铅。然而一些金属,像铝或镁密度低,就常常用在要求有金属特性而又要求低质量的场合。

(8)【断裂韧性】 断裂韧度用来描述金属抗断裂的能力,特别的,当有裂纹时。金属通常都有无关紧要的刻痕和凹坑,且有耐冲击性。足球队员关注这一点当他确信面罩不会被击碎的时候。

(9)【塑形变形】 塑性变形表述的是材料在断裂之前弯曲变形的能力。作为工程师,我们通常设计材料使得能够在正常情况下不变形。你不会想要一阵强烈的西风就把你的车刮得往东倾斜。然而,有时,我们可以利用塑性变形。汽车的承受极限就是在彻底破坏之前靠塑形变形来吸收能量。

(10)金属的原子键也影响它们的性质。金属中,外层电子属于所有原子,并且可自由移动。因为这些电子的属能导电,导热,所以可以用这些金属做烹饪锅、电线。透过金属不可能看的见,因为这些价电子吸收到达金属的光之。没有光子通过。

(11)【合金】 合金有两种以上金属组成。增加其他金属可以影响密度,强度,断裂韧度,塑性变形,导电性和导致环境退化。例如增加少量的铁到铝中可以增加它的强度。还有,在钢中添加铬可以减缓生锈,但是这将使它更脆。Ceramics and Glasses陶瓷和玻璃

(12)广义上说,陶瓷是指所有无机非金属材料。根据这个定义,陶瓷材料包括玻璃。然而,有些材料科学家给陶瓷加了定语,陶瓷要是晶体的。

(13)玻璃是无机非金属材料,但是它没有晶体结构。这种材料被称作非晶体。Properties of Ceramics and Gasses陶瓷和玻璃的特性

(14)高熔点,低密度,高强度,高刚度,高硬度,高耐磨性和抗腐蚀性是陶瓷和玻璃的常用特性。一些陶瓷是电和热的绝缘体。一些陶瓷有特别的性质:有些是磁性材料;有些是压电材料;而有些特殊陶瓷在低温下是超导体。陶瓷和玻璃有一个主要的缺点是脆性高。

(15)陶瓷不是典型的从融化状态形成的。这是因为在冷却温度以上时,陶瓷会大面积出现裂纹。因此用于玻璃产品生产的简单有效的方法,象铸造和吹塑,这些要设计融融状态的方法都不能用于晶体陶瓷产品的生产。取而代之,烧结或烘烤方式是典型的工艺。烧结时,陶瓷粉末被加工成有紧密形体,并且接着把温度升到熔点一下。在这个温度下,粉末立即反应,去除空隙,并得到严实的物品。

(16)光导纤维有三层:核心有高纯玻璃制成,该玻璃是高折射指数光传输材料;中间层是低折射指数玻璃,是保护核心玻璃表面不被擦伤或表面完整性被破坏的所谓覆层;最后外层是塑料(聚合体)护套,可以保护光导纤维不受损。为了使核心玻璃表面的折射率高于覆层,核心玻璃掺少量的,可控的杂质,用来减慢光的传播,但是不吸收光。因为核心玻璃的折射率高于覆层,只要光在核心玻璃和覆层分界面的角度大于临界角,会一直在核心玻璃中传播。全部的内部反射和高纯的核心玻璃能是光传播很远的距离而强度降低很少。【复合材料】

(17)复合材料由两种或多种材料组成。如包括聚合物陶瓷和金属陶瓷复合材料,复合材料被使用,因为复合材料的所有性能比单一元素高,例如聚合物陶瓷复合材料比聚合物复合材料的模量大,但它没有陶瓷脆

(18)两种符合材料为:纤维增强复合材料、颗粒增强复合材料

(19)(纤维增强复合材料)纤维增强复合材料由金属、陶瓷、玻璃和已经碳化的聚合物构成,因也被称为碳纤维。纤维增大了材料基质的模量,沿纤维长度方向的较强的共价键在这个方向上产生了较高的模量,因为要打断或拉伸纤维,共价键必须被破坏或移动。

(20)纤维很难加工成复合材料,制造纤维增强复合材料非常昂贵。他被用于一些先进的因此也很昂贵的体育器材如赛车有热固性的聚合物基质中的碳纤构成。赛车和许多汽车的车身由具有热固性基质的玻璃纤维复合而成。

(21)纤维沿他的轴线有较高的模量,但沿轴线垂直方向模量较低,为了避免各个方向模量不同,纤维复合材料制造者经常旋转纤维层以避免模量定向变化。

(22)(颗粒增强复合材料)被用来增强的颗粒包括陶瓷和玻璃如小的矿物颗粒,金属粒子如铝及非晶体材料包括聚合物和碳黑。(23)粒子被用来增加基质的模量,减少基质渗固性和延展性粒子增强复合材料的一个例子汽车轮胎,在他有碳黑粒子在聚异丁烯,弹性聚合物基质中。

(24)(聚合物)聚合物有重复的结构,通常以碳的结构骨架做为基本单元。这种重复结构产生了三大链状分子,聚合物非常有用,因为他们质轻,抗腐蚀,在低温下易加工而且通常比较便宜。

(25)聚合物的一些重要特征包括:尺寸(分子量),软化和熔点,结晶度以及结构。聚合物的机械性能包括低强度,高韧性,通过使用增强复合材料结构,他们的强度被改善。(26)聚合物的重要特征

尺寸大小:单一聚合物分子量在10000克每摩尔和1000000克每摩尔之间,根据聚合物结构他有超过2000个重复单元,分子量对聚合物的机械性能有重要影响,分子量大的机械性能较好。

热传递:聚合物软化点和融化点决定他的使用场合,这些温度通常决定聚合物使用的上限温度,例如许多重要工业聚合物有玻璃转化温度接近水的沸点(100摄氏度,212华氏温度)。他们通常在室温下使用,一些特殊工程聚合物能承受300摄氏度(572华氏温度)的高温。

晶状结构:聚合物可能是晶体或非晶体,但是他们通常是晶体和非晶体的混合结构(半结晶)。

内部链相互反应:聚合物链能够自由滑到另一个(热塑性材料)或是彼此十字交叉连接(热固性或弹性材料),热塑性材料能从新成型回收,而热固性材料和弹性材料不能。

Unit 2 金属热处理

(1)金属热处理包含在广义的冶金学研究领域里。冶金学是综合化学,物理和从矿石提取到最后产品相关的金属工程的一门学科。热处理是对固态金属进行加热和冷却处理来改变金属物理性能的一种工艺。根据使用的场合的,提高钢的强度可以它的耐切削性和耐磨性,或者使钢软化以便于机械加工。正确的热处理可以去掉内应力,减小晶粒大小,韧性增加或者在较好的材料表面给形成一个高强度的表面。分析钢的成分是很有必要的,因为小百分比的某种元素就会对钢的物理性能产生很大的影响,特别地,碳这种元素。

(2)合金钢的性质取决于含有的除碳以外的其它的一种或几种元素,如:镍,铬,锰,钼,钨,硅,钒和铜。改善了性能的钢可以有很多的商业用途,碳钢是不能比的。

(3)下面主要介绍普通商业用钢像总所周知的普通碳素钢的热处理。在这个过程中冷却速率是关键因素,在临界温度以上时快速冷却可得到坚固的结构,然而,非常慢的冷却会有相反的影响。一张简化的铁-碳相图

(4)我们经常用一张简单的相图来研究钢这种材料,对工程人员来说,铁-碳相图中的近铁素体区和含碳量大于2%的部分并不重要,所以这两部分被删掉。如表2-1所示;它表述的是共析区,这张图对研究钢的性能和钢的结晶过程是相当有用的。

(5)这张图表明,一个重要的转变是随着温度的降低,单相的奥氏体分解成两相的铁素体和碳化物。控制这个反应,可以是奥氏体和铁素体的C溶解性有很大的不同,这样通过热处理就可以得到一系列的机械性能。

(6)首先研究这个过程,在图2-1中,在含碳0.77%沿着线x-x’降低温度,考虑钢的共析化合物。在高温时,只有奥氏体,溶0.77%的碳是溶解在溶体状态铁中。当温度下降到727C(1341F)时,数个反应同时发生。铁需要从面心立方奥氏体转变成体心立方铁素体结构,但是铁素体只能容纳固溶体状态0.02%的碳。析出的碳形成碳较富裕的渗碳体,也就是形成合成物Fe3C。基本上,这个共析转变是:

奥氏体 ——〉 铁素体 + 渗碳体

0.77%C 0.02%C 6.67%C

0

0

(7)在固体状态里,碳的成分发生化学分离,形成了有好的机械性能混合物,铁素体和渗碳体。这种结构由两种截然不同的状态组成,但它本身有一系列特性,且因与低倍放大时的珠母层有类同之处而被称为珠光体。

(8)亚共析钢比共析钢含碳量要少的多,亚共析钢含碳量少于0.77%。现在考虑在图2-1中沿y-y’降温材料特征的转化。在高温时,成分是奥氏体,但在冷却线上进入一个有铁素体和渗碳体组成的稳定的区域。由截线和杠杆定理分析可知,低碳铁素体成核并不断长大,余下含碳量高的奥氏体。温度在727C(1341F)时,奥氏体发生共析转变,继续降温,奥氏体转化成珠光体。最终的产物是铁素体和珠光体的混合物。

(9)过共析钢含碳量比共析钢多。在图2-1中沿z-z’线冷却,和亚共析过程差不多。只是其中一相现在是渗碳体而不是铁素体。达到共析温度727C的时候,随着富碳相的形成,奥氏体含碳量减少。同样的余下的奥氏体在通过这个温度是都要转化成珠光体。(10)相图中表示的转化需要平衡条件,就是近似看作需要缓慢冷却。随着慢慢加热,过程是相反的。然而,合金冷却迅速,将得到完全不同的产物,因为没有足够的时间完成正常的相转化,在这种情况下,相图就不再适用于这个工程分析了。

(11)【淬火】 淬火是把钢温度升到临界温度或以上并迅速冷却这样一个过程。如果知道了碳含量,就可以用铁-铁碳化合物相图来选择正确的淬火温度。然而,如果不知道钢的成分,可以用逐步实验的方法来确定温度范围。好的处理工艺是通过对大量试件在各种温度下进行实验,然后对结果进行分析得到的,分析的方式可以是强度测试也可以用精密的测试。用合适的温度对钢进行热处理后,钢的强度和其它的机械性能都有很大的改善。

12)热处理效率在热处理中是非产重要的。热以一定的速率从外部传到内部。如果钢将加热的太快,零件的外面比里面温度高,将得不到一致的晶体结构。如果零件的形状是不规则的,考虑到零件的扭曲变形,就要用慢速加热的方式。质量越大的部分,越需要多的时间来加热,从而得到成分均匀的产物。当温度达到恰当的温度后,要保持足够的一段时间,使零件最厚的部的温度是一致的。(13)淬火的速率,含碳量和零件的尺寸决定了淬火获得的硬度。对合金钢来说,金属元素的量和种类决定淬硬的深度(淬透性)。除了未变硬和部分淬硬的钢,不影响硬度。

(14)低碳钢的淬硬性好,在含碳量低于0.6%时,随着含碳量的升高,淬硬性也在升高。含碳量高于这个点,淬硬性增加不显著,因为共析温度以上的钢在在退火时是由珠光体和渗碳体组成。珠光体的热处理性比较好,包括珠光体在内的多数钢都可以转化成硬钢。

(15)随着零件尺寸的增大,即使所有的条件都一样,表面硬度要降低。钢的热传递速率是有限的。无论冷却液温度有多低,大零件内部的冷却速度比可能快于临界冷却速度,内部硬度有一定的限制。然而,盐水或水冷却液可以迅速把淬火零件表面的温度降低到冷却液的温度,保持或逼近它。在这种环境下,不管零件尺寸大小淬硬的深度是有限制的。在用油淬火时,就是在临界淬火期间表面温度可能较高这种情况就不正确了。

(16)【回火】 快速淬火得到的钢是脆的,大部分情况不适合直接使用。通过回火,可以降低硬度和脆性来达到使用要求。随着这些性能的降低,强度降低,钢的延展性和柔韧性增加.回火就是把淬硬的钢加热到零界温度以下,然后以任一速率冷却。尽管回火可以使铁变软,但它与退火不同。退火是使钢尽量靠近控制物理性能,并且多数情况下没有把钢变软到退火本应达到的程度。淬硬的钢完全回火后得到的组织叫回火马氏体。

(17)回火可以消除马氏体的不稳定。300F-400F(150C-205C)低温回火,不降低钢的硬度又可以释放内应力。随着回火温度的升高,马氏体加速分解。.在大约600F(315C)淬火钢组织快速向回火马氏体转化。回火过程就是快速结合或渗碳体化合。渗碳体在600F(315C)迅速形成,它的硬度有所降低。温度升高时,随着碳化合物持续形成,硬度在降低。

(18)回火时,还要考虑温度以外的其它事情。尽管在到达回火温度的前几分钟完成软化,但是如果温度的延续时间太长,硬度会降低的更多。通常的做法是把钢的温度升高到期望值,并保持一段合适的时间,均匀的加热。

(19)用局部淬火方法的两种特别的工艺是回火的一种形式。在这两个过程中,用盐水淬火的钢在冷却之前要先保持一段时间的低温。这些工艺,众所周知等温回火可以得到想要的物理性能。

(20)【退火】

退火的主要目的就是使钢变软,以至于可以用来机械加工或冷加工。把温度缓慢加热到临界温度以上一点,保持一定的时间以确保整个零件的温度是一致的,然后慢慢冷却,以保证零件内外的温度几乎保持一致。这个过程叫完全退火过程,它转化了以前形成的组织,又重新形成了晶体组织。并且使钢变软了。退火也可释放金属内部的内应力。

(21)退火温度由给定碳钢的成分决定。碳钢在铁碳平衡图上很容易得到。在确定加热速率时要要考虑零件尺寸和形状,这样来确保整个零件温度尽可能同步上升。达到退火温度后,要把温度保持到整个零件都被加热。零件最厚部分每英寸45mm处常有这样的情况。为了得到最软和柔韧性最好的钢,冷却速率应该非常慢,让零件随炉子一起冷却。零件含碳量越高,冷却速度必须越低。(22)【正火和球化处理】 正火处理过程就是把钢加热到500F-1000F(100C-400C)在上临界温度以上,然后空冷到室温。正火主要用于低碳钢和中碳钢,来细化并均匀晶粒,释放内应力或得到理想的机械性能。多数商业用钢在滚压或铸造后都要正火处理。000

00

0

0

00

0

0

(23)球化处理产生一种组织,渗碳体在该组织中以球状存在。如果钢缓慢加热到零界温度以下,保持一段时间,就能得到这种组织。球状组织能改善钢的机械加工性能。球化处理用来处理需要加工的过共析钢是非常有用的。

Unit 3 铸造工艺

(1)铸造是一种制造工艺,铸造是把融融的金属浇注到合适的模型腔内,并凝固。在冷却期间或冷却后,把铸件从铸型里取出,接着进行交付零件所需要的加工。

(2)铸造工艺和铸造材料技术从简单到高度复杂发生着改变。根据铸件功能和复杂程度,产品质量和项目花费水平来选择材料和加工工艺。

(3)铸件是用铸造的方法使零件接近最终的尺寸。经过6000年的发展历史,各种铸造工艺作为先进的制造技术继续的发展改进。(4)【砂型铸造】 砂型铸造用于制造大零件(典型的有铁,还有青铜,黄铜,铝)。融融金属浇注到型腔里(普通的或合成铸铁)。本部分将讨论砂型铸造工艺的模样,包括木模、浇注口、浇道,精确设计和铸造公差。

(5)砂中的型腔靠木模形成的(和真实零件几乎相同),模样用材料是常常是木头,有时也用金属。型腔被包含在沙箱里。插入砂型的砂芯用于产生零件的内部特征,如孔或内部空腔。用放在型腔里的砂芯形成期望的形状砂芯头是添加到模样,砂芯或砂型上的区域,用来定位或支撑砂型里的砂芯。冒口是额外的空间,用来容纳多的金属液。这样目的是,在金属液凝固,收缩时,把金属液流入型腔,因此防止主要的铸造部分有空隙。

(6)在两开砂型中,它是典型的砂型铸造,上面半个包括模样,沙箱和中型芯的上半部分的叫上沙箱,下面半个叫下沙箱。如图3.1所示。分型线或分型面把上下沙箱分开。下沙箱先用沙子填满,并且把砂芯头,砂芯,和浇流系统放在分型线附近。上沙箱与下沙箱配合,且用沙子填满下沙箱,盖住模样,砂芯和浇注系统。用震动和机械的方法把沙子压紧。接着上沙箱从下沙箱上移开,并把模样小心的移走。目标是把模样移走有不破坏型腔。设计一个草图就容易做到,这个轴要在模样的竖直面的垂直方向有一定的角度偏移量。它通常只有1.5MM,是最合适的。模样越复杂,准备的草图越多。

(7)把融融的材料倒入浇口杯,它是浇注系统的一部分,它把融融的材料引导到型腔。链接浇口杯浇流系统的竖直部分叫直浇道。卧着的部分叫横浇道。最后到浇注点,把金属液引到型腔的叫浇注点.另外浇流系统还有个通气孔,作为空气的通道,把型腔的空气排入大气。

(8)型腔通常要做的超出尺寸来允许在金属冷却到室温时金属的收缩。为了解决收缩问题,模样也要根据平均值做大一些。这种反应是线性的。这些收缩公差是相似的,因为准确的公差由铸件的形状和尺寸决定。另外,不同的铸件可能要求不同的收缩公差。砂型铸造的表面通常粗糙有杂质和变形。这种情况下就需要精加工。

Unit 8 磨削

(1)磨削是用砂轮切削金属的一种加工工艺。它和铣刀类似,周围带了大量微缩的切削刃。通常,磨削用来加工高尺寸精度,高表面精度的零件。磨削可以加工平面,圆柱面,甚至用专用机床可以加工内表面,比如说用磨床。显然,磨床根据几何形状和功能的不同有所不同。使用何种磨床主要取决于被磨削表的几何形状和物理性质。例如圆柱面在外圆磨床上磨削。

(2)1.平面磨削 顾名思义,平面磨削就是磨平面。如图8.1所示,磨床有卧式和立式两种。第一种情况(卧式主轴),机床通常有一个往复运动的工作台,工件就固定在这个工作台上。然而,立式磨床有一个刨床式的工作台,像卧式磨床那样,或者装一个旋转工作台。因此,这种情况下是通过砂轮的端面来实现磨削,这与卧式磨床相反,立式磨床是用砂轮的圆周面来磨削的。图8.1给出了估算磨削参数的方程,如加工时间和速度。在平面磨削时,中的工件用夹具固定或用压板等物加紧在机床工作台上,而小的工件常常是电磁吸盘固定的。

(3)2.柱面磨削

柱面磨削时,工件固定在顶尖之间,砂轮的旋转是主运动,来产生磨削运动,如图8.2所示。事实上,圆柱磨削还可以用下面的一些方式完成:

(1)横切法,是通过砂轮和工件一起转动,同时沿纵向进给来加工整个零件长度的。背吃刀量通过改变砂轮对工件的横向进给来进行调整。

(2)进刀法,其磨削时只需横向进给而没有轴向进给。正如你所看到的,当需磨削的面比砂轮的宽度窄时才用这种方法。(3)全深度法,它和横向进给磨削方式类似,所不同的是磨削余量一次加工完。这个方法常用来加工高硬度的短轴。(4)【内圆磨】 磨内圆用来磨短空,如图8.3所示。工件用卡盘或夹具固定。磨削时砂轮和工件都转动同时砂轮纵向进给。通过改变砂轮横向进给可以得到不同的磨削深度。这样磨削方式演变出了行星磨内圆法,这种方法用在卡盘不能固定的重工件上。这种情况下,不仅要围绕自己的轴心旋转还要绕磨削孔的中心旋转。

(5)【无心磨削】 无心磨削是用于圆柱型工件加工的,工件有托板支持,在两轮之间,即砂轮和导轮或称为进给轮之间通过去。砂轮完成实际的磨削,而导轮的作用是是工件旋转及产生轴向的进给。这点是可能的,这是由轮的摩擦特点决定的,砂轮的用的是

橡胶粘合的磨粒。如图8.4,导轮的轴和砂轮的轴有一定的角度。因此导轮的速度可以分解成两部分,工件的转速和进给速度,关系如下方程所示:

(6)这里的系数c是考虑工件与导轮之间的相对滑动常数。

(7)导轮的速度是可控,可以用来达到任何工件的旋转速度。角度a通常取1-5度,角度越大,纵向进给速度越大。当a=0,砂轮的轴和导轮轴平行,将没有工件的纵向进给。

(8)【砂轮】砂轮由大小类似的磨粒和粘和剂组成。实际上磨削过程是磨粒完成的。磨粒间的空隙使磨粒像独立单点切削刀具一样,这些空隙也能为磨削提供空间,防止堵塞。另外,空隙还能带走磨削过程中产生的热量。(9)砂轮的类型有它们的外形尺寸,磨粒的种类,磨粒的大小,粘和剂,硬度和结构决定。

Unit 11 车床和车削加工

(1)车床是主要运用于加工旋转表面和平面的机械工具。基于车床的用途、结构、同时装夹刀具的数量,以及自动化程度,车床或更确切来说车削型机床可以如下分类:

1.普通车床;2.多刀车床;3.转塔车床;4.镗床;5.自动车床;6.专用车床。

(2)尽管车削型车床存在上述差异,但对于车床结构和工作原理方面它们具有相同特点。这些车床的共同点可以用具有代表性的车床即普通车床来进行图解说明,以下是普通车床的每一个零件的具体描述如图11.1所示。

(3)【床身】

床身是主体框架,包括两垂直支座上的一个横梁。床身通常由灰口铁或球墨铸铁组成以消除振动,可以通过铸造得到。床身有允许小拖板纵向自由滑动的导轨。床身的高度应该适当以便能使操作人员容易舒适地操作。

(4)【床头箱】

床头箱固定在车窗的左侧,床头箱内部包括主轴。主轴轴线与导轨平行,主轴通过齿轮箱来驱动,齿轮箱在床头箱内部,齿轮箱的动能是为主轴提供不同的转速(6到18级转速)。很多现代的车床有无级调速的床头箱,它们利用摩擦力、电力或者液压力驱动。

(5)主轴通常是中空的,即它有一个纵向通孔。如需采取连续加工,棒料可以通过此通孔喂入。另外,主轴的孔有一个锥形表面以允许普通车床顶尖的固定。主轴外表面刻有螺纹以固定卡盘之类的夹具。

(6)【尾座】 尾座基本包括三部分:基座、中间部分、套筒轴。基座有铸件组成,基座可以沿导轨在床身上自由滑动,同时有一个箝位装置,可以根据工件的长度在任意位置锁紧整个尾座。中间部分是一个铸件,可以横向移动以使尾架轴线与床头箱轴线对准。第三部分,套筒轴是一个空心高硬度钢,套筒轴可以根据要求纵向地移动并可以根据需要进出中间部分,这可以通过手轮和螺钉四周有一个螺母固定在套筒轴上,套筒轴中间孔逐渐变细成锥形用来固定如麻花钻、镗杆和其他工具的顶尖,通过加紧机构,套筒轴可以在其滑动路径的任一点被锁进。

(7)拖板的主要功能是锁紧,切削工具产生纵向或横向进给,实际上拖板是一个H形状的,他可以在床头箱与尾座之间滑动,同时它受到床型V型导轨的引导,拖板可以通过拖板箱的头杆或丝杠手动或机械启动。

(8)当切削螺纹时,动力通过丝杠传给拖板箱的齿轮箱,在所有其他切削过程中,走刀板来驱动拖板。丝杠穿过一对半螺母一对半螺母固定在拖板箱后面。当杠杆被驱动后,半螺栓一起加紧和旋转丝杠啮合作为一个单独螺母,沿车床所拖板一起进给,当托杆脱离后,半螺栓松开,拖板停止移动。另一方面,当走刀杆开始工作时它通过涡轮给拖板箱提供能量,涡轮被固定到走刀板上一起随拖板箱沿走刀杆移动。再沿走刀杆长度方向上用一个通长销槽,一个现代车床通常有一个快换齿轮箱口固定在床头箱下面,快换齿轮箱一系列齿轮由主轴驱动。

Unit 14 极限和公差

尺寸标注

(1)在机械设计过程中出来确定载荷应力,选择合适的材料还需考虑许多其他因素。在设计制造之前,应该有完整的装配及给用户传递详细信息的图纸。在图纸交给用户之前,设计者要不断检查图纸。要熟悉生产图样的所有情况,需要对制造过程非常熟悉并具有很多经验。

(2)图纸仔细检查使尺寸标注是一个最方便最易理解以便生产部门。显然所有图纸有且只有一种解释。特别是,在生产用机器能被调整好之前,车间工作人员不需要进行三角学或其他复杂的计算。(3)尺寸标注是一项复杂的工作,要熟悉他需要长期的实践经验。

(4)因为在加工一个零件的过程中,很难得到一个给定的尺寸,所以公差要放到所标注尺寸上面一些,目的是限制他允许的变动量。尽管很小的公差以高精度的零件和更好的机构,随着公差降低成本提高,如图14.1典型曲线所示。生产和使用所允许的最大公差是最重要的。

(5)公差可能是单向的也可能是双向的。在单向尺寸标注过程,另外一个公差变化是由其他公差确定。在双向尺寸标注过程,一个平均公差,也就是上下尺寸公差相等的公差带被使用。

(6)在大量低成本生产过程中,主要依靠零部件互换性。设计者不仅考虑单个零件有合适公差,还有装配零件有合适的间隙,以满足装配要求。在工程图上标注尺寸的方法取决于不同加工种类或生产过程。如果尺寸公差没有特别注明,图样必需要一个给出这些尺寸的公差值的综合注释。然而有些公司并不标注所有尺寸,假定每个尺寸是单独被考虑的可能会规定出比注释中要求更宽的公差。总之图纸必须要清楚并且有唯一的解释。尺寸和公差

(7)在图样标注时,除非设计者有意标明,注在尺寸线上的数字表明的尺寸仅是近似的,且不代表任何精度的等级。为了标明精确度,增加工件的公差值是必须的。公差是一个零件的允许变化范围或是给定尺寸的最大变动范围。如果一个2.5英寸的轴,如果不消耗大量成本,在实际工程中这个尺寸更本无法保证。因此公差需要被添加上,例如变动范围在+-0.003英寸是允许的。这个尺寸可以表示成2.500+-0.003(8)紧公差,意味着零件与其他的零件有适当的配合。公差与设计量,可利用制造工艺生产的最低成本和装配带来的最大利益相一致。一般来说零件的费用随公差的减小而增加。如果一个零件有几个或更多表面要加工,当明义尺寸的允许变动范围缩小时,成本会偏高。

(9)允差有时会和公差混淆,他具有完全不同的意义。他是两个配合之间的最小间隙,他是最紧配合的条件。如果一个轴的尺寸1.498***,那更他配合的孔应该是1.500****,孔的最小尺寸是1.500,轴的最大尺寸是1.498.因此这个允差0.002是基于最大孔和最小轴尺寸,因此确定最大间隙0.008。

(10)公差可以是单向的也可是双向的。单向公差是指变化量沿明义尺寸变化。参照前面的例子,孔的尺寸1.500+0.003-0.000,代表单向偏差。如果尺寸是1.500+-0.003,那么公差是双向的,公差沿着明义尺寸上下变化。单向公差系统允许改变公差,虽然允差装备类型保持不变。双向公差系统中,不改变配件一个两个明义尺寸是不可能的。在大型生产中配件具有互换性,单向公差是经常用到的。为了使装配零件有合适的过盈配合,公差必须是确定的正负数字。极限公差和配合

(11)工程图纸是准确,完整的表达出设计者要求,有利于加工制造。产品的尺寸必须表达出来而不能通过不同的视图重复。对于一个特殊尺寸,例如一个孔的尺寸位置,在有可能的情况下,在同一个视图中出现。

(12)除绝对需要的尺寸之外,不应该再有更多尺寸,而在任意方向上,只能在一个尺寸上住上特性要求。有时要给出一些辅助尺寸,有利于检查,如果这样做,尺寸应该用括号括起来以便参考,这样的尺寸不标注公差。

(13)影响零件的尺寸应详细说明而不应做其他尺寸的公差或被遗弃。如果没有这些重要尺寸标注出来,那些尺寸上总的允许偏差将形成尺寸链上尺寸公差的和或差而且这样会导致这些公差不得不定得过紧。整体的长或高必须标定。

(14)所有的尺寸都应该标注公差,除非有说明。通常,这样的公差都被标注在尺寸值旁边,特殊的公差应当被标注在影响结果和互换性的尺寸上。

(15)一个公差系统必须考虑到精度变化,因为精度变化在加工中会出现,提供互换性而且互换同时还可保证零件适当功能。(16)考虑到加工过程的不完整性,就形成了基本尺寸的差值即公差。公差带主要依赖于制造过程的精度以及加工过程的大小。公差范围越大,生产成本越低。双边公差带是布置在明义尺寸两边。公差范围大小,单边公差带只分布在明义尺寸一侧。在单边公差情况下,明义尺寸就形成了一个极限尺寸。(17)。。。。看书

(18)配合取决于相配合的两个零件公差带的相互关系,配合可以分为间隙配合(带正允差),允差可以为正也可以为负的过渡配合,以及允差总为负的过盈配合。极限和配合类型

(19)极限与配合的ISO系统广泛应用于采用米制单位制国家。比ANSI系统复杂的多。

(20)在ISO系统中,每个零件都有一个基本尺寸,一个尺寸的极限尺寸或高或低定义为一个基本尺寸的偏差,偏差大小及正负号是我们所讨论的极限减去基本尺寸得到的。一个零件的两个极限值之差称为公差,这个公差是不带符号的绝对值。(21)配合有3个等级:1间隙配合,2过渡配合3过盈配合。

(22)基轴制和基孔制都有采用,对每个给定尺寸公差带的大小和偏差范围可以用O线描述。公差尺寸的函数可被带有符号的数字表明,被称为等级,也就是公差等级。相对于零线的位置。公差尺寸函数的位置用符号表明,大写字母表示孔,小写字母表示轴。这样基本尺寸为45mm的孔轴就可以写成45H8/g7。

(23)规定了20种标准的公差等级,即IT01,IT0,IT1~18,他们是在500mm以内硬性划分的每一段的基本尺寸都对应不同的标准公差数值。公差公式被统一为,例如5-16的等级是***,i的单位是微米,d的单位是厘米。

(24)标准轴和孔的偏差可以由公式近似的给定。然而在实际生产中,公差和偏差都由3个复杂的表格来给定。在另外表格也给出

了基本尺寸大于500mm的值并且通常用于轴和孔

PART 2 Unit 2 生产设备的数字控制

(1)数控是程序控制的自动化,在数字控制系统中,设备通过数字,字母和符号来编码,以一种合适的格式为每一个特定的零件或工件定义一个程序指令集。当工件变化时,程序也变化,改变程序的能力也就是适合中小批量生产。写一个新程序比改变大量生产设备要容易的多。

(2)基本结构:数控系统由下面三部分组成:1.控制程序;2.机器控制单元;3.加工设备。

三部分的基本关系,由图2.1所示。程序输入到控制单元由送入的程序来引导加工设备控制。

(3)指导程序是一步步详细的指导加工设备的指令。通常指令把主轴上刀具相对于安装工具的工作台定位。更多先进的说明包括主轴的转速,加工工具的选择及其功能。程序刻在合适的介质中,提交到机器控制单元中,在过去几十年中,最常用的介质是一英寸宽的打孔纸带。由于打孔纸带的广泛使用,NC有时也叫纸带控制,然而这是现代数控使用的误称。现在进入使用更多的是磁带和软盘。

(4)机器控制单元(MUC)由电子和控制硬件组成,机器控制单元可以读出和执行指令程序,可以自动改变加工工具和其他加工设备。

(5)执行单元是数控系统的第三基础部分,执行原件是有效执行工作的原件,最常见的数控例子其中的一个加工操作,加工设备由工作台和主轴组成,就像用电动机来驱动一样。加工设备由控制单元来驱动控制系统的类型。控制系统的类型

(6)数控有2种基本类型,点对点式和轮廓式控制,点对点式控制也称定位控制,每个轴都是通过丝杠单独驱动,根据加工类型不同,加工速度也不一样。机器开始以最大速度运行来减少非加工时间,但当他达到数据定义的位置时,机器开始减速。因此在一个操作中,如钻或冲孔操作先定位在加工。在钻或冲孔之后,迅速收起工具移动到另一个位置重复此操作。从一个位置移到另一个位置是非常重要的,要遵循一个原则,从效率上考虑只要时间最短即可。点对点系统主要用于钻,冲孔,直铣操作中。

(7)轮廓式也就是连续路径式系统,定位和切削同时按不同速度来控制,由于刀具在指定路线运动同时切削,因此速度和运动的同步控制是非常重要的。轮廓式系统常用于车床铣床磨床焊接设备和加工中心。

(8)沿着路径的运动或以增量差补是几个基本方式的一个,在所有的差补中,要控制刀具的回转中心定位,补偿可以以不同直径及刀具磨损,在数控程序中进行改写。

(9)有一些已形成差补方案来处理数控系统中连续路径和加工系统产生的问题包括:

1.线性差补;2.圆弧差补;3.螺旋线差补;4.抛物线差补;5.立体差补

(10)每一种差补程序都允许程序源产生加工指令,适用于相对少的输入参数的直线或曲线路径。储存在数控单元中的模块预算指引工具沿计算出的路径运动。

(11)线性差补是最基本的差补方法,用于连续路径的数控系统中。两轴和三轴线性差补路线在实际中有时会分辨出的,但在概念上他们是一样的,程序源要明确指定直线的起点和缺点及沿直线的进给率。差补需计算两轴或三轴的进给速率以达到设定的进给速度。

(12)线性差补用来差补圆是不合适的因为程序源需要明确指定线段部分(线段数量)和各自的终点来大约模拟圆弧。圆弧差补法已形成他允许程序编程的路径,使用圆弧只要给定以下参数,圆弧终点坐标,圆心坐标,半径和刀具沿圆弧路径的走刀方向。圆弧差补也是由许多小的直线段来实现的,但这些小线段的参数由差补模块来计算出来的,而不是程序员设定的。切削是沿着每一小线段一个一个的进行以产生光滑曲线路径。圆弧差补的局限性是圆弧路径所在平面是由数控系统中两轴所决定的平面。(13)螺旋线差补结合了环形差补两轴在第三轴上做线性运动这样来定义空间三维螺旋路径。

(14)抛物线差补和立方差补法通过高次高程来实现自由曲线。这通常需要有强的计算能力,正因如此,他不如直线差补和环形差补常见。他们主要用于汽车工业中具有自由风格的车身面,而这是线性差补和圆弧差补不能精确容易得到的。

(15)数控技术运用于数控机床,这是数控的主要应用。现在主要用于商业。我们仍讨论数控系统特别是金属数控车床。数控车床技术

(16)种加工过程都可以在设计的专门车床上来实现加工。在车床上车削,在钻床上钻,在铣床上加工。有几种类型的磨削方法也要有相应种类的磨床。被设计的数控磨床可以进行下列加工包括:1.钻加工;2.铣床立式和卧式主轴;3.车床卧式主轴和立式主轴;4.卧式和立式镗床;5.仿形铣床;6.平面磨和圆柱磨

(17)除了上述几种机械加工方法,数控机床可用于其他金属加工过程包括:用于薄片板的金属板上冲孔的冲压机,用于薄片金属弯曲的折弯机。

(18)数控技术的介入到机加工对机床的设计和运用有着显著的影响。数控影响之一在程序控制下切削金属的时间与传统手动机床

大得多。所以对于一些零件如主轴驱动主轴丝杠磨损更快,这些零件要设计成持续时间长的。第二,增加电子控制单元后设备成本也随之增加,因此需要更高的利用率。取代传统手工操作的一班制,数控机床通常采用两班或三班制来获得更多的回报。数控机床的设计中减少了非操作过程的时间如装卸工件和换刀时间。第三,增加的劳动成本由人工成本变为设备成本。考虑到人工操作的角色,角色由技术熟练的工人控制,工件生产的每一个过程变为只控制装卸换刀和清除碎屑和类似的操作,这样一个工人可以同时操作两台或三台车床,机床的角色和功能也改变了。数控需要设计成高度自动化具有需要在不同车床加工几种操作联合在一起一定加工的能力,这些变化是通过一种新型车床在数控技术存在之前是不存在的,他丰富了数控加工中心

(19)加工中心是在20世纪50年代发展起来的具有在程序控制下在一个工件上一次裝夹完成几种不同的加工能力的机床。加工中心能完成铣,钻,铰屑,攻丝,镗,车端面及一些类似机加工工作。另外数控加工中心的典型特征包括以下方面:

(20)(1)自动换刀能力: 多种机加工工作一位着需要多种刀具。刀具贝安装在刀库或多刀刀库中。当一把刀需要被调换时,多刀刀座自动旋转到相应的位置上。自动化的换刀机构。在程序控制下进行,把主轴上需换下的刀和多刀刀座上的刀调换。(21)(2)工件的自动定位: 大多数加工中心都可以使工件沿着主轴旋转因此允许刀具达到工件的四个表面。

(22)(3)托架滑动装置(平板架): 加工中心另一个特点是有两个或多个独立拖板每个拖板都可以调整在刀具上。在加工过程中,一个拖板在刀具的前部,另一个拖板在远离主轴的安全位置。这样当机床正在加工当前的零件时。操作人员就可以从上一个工作循环中卸下最终加工好的零件,同时加紧毛坯用于下一个工作循环。

(23)加工中心可以分为立式和卧式。这是参照机床主轴方向来划分的。立式加工中心具有轴线相对工作台垂直的主轴,卧式车床的主轴轴线是水平方向的。这种区别通常会导致在这些加工中心加工的零件类型不同。立式加工中心用于以上进刀的平面工作。卧式加工中心用于立体形状,刀具在立体侧面可以进刀。一台数控卧式加工中心,例子如图2.2所示,具有上面提到的一些特征。(24)加工中心的成功应用导致了其他类似金属加工机床的发展。例如:在车削中心,把车削加工设计成一个高度自动化万能机床可以完成车削,刨,钻,螺纹加工和类似的操作 DNC AND CNC(25)数控的发展在分批生产和小批量生产中有着重要意义,从技术和商业角度来说都有着重要意义。数控有两方面的提高和扩展,包括:1.直接数据控制;2.计算机数字控制(26)直接数据控制

直接数据控制定义为一个制造系统,一定数量的机床有一台计算机通过直接硬件连线实时控制。相应的磁带播放机忽略在直接数控中,这样就消除系统中最不可靠的环节。不用磁带播放机而用电脑信息传给车床。原则上说一台计算机可以控制100台独立机器(DNC系统在1970年称为可控制26台机床)直接数控(DNC)电脑设计成在需要的时候提供指令给每一台机床,当机床需要控制指令时,计算机立即发送指令给机床。

(27)图2.3说明了DNC的基本配置。这个系统包括4部分:

1.中央计算机;2.大量内存,用于存放数控程序;3.通信线;4.机床刀具

(28)计算机从海量内存中取出部分程序指令送入到需要的独立机床中。相应的计算机也接受机床反馈信息。这种双工的信息流在实时控制加工系统中出现意味着每台机床需要指令的请求能立即得到回应。类似的,计算机必须总是要准备要接受信息和进行回应。DNC系统显著特点是:可以实时控制大量机床。更具机器数量和所需的计算机程度化。有时需要使用卫星计算机如图2.4所示。卫星计算机是更小的计算机,可以分担中央计算任务,减轻其负担。每台卫星控制几台机床。零件加工指令程序由计算机接受,储存在内存中。当需要时卫星计算机发送指令程序到每个独立机床中。来自机床的反馈数据在电脑中央存储接受之前存储在卫星内存中。(29)计算机数字控制

由于DNC技术的介入,在计算机技术上得到了很大的发展。计算机在尺寸和成本显著减少的同时,计算机的能力却有很大的提高。在数控中,这些发展使得由硬件布置的MCU()变为数字电脑控制的控制单元。最早,小型机在1970年使用。随着计算机进一步小型化,小型机被当今的微型机取代。

(30)计算机控制也是一种数字控制,它采用微型计算机作为控制单元。由于数字电脑用于CNC 和DNC中,只近似区分两种类型。有三个区分原则:

1).DNC电脑接受和发送指令数据都是来自许多机器,CNC电脑控制只是一个机器或多个机器。2).DNC电脑占有一个位置通过控制来实现机器的旋转。CNC电脑要非常靠近车床。

3).DNC软件的发展不经可以控制生产设备的每个单独零件,还可以在生产坚固性方面提供主要控制信息。CNC的提高可以提高特殊车床的能力。

(31)电脑数控系统的大体配置如图2.5所示。如图中所示,最初进入控制器的是磁带播放机。这样,CNC的外部系统与传统的NC机相似。然而CNC中的程序使用方法是不同的。

PART 2 Unit 4 机加工与切削加工中心

(1)这篇文章介绍了计算机控制的机械刀具设计的能力和较大的发展,就想我们知道的机加工和切削加工中心,这些机器有其他机器工具没有的柔性和多功能性,应此他们作为加工工具第一选择。机加工与切削加工中心

(2)需要注意的是每台机器他的自动化程度有多高,都要设计一种基本的加工样式就像所展示的那样,在制造过程中不同的表面是用不同的加工方法加工的,(3)例如,如图4.3所示,铣、端面车削、镗、钻、铰孔、切丝来获得额定的公差要求及最终表面精度。

(4)习惯性的加工过程的执行,始于工件的移动从一把加工刀具到另一把加工刀具直至所有的加工完成,这是一种切实可行的制造方法,并具有高度的自动化。这就是生产流水线的原理。最常见的是应用于高容量或大批量的生产,生产流水线是由几种加工刀具按一定的次序排列组成的,诸如自动发动机模块这样的工件从一个加工地点到另一个加工地点,并且在每一个加工中心都运用特有的加工方式进行加工,工件会被输送到下一个机器进行下一个加工。

(5)有这样一些产品或加工方法,他们的生产路线是不可行或不经济的,特别是当这些种类的产品在加工时需要迅速转换加工方法。一个重要的概念,在20世纪50年代末期得到发展,那就是机加工中心。一个机加工中心就是运用计算机控制的刀具在工件的不同表面和不同的方向上进行切削操作的能力,通常说工件是不动的,而切削工具进行旋转,比如铣和钻操作。

(6)机加工中心的发展暗示着计算机控制的机器刀具之间关系的进步。如数字控制的车床加工中心拥有两个转台带动几把切削刀具进行车削,端面车削,镗孔和切螺纹。

(7)工件在加工中心里是被安放在托盘上或模块上,那样可以被移动并且可以进行不同方向的旋转和定位,在进行特殊的切削过程完成后,工件不需要移动到另一台机器进行钻孔,铰孔,攻丝之类的附加加工。换句话说,工件和机器是被置于工件上的。(8)当所有的加工工作完成后,托盘会自动离开已加工工件,并且另一个托盘运用自动托盘变速器将工件进行定位和加工。所有的传动机构都有计算机控制,并且托盘定位器有10-30秒的循环时间,托盘台能够使得多级托盘更好的服务于加工中心,工具同样能够被装备到不同的自动化部件中,诸如上料与下料机构。

(9)加工中心装备了可变程序的自动刀具变换器,依赖于这样的设计多达200把切削刀具能够被贮存在刀库,刀鼓,刀链(工具库),辅助工具库能够更好的为一些特殊加工中心提供更好的切削道具,这些刀具可以自动的任意选择到达机械主轴的最短路线,刀具交换臂是一个普通的设计机构,他可以旋转来拾取特殊的工具(每一个工具有他自己的刀杆)和他在主轴上的位置。(10)刀具通过直接连接在刀具夹持口上的编码标签、条形码或记忆芯片来标识。一次换刀时间在5-10秒钟,对于小的刀具可以少于1-2秒,对于重达110公斤的刀具可以达到30秒,刀具变换器的设计趋势趋向于运用简单的原理提高换刀的时间。

(11)加工中心同时装备有工具的检验台,他可以给计算机数字控制提供信息对于在换刀和刀具磨损时的误差提供补偿。接触试探针可以自动装入工具夹持口中以确定工件的参考平面,以便对刀具设置进行选择并对加工的工件在线检测。

(12)图4.6所示的一些表面可以被联系起来,他们的相对位置可以被确立并储存在计算机软件的数据库中,这些数据稍后可被用于编写刀具工作路径的程序同时对刀具的长度和直径进行补偿,又可以为预先加工刀具的磨损提供补偿。机加工与切削加工中心的种类

(13)尽管这里有不同种类的刀具设计在加工中心中,两种最基本的种类垂直主轴和水平主轴;大部分的机器拥有上述两种轴线的能力,在加工中心中最大的切削刀具的尺寸可以绕工具一周,就像我们知道的工具包络,这个术语第一次应用在与工业机器人的联系上。

(14)垂直主轴加工中心或是水平主轴加工中心都是为了适用在工件具有深腔的平面上执行加工工艺,如铸型和模具制造。一个垂直主轴的加工中心类似于一个垂直主轴铣床。刀库在图示的左侧并且所有的加工方法和传动机构通过位于右侧的计算机控制托盘进行定位和修改。

(15)因为在加工中心中由于推力的作用方向是向下的,机器具有高的刚度,并在对于加工部分有较好的精确补偿,这些机器通常比水平主轴的机器便宜些。

(16)水平主轴的加工中心或水平机加工中心是为了适用于高大工件的表面加工的需求。托盘可以在不同的轴线(如图4.3所示)上旋转来进行不同种类的有角定位。

(17)水平主轴加工的另一个范畴是车削加工,是用特殊机床进行计算机控制的车削加工。一个三转动架的计算机数字控制的车削加工如图4.8所示,这个机器是由两个水平主轴和三个转动架以及不同的切削刀具设计而成的来执行一些旋转工件的加工。(18)万能加工中心同时装备了垂直主轴和水平主轴的机器,他们具有不同种类的特色,并且具有加工所有表面的能力(垂直的、水平的、斜的)。

机加工中心的特征和能力

(19)下面是加工中心的大部分特征:

a.他们有能力有效的,经济的并且拥有重复的高精度的尺寸的能力来处理不同型号的磨具的能力。公差的范围在正负0.0025mm。b.这些机器是万能的,拥有多达6条线性的有角传动的轴线并且有能力快速的从一种加工方式向另一种加工方式转变来满足不同种类的加工刀具和有效的减小地板空间。

c.装载工作和卸载工作,转换刀具,矫正,故障寻找所需的时间正在减少,应此生产能力提高,减少实验的需求尤其是对于熟练实验的要求并且生产成本降到最低。

d.他们可以高速的自动化并相对地紧凑,应此一个工作人员可以在同一时间照顾到两台或更多的机器。e.加工机器装备了刀具调节监测装置为了检测出工具的磨损与破裂,又可以探测工具磨损的补偿和工具调位。f.前处理和后处理的矫正和工件加工监测在加工中心的功能。

(20)加工中心可应用于更广阔范围的不同种类型号和特征,并且他们的成本范围从5万到100万甚至更高。典型容量范围可达75KW,并且最小轴转速通常在4000-8000rpm范围里,一些可以达到75000rpm,还用于小补偿切削的特殊应用。一些托盘具有支撑重达7000kg工件的能力,通常高的容量用于特殊的应用当中。

(21)现在大部分机器有一个标准组件的基准构造,应此不同种类的外围装备和附件可以被安装并且和修改不同种类产品的修改要求。

(22)因为加工中心的高生产能力,大量的切削会产生并且必须被收集起来应此一些需要一些可用于切削收集处理的设计,就像图示所举例那样,两个在横轴加工中心截面图底部的切削传送带这些特殊的加工传送带是螺旋形或螺杆型,他们沿着导槽收集切削并且将他们输送到收集点,另一条系统会选用链式传送带。刀具的选择

(23)加工中心能够有能力需求有效的花费可以说进行有效的成本控制,他们通常不得不每天做至少两次移动,所以他们必须有效并且可以连续调整在加工中心中产品的购买需求,因为他们固定的多功能性,但是加工中心可用于及时的制造大范围的特殊产品。(24)种类的选择和加工中心的尺寸依赖于以下几种因素。

a.产品的种类,尺寸和模具的复杂性。

b.加工方法的种类及执行方式和切削工具的需求次数。c.精确补偿的需求。d.生产速率的需求。

(25)尽管多功能性是选取加工中心的一个关键因素,我们必须考虑到权衡高成本高精度需求和比较在运用传统加工工具制造相同产品时的成本。

UINIT 4铸造工艺

引言

1锻造是一种重要的成型加工工艺。可以用来生产各种形状和尺寸的零部件,这些零部件从非常小的到重达几吨的。2锻造是把金属加热并且在合适的压力下使其塑性变形而成型的一种加工。通常这个压力是通过电锤或压力机的锤头打击面形成,如图4.1所示。

3手工锻造工具包括各种形状的锤子。在铸造过程中用来支撑工件的支座是砧座。

4对于半机械化铸造的小型和中型的零件,铸造锤所使用的各种动力都用共同的特点,例如手工铸造锤,他们利用它下落时的重力来提供金属成型时所需要的压力。大型零件的铸造是通过蒸汽或被压缩空气或液压或电力来提供铸造压力的。大型自动化锻造设备是用来生产大批量的工程部件。

5开模锻比如通常使用锤锻及闭模之间的差别。在锤锻中,组件是通过锤子的撞击和辅助的简单工具成型的。他们包括开式模具,即不会完全把金属封闭起来的成型。锤锻一种最基本的操作拔长是通过锤子的撞击金属拉伸片状金属,从而使金属变得又薄又长。在手工锻造中,工件在撞击下要旋转90°,从而可以完全锻造并阻止其侧面的进一步变形。与拔长相反的是镦锻,它能使压缩方向缩短。例如,将棒料加热并进行轴向捶打,其直径即可增大。

6闭模锻造广泛应用于大量的工业生产中,金属的成型是被压入一对锻造模中而完成的。上模通常与锻造压力机的撞击工具或锻锤相连接,下模是固定的。把他们结合在一起就形成了闭模。闭模锻造可以生产非常复杂和精度很高的组建,他们与传统的加工方法相比可得到更好的加工表面。磨具通常是由耐热和耐磨材料制作而成的。将一块大小足以填充模腔并能稍溢出的金属放入底模,并将顶模加压合拢。这块金属便获得该模腔的形状。闭模锻造通常用来加工连续加工的小工件或非常大的工件。对于后者的加工,例如喷气式飞机的组件,要使用很大的能产生5000吨或更多压力的水压机来提供压力。

第四篇:机械工程英语翻译

Part2

Unit 12

Nanomaterial and Micro-machine

纳米材料和微型机器

Nanomaterial

纳米材料

Nanomaterials and nanotechnolology have become a magic word in modern society.纳米材料和纳米技术已成为现代社会一个具有魔幻色彩的词汇。Nanomaterials represent today’s frontier in the development of novel advanced materials and present great promises and opportunities for a new generation of materials with improved and tailorable properties for applications in sensors, optoelectronics, energy storage, separation and catalysis.纳米材料代表了当今新型先进材料发展的前沿,为具有各种改良的、能按照人们各种要求进行“定制”的性能的新一代材料,在传感器、光电子学、储能、分离和催化剂技术等方面提供了广阔的应用前景。So nanomaterials are considered as a great potential in the 21th century

because of their special properties in many fields such as optics, electronics, magnetic, mechanics, and chemistry.因此纳米材料被视为21世纪具有巨大的潜力的一种材料,因为在很多领域如光学、电子学、磁学、力学和化学他们的特殊性质。

These uinque properties are attractive for various high performance applications.这些特殊的性质对于各种不同高性能的应用程序 来说具有很大的吸引力。

Exampeples include wear-resistant surfaces, low temperature sinterable high-strength ceramics, and magnetic nanocomposites.例如耐磨的表层以及在低温环境下 具有高张力的陶瓷和磁力纳米复合材料。

Nanostructured materials present great promises and opportunities for a new generation of materials of materials with improved and marvelous properties.纳米结构的材料为新一代具有改良的非凡的性能的材料提供了广阔的前景。

It is appropriate to begin with a brief introduction to the history of the subject.在这里简单介绍一下纳米材料的历史。

Scientific work on this subject can be traced back over 100 years.在这方面的科学研究可以追溯得到100多年以前。

In 1861 the British chemist Thomas Graham coined the term “colloid” to describe a solution contion containing 1 to 100 nm diameter particles in suspension.在1961年,英国化学家格雷姆首次用“胶体”这个术语来描述一种含有直径为1~100nm的微小悬浮颗粒的溶液。

Around the turn of century, such famous scientists as Rayleigh, Maxwell, and Einstein studied colloids.大约在20世纪末20世纪初的时候,一些有名的科学家如雷利,麦克斯韦和爱因斯坦开始研究胶体。

In 1930 the Langmuir-Blodgett method for developing monolayer films was developed.1930年,单分子薄膜的狼缪尔布罗杰特方法形成。

By 1960 Uyeda had used electron microscopy and diffraction to study individual particles.到1960年Uyeda 已经用电子显微镜检查法以及衍射来研究单个粒子。At about the same time, arc, plasma, and chemical flame furnaces were employed to produce submicron particles.几乎是同一时间 电弧,单离子体和化学反射炉已经用于生产亚微米粒子了。

Magnetic alloy particles for use in magnetic tapes were produced in 1970.1970年磁力合金粒子已经运用于磁带中了。

By1980, studies were made on clusters containing fewer than 100 atoms.到1980年,已有很多人开始对含有不到100个原子的原子团进行了研究。In1985,a team led by Smalley and Kroto found spectroscopic evidence that C60 clusters were unusually stable.在1985年,一个由斯莫利和克罗托领导的科研小组通过光谱分析证实了C60原子团具有不同寻常的稳定性。

In1991, Lijima reported studies of graphitic carbon tube filaments.1991年,Lijima 也报道了有关石墨碳管状丝材的研究情况。

Research on nanomaterials has been stimulated by their technological applications.关于纳米材料的研究是在他们的技术的应用引起的。

The first technological uses of these materials were as catalysts and pigments.这些纳米材料的第一次技术使用是催化剂和天然色素运用。

The large surface area to volume ratio increases the chemical activity.大面积的体积比增加到化学活动上。

Because of this increased activity, there are significant cost advantages in fabricating catalysts from nanomaterials.正因为这些增加的研究,从纳米材料上制造催化剂才有了巨大的成本优势。

The properties of some single-phase materials can be improved by preparing them as nanostructurs.一些单相的材料的性能还可以通过纳米结构来优化。

For example, the sintering temperature can be decreased and the plasticity increased on single-phase, structural ceramics by reducing the grain size to several nanometers.例如,降低燃烧温度,把颗粒大小缩小几个纳米,可以单相的提升建筑陶瓷的可塑性。

Multiphase nanostructured materials have displayed novel behavior resulting from the small size of the individual phases.由单个颗粒的小型体积,多相的纳米结构材料已经展示了非比寻常的性质。

In microelectronics, the need for faster switching times and ever larger integration has motivated considerable effort to reduce the size of electronic components.在微电子学中,对快速转换时间和更大规模的集成电路的需要在减小电子元件尺寸的工作起到了很大的作用

Increasing the component density increased the difficulty of satisfying cooling requirements and reduces the allowable amount of energy released on switching between states.而增加器件密度又会增加必须满足冷却条件以及减少开关状态转换是所允许的最大能量释放的难度。

It would be ideal if the switching occurred with the motion of a single electron.在单电子的移动时开关是最理想的状态。

One kind of single-electron device is based on the change in the Coulombic energy(库伦能)when an electron is added or removed from a particle.当从一个粒子中增加或较少一个电子的时候,一种单电子装置是以库伦能的变化为基础的。

For a nanoparticle this energy change can be large enough that adding a single electron will effectively block the flow of other electrons.对于纳米粒子来说,这个能量的变化因增加单个电子有效的限制其他电子的流动而充分。

In addition to technology, nanomaterials are also interesting systems for basic scientific investigations.除了技术,纳米材料的基本科学调查也是有趣的系统。For example , small particles display deviations偏差 from bulk 体积solid behavior such as reductions in the melting temperature and changes(usually reductions)in the lattice parameter.(网状参数)

例如微粒材料和块状材料会呈现出不同的性能,比如其熔点降低和晶格参数变小。

The changes in the lattice parameter observed for metal and semiconductor particles result from the effect of the surface stress, while the reduction in the melting temperature results from the effect of the surface free energy.金属和半导体粒子观察来的晶状参数变化是来自于表面的压力,而熔点的降低是来自于表层的自由能的作用。

By studying the size dependence of the properties of particles, it is possible to find the critical length scales at which particles behave essentially as bulk matter.通过研究微粒性能的数量相关性,有可能发现微粒像块状材料性能的临界尺度。

Generally, the physical properties of a nanoparticle approach bulk values for particles containing more than a fen hundred atoms.一般说来,纳米粒子如果达到包含有几百个原子的大小时,其物理性能就会接近块体材料。

New techniques have been developed recently that have permitted researchers to produce larger quantities of other nanomaterials.发展的新技术已经被研究学者用于发掘纳米材料的更多的性能了。Each fabrication technique has its own set of advantages and disadvantages.每项制造技术都有其优缺点。

Chemical techniques are very versatile in that they can be applied to nearly all materials(ceramics, semiconductors, and metals)and can usually produce a large amount of materials.化学技术是通用的,它可以运用到陶瓷,半导体以及金属等所有种材料中,还可以用来生产大量的其他材料。

A difficulty with chemical processing is the need to find the proper chemical reactions and processing conditions for each material.化学处理的困难是需要找到合适每种材料的化学反应以及反应条件。

The ability to characterize nanomaterials has been increased greatly by the invention of the scanning tunneling microscope(STM)and other proximal probes such as the atomic force microscope(AFM), the magnetic force microscope, and the optical near-field microscope.因为扫描隧道电子显微镜以及源自显微镜和磁力显微镜等类似仪器的发明,人们对纳米的特点的认知能力又大大增强了。STM has been used to carefully place atoms on surfaces to write bits using a small number of atoms.STM

(扫描隧道电子显微镜)技术一般用来将少量的单个原子小心地“搬运”到某些材料得的表面来书写二进制数码。

It has also been employed to construct a circular arrangement of metal atoms on an insulating surface and hence a nano-scale electronic component is fabricated.它还可以用来在绝缘表面将金属原子摆放成一个环状图形,从而制造出纳米尺寸的电子器件。

Other new instruments and improvements of existing instruments are increasingly becoming important tools for characterizing surface of films, biological materials, and nanomatirials.其他新的工具和现有工具的改善已经成为显现薄膜表层,生物材料以及纳米材料的主要手段。

The development of nanoindentors and the improved ability to interpret resulting from nanoindentation measurements have increased our ability to study the mechanical properties of nanostructured materials.纳米材料的发展以及改良的纳米技术的测量能力的展现增强了我们去研究纳米结构材料的性能的能力。

Improved high-resolution electron microscopes and modeling of the electron microscope images have improved our knowledge of the structure of the particles and the interphase region between particles in consolidated nanomaterials.改良的高分辨率的电子显微镜以及 电子显微镜图像的模型提高了我们对粒子的结构以及在加固的纳米材料的分裂区间的认识。

Micro-machine 微型机器 Introduction 介绍

From the beginning, mankind seems instinctively to have desired large machines and small machines.从一开始,人类似乎就本能地有一种想制造“大机器”和“小机器”的愿望。

That is , “large” and “small” in comparison with human -scale.这里的所谓“大”和“小”是相对人类本身的尺寸而言的。

Machines larger than human are powerful allies in the battle against the fury of nature;smaller machines are loyal partners that do whatever they are told.比人体大的机器将称成为人类同暴虐无情的自然界作斗争的得力帮手,而那些小机器则只能乖乖听从人类的命令,让干什么就干什么。

If we compare the facility and technology of manufacturing larger machines, common sense tells us that the smaller machines are easier to make.如果我们将生产大型机器的设备和技术相比,常识告诉我们小型机器更容易制造。

Nevertheless, throughout the history of technology, larger machines have always stood out.尽管如此,整个技术的历史,较大型机器一直很突出。

The size of the restored models of the water-mill invented by Vitruvius in the Roman Era, the windmill of the Middle Ages,and the steam engine invented by Watt is overwhelming.维特鲁维在罗马时代发明恢复模型尺寸大小的水车,中世纪的风车,和瓦特发明的蒸汽机是势不可挡的。

On the other hand, smaller machines in history of technology are mostly tools.另一方面,小型机器的科技历史大部分是工具。

If smaller machines are easier to make, a variety of such machines existed,but until modern times ,no significant small machines existed except for guns and clocks.如果小型机器相对容易制造,那么会存在一系列这样的机器,但直到现代,没有重要的小机器存在除了枪和闹钟外。

This fact may imply that smaller machines were actually more difficult to make.这样的事实可能暗示较小机器事实上是更难制造。

Of course, this does not mean simply that it was difficult to make a small machine;it means that it was difficult to invent a small machine that would be significant to human beings.当然,这并不简单意味着制造一个小机器是很困难的;而是意味着创造一个小机器是困难的,那将对人类是重要的。

Some people might say that mankind may not have wanted smaller machines.一些人可能会说人类可能不需要较小型机器。

This theory, however, does not explain the recent popularity of palm-size mechatronics products.然而,这一理论并不能解释最近流行的手掌大小的机电一体化产品。

The absence of small machines in history may be due to the extreme difficulty in manufacturing small precision parts.历史上小机器的缺乏可能是由于制造高精度小部件极度困难。The dream of the ultimate small machine, or micro-machine, was first depicted in detail about 30 years ago in the 1966 movie “Fantastic Voyage.”

最终的小机器或微型的梦想,首次被描述在详细介绍30年前在1966年的“奇妙的航行”科幻电影中。

At the time, the study of micro-machining of semiconductors had already begun.那时候,半导体的微细加工的研究已经开始。

Therefore, manufacturing minute mechanisms through micro-machining of semiconductors would have been possible.然而,通过半导体的微加工制造分钟的机制是有可能的。

There was, however, a wait of over 20 years before the introduction of electrostatic motors and gears made by semiconductor micro-machining.然而,有等待超过20年引进的半导体微细加工制成的静电马达和齿轮。

Why didn’t the study of micro-machining and the dream of micro-machines meet earlier?

为什么不把微加工的研究和微型机械的梦想早一点接触呢? A possible reason for this is as follows.一个可能的原因如下。

In addition to micro-machining, the development of micro-machines requires a number of technologies including materials, instrumentation, control, energy, information processing, and design.此外微加工,微型机器的发展需要许多科技技术包括物材、仪器仪表、控制、能源、信息处理和设计。

Before micro-machine research and development can be started, all of these technologies must reach a certain level.在微型机器研究和发展开始前,所有这些技术必须达到一定水平。In other words, the overall technological level, as a whole, must reach a certain critical point, but it hadn’t reached that point 40 years ago.换句话说,整体技术水平,作为一个整体,必须达到一定的临界点,但在40年以前是达不到这一点。

Approximately 20 years after “Fantastic Voyage ,”the technology level for micro-machines finally reached a critical point.大约在科幻电影《奇妙的航行》上映后20年,微型机械的技术终于达到一个相当水平。

Micro-motors and micro-gears made by semiconductor micromachining were introduced at about that time, triggering the research on development of micro-machines.用半导体加工技术制造出的微型电动机和微型齿轮机构开始在那时候出现,从而刺激了微型机械的研究和发展。

Micromachines as Gentle Machine 微电机作为温和的机器

The most unique feature of a micro-machine is , of course, its small size.Utilizing its tiny dimensions , a micro-machine can perform tasks in a revolutionary way that would be impossible for conventional machines.当然,它的体积小的微型机器的最独特的功能。利用其微小的尺寸,微机器可以一种革命性的方式,执行传统的机器不可能的任务。That is , micro-machines do not affect the object or the environment as much as conventional machines do.也就是说,相比传统机器,微型机器可以尽可能多的不影响它的对象或环境。

Micro-machines perform their tasks gently.This is a fundamental difference between micro-machines and conventional machines.微型机器可以柔和的执行他们的任务。这是微型机器和常规机器之间的根本区别。

The medical field holds the highest expectations for benefits from this feature of micro-machines.在医疗领域拥有最高期望得益于微型机器的特点。

Diagnosis and treatment will change drastically from conventional methods, and “Fantastic Voyage” may no longer be a fantasy.诊断和治疗将从传统方法上发生急剧变化,同时“神奇之旅”可能不再是一个幻想。

If a micro-machine can gently enter a human body to treat illnesses, humans will be freed from painful surgery and uncomfortable gastro-camera testing.如果一个微型机器可以轻轻地进入人体,以治疗疾病,人类将摆脱痛苦的手术和不舒服的胃肠相机测试。

Furthermore, if micro-machines can halt the trend of ever-increasing size in medical equipment, it could slow the excess growth and complexity of medical technology, contributing to the solving of serious problems with high medical costs for citizens.此外,如果微型机器可以控制医疗设备日益增加大尺寸,它可能会放缓医疗技术过剩的增长和复杂性,从而促使公民高额的医疗费用问题得到解决。

Micro-electronics and mechatronics 微型电子和机电一体化

The concept of micro-machines and related technologies is still not adequately unified, as these are still at the development stage.微型机器和相关技术的概念,还没有充分统一,因为这是仍处于发展阶段。

The micro-machines and related technologies are currently referred to by a variety of different terms.目前,微型机器及其相关技术涉及许多不同术语。

In the United States, the accepted them is “Micro Electro Mechanical Systems”(MEMS);in Europe, the term “Microsystems Technology”(MST)is common, while the term “micro-engineering” is sometimes used in Britain.在美国,“微机电系统”(MEMS)是被接受的,在欧洲通常叫“微系统技术”(MST)而在英国它被称作“微型工程”。Meanwhile in Australia “Micro-machine”.与此同时它在澳大利亚被称作“微型机器”。

The most common term if it is translated into English is "micro-machine” in Japan.最常见到术语,在日本它如果被翻译成英文是“微型机器”。

However “Micro-robot” and “Micro-mechanism are also available case by case.但是“微型机器人”和微观机制“也是到处可见的。

The evolution of machines and micromachines 机器和微型机器的发展

Many researchers see micro-machines as the ultimate in mechatronics , developed out of machine systems.许多研究人员把微型机器看作是机电一体化最终开发的系统。Ever since the Industrial Revolution, machine systems have grown larger and larger in the course of their evolution.自从工业革命以来,机器系统在其演化过程中已经越来越大。Only very recently has evolution in the opposite direction begun, with the appearance of mechatronics.最近机电一体化的外观次啊开始在反方向的演变。

Devices such as video cameras, tape recorders, portable telephones, portable copiers which at one time were too large to put one’s arms around , now fit on the palm of one’s hand.设备,如摄像机,录音机,便携式电话,便携式复印机,曾经太大以至于拿起来就是身边的武器,现在适合放在也个人的手上。

Miniaturization through mechatronics has resulted mainly from the development of electronic controls and control software for machine systems, but the changes to the structural parts of machine systems have been minor compared to those in the control systems.机械电子技术的发展带来的结构微型化主要是机械系统中电子控制技术和控制软件发展的结果。但机械系统结构部件的发展变化与控制系统的技术发展还是无法相比。

The next target in miniaturization of machine systems is miniaturization of the structural parts left untouched by present mechatronics.机械系统微型化的下一个目标是当前电子技术尚未触及到的结构部件的微型化。

These are the micro-machines which are seen as the ultimate in mechatronics.这就是所谓被视为机械电子学终极发展目标的微型机械

Seen in this light, the aim of micro-machines can be expressed as follows: 由此看来,微型机器的目的,可以表示如下

“Micro-machines are autonomous machines which can be put on a fingertip, composed of parts the smallest sized of which is a few dozen micrometers.”

微型机器是可以放在指尖上的自动机器,它的组成部分最小的尺寸是几十微米。

That is, since micro-machines which can be put on a fingertip have to perform operations in spaces inaccessible to humans, they are required to be autonomous and capable of assessing situations independently, as are intelligent robots.也就是说,既然要小到可以放在指尖上的微型机械完成那些由于空间位置限制人类而无法实行的操作,这些微型机械就应该具有”自治“能力,也就是说它们就像那些智能机器人一样,可以多所处的工作环境独,立做出判断。

To achieve this kind of functionality, a large number of parts must be assembled in a confined space.要实现这种功能,大量的部件必须组装在一个密闭空间内。

This factor determines the size of the smallest parts, and given the resolution of micro-machining systems, a target size of several dozen micrometers should be achievable.这个因素决定了组成部分的最小尺寸,由于微加工系统的解决,目标在几十微米大小是可以实现。

第五篇:机械工程介绍

机械工程

机械工程一级学科硕士学位授予点下设机械电子工程、机械制造及其自动化、机械设计及理论等三个二级学科。本学科有国家重点学科、上海市重点学科和上海大学“211工程”重点学科建设点的支撑。本学科围绕国家、地区振兴装备制造业的需求,积极探索高技术研究与先进适用技术开发相结合、基础理论研究与应用开发研究并举的学科建设方针,研究项目主要来自国家自然科学基金、国家863计划、国防科工委和企业的委托等,年均科研经费约3000多万,多项研究项目曾先后获国家科技进步奖、省市级科技进步奖。与美国、日本、加拿大、新加坡、香港等国家和地区的大学和研究机构有长期的合作关系。

本学科依托上海大学机电工程与自动化学院,主要研究基地包括上海市机械自动化及机器人重点实验室、新型显示技术及应用集成教育部重点实验室、国家863计划机器人主题产业化基地、上海市机器人研究所、上海大学精密机械研究所、上海大学-华中科技大学快速制造中心、上海大学机电工程设计院和各专业研究室等。

机械电子工程是国家重点学科,是学校211工程和上海市的重点学科建设点,是集机械、电子、液压、气动等技术和计算机控制、检测、传感等技术于一体的新兴综合性学科。该专业着重培养既有扎实的机械工程基础知识,又掌握基于计算机信息处理和自动控制理论的机电系统集成技术,造就能从事机电一体化系统研究、开发、应用及教学工作的高层次人才。

机械设计及理论专业以国际研究水平的前沿理论和尖端技术为发展目标,体现了交叉学科、边缘学科的内容。培养学生不仅通晓机械方面的专门理论,而且掌握现代电子、计算机和自动控制等在机械工程领域中的应用技术。通过学习和研究,可获得独立从事科学研究、工程技术开发、高等学校教学和选择多种工作的能力。

机械制造及其自动化专业研究机械制造领域中的设计理论与方法、制造工艺与系统中的理论与应用方法、机电装备在交叉学科中的应用理论和方法等。培养具有扎实的基础理论,宽广的专业知识,专业的工程思维和良好的创新意识,能够独立从事本领域理论研究和应用研究的高级专门人才。

指导教师:阚树林教授、陈晓阳研究员、汪希平研究员、王小静研究员、张建华研究员、沈雪瑾教授、张刚研究员、屠大维教授、俞涛教授、李明研究员、鞠鲁粤教授、李朝东教授、胡庆夕教授、何永义研究员、朱文华研究员等70多名正副教授。

研究方向:

(一)机械电子工程

01.机器人技术及应用研究

02.工厂自动化及应用工程研究

03.基于精密技术的微机电系统研究

04.机电一体化装置与工程研究

05.检测与传感技术

06.机械振动分析及智能控制

07.计算机图像和虚拟现实技术

08.机电与流体智能测控技术

09.微纳电子机械系统元器件(MEMS/NEMS)的研究及其应用

(二)机械制造及自动化工程

10.机械制造工艺与装备

11.创意展示技术与装备

12.数控机床及自动化装备

13.先进机器人技术与应用工程

14.光机电检测与传感技术

15.机电产品数字设计和分析仿真

16.机电产品网络化设计与制造技术

17.机械产品数字检测与质量控制

18.机电产品设计与制造过程管理

19.制造企业信息化及管理

20.包装工程技术

21.工业设计技术与应用

22.快速成型与快速模具制造技术

23.仿生建模与制造技术

24.三维重构和造型技术

25.仿生制造装备技术

26.微系统集成27.先进制造工艺与刀具

(三)机械设计及理论

28.转子系统的润滑理论与轴承技术、密封技术

29.CAD在轴系研究中的应用及系统优化设计

30.智能支承技术及机电一体化设计方法

31.机械工程现代设计方法和可靠性工程研究

32.机械强度可靠性与安全设计

33.计算机辅助摩擦学设计与测量技术

34.现代工业工程

35.润滑技术与表面工程

36.生物摩擦与生态润滑

37.电子封装与微系统集成技术

38.半导体光电设计、制造及装备技术

机械工程硕士(430102)

机械工程领域拥有机械基础件、精密机械及仪器、机械制造及其自动化、机械电子工程等四个上海市重点学科,其中机械电子工程系全国重点学科。机械工程领域的工程硕士主要依托机电工程与自动化学院下属的机械自动化工程系、精密机械工程系。学科中包括机械设计与理论、机械电子工程、机械制造及其自动化等三个博士点和四个硕士点,是学校重点建设的学科之一。

近年来机械工程领域完成了多项国家、省部级和企业委托科研项目,获国家和省部级科技进步奖30余项,每年承担的科研项目经费2000

万元,其中85%来自工矿企业。在机械工程基础研究、高技术研究、工程应用研究等方面,发挥着重要的作用。

本专业面向工矿企业,招收具有实践经验的工程技术人员,进一步加深基础理论、拓宽专业知识、增强适应性、提高创新能力。培养学员具有机电综合设计和研究的能力。毕业后可从事机械装备现代设计、机电一体化系统集成、先进制造系统管理等各项创新开发或管理工作。

一、主要研究方向:

1.计算机集成制造系统(CIMS)

2.机电一体化技术

3.现代设计与制造技术

4.产业机器人与柔性自动化

5.特种机器人技术

6.微机械与精密工程

7.现代机械系统计算机辅助工程

8.光学精密检测和传感技术

9.机电与流体智能控制技术

10.摩擦学与机械支承系统

11.工业工程

12.工程实验技术

下载机械工程材料教案1word格式文档
下载机械工程材料教案1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机械工程-求职信

    个人基本资料姓名:XXX 出生日期:1985.11.4 年龄:22 性别:男 籍贯:陕西省汉中市 学历:大专 专业:机械工程制造 主修:机电数控 爱好:看书、足球、组织活动 毕业学校:重庆信息工程专修学......

    简历 机械工程

    找IT工作就上才智尚招聘网个人简历姓名: 出生日期: 民族: 政治面貌: 户籍: 毕业院校: 最高学历: 证件类型:语言类别一: 语言类别二:性别:年龄: 婚姻状况: 人才类型: 现居住地: 毕业时间:专业......

    机械工程自荐书

    尊敬的领导:您好!我是XXX工业职业技术学院机械工程系的一名学生,即将面临毕业。XXX工业职业技术学院是由国家教育部,河南省政府批准的普通专科学校,是我国工程类人才的重点培养基......

    机械工程英语翻译

    Unit1 1、 What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table. Examples......

    机械工程英语翻译

    • Types of Materials 材料的类型 Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They also......

    《机械工程控制基础》课程电子教案

    《化工过程控制原理》课程教案 一、课程概况 这是一门化工类各专业必修的专业基础课。通过本课程的学习,要求学生掌握自动控制的基本原理和概念,并具备对自动控制系统进行分......

    机械工程材料论文

    机械工程材料发展现状叹息摘要:机械工程材料没具有广泛的用途,在国民经济中占有极其重要的地位。本文对此类材料的现阶段的发展现状进行探析。关键词:工程材料金属高分子复合材......

    机械工程训练总结

    11153106李识 机械工程训练总结 2012.6.5 为期一个学期的金工课就这样结束了。从一开始听完安全课后的胆战心惊,到后来激烈的选课,到最后我拿着自己做好的锤子去打分,虽然真的很......