第一篇:新课标人教版小学六年级数学上册《分数乘整数》教学反思
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。三堂课上下来,学生对算理的理解比较清晰。目前还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还[内容来于斐-斐_课-件_园ffkj.net]不愿意采用。可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。我在介绍这种办法的时候还特意把要约分的分数改写成分母和分子分别由几个数相乘的形式,帮助学生理解。可能这样做,还做得不够吧?再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
不知改进这些问题的办法有哪些?是不是只能是让学生多做一些练习题,通过不断强化的办法,让他们掌握计算时各个环节应注意的问题?
第二篇:人教新课标六年级上册数学教案分数乘整数1教学设计
分数乘整数
教学目标
1.知识目标:
使学生理解分数乘整数的意义和整数乘法的意义相同,并掌握分数乘整数的计算法则,正确运用法则进行计算。
2.能力目标:
通过引导学生进行比较、归纳,培养学生迁移类推的能力和初步概括能力。
3.情感目标:
在探究活动中激发学生学习数学的兴趣。
教学重点
分数乘整数的意义和计算法则。
教学难点:
为了计算简便,能约分的要先约分,然后再相乘。
教学准备
电教(课件)
教学过程
一、回顾旧知,复习铺垫
1.填空。
(1)8+8+8=()×()
(2)5×4=()+()+()+()
(3)5个12是多少?列式为()
乘法的意义是什么?
2.计算。
123333666101010
二、引导探索,学习新知
1.揭示课题。
今天开始我们学习“分数乘法”。首先学习“分数乘整数”。
2.分数乘整数的意义。
(1)出示例1。(课件)
(2)11表示什么意义?
(3)11的分数单位是多少?有几个这样的分数单位?
(4)“人走3步的距离是袋鼠跳一下的几分之几?”就是求什么?
(5)3个11相加的和是多少?怎样列式?
222
(6)11+11+11,这3个加数有什么特点?还可以怎样列式比较简便?
(7)11×3表示什么意思?
(8)把11×3和12×5的意义相比较,引导学生归纳本部门分数乘整数的意义与整数乘法的意义相同。
3.分数乘整数的计算法则。(课件)
22222261111111111(1)用加法算:
2222222236311111111111111(2)用乘法算:
(3)引导学生归纳:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。学生试做,强调为了计算简便,能约分的要先约分,然后再乘。
4.尝试练习:做一做第1题。
三、巩固深化,拓展思维
做一做第2、3题。
四、分课小结,提高认识
这节课学习了什么内容?分数乘整数的意义是什么?分数乘整数的计算方法是怎样的?计算时要注意些什么?
五、课堂练习,辅助消化
练习二第1、2、4题。
六、课外补充,拓展延伸
1.一种稻谷每千克能出大米20千克,100千克稻谷能出大米多少千克?
2.甲、乙两袋橘子,如果从甲袋中拿出4千克橘子放入乙袋,则两袋橘子一样重。原来甲袋橘子比乙袋橘子重多少千克?
七、作业
练习二第2、4题。
第三篇:小学数学六年级上册《分数乘整数》教学反思
分数乘整数,要让学生掌握技能不难,分数的分子与整数相乘的积作分子,分母不变。我觉得关键要让学生理解为什么可以用分数的分子与整数相乘的积作分子,分母不变。的方法来计算分数乘整数。所以新课的时候我让学生讨论,得出方法,但此时我觉得大部分的学生明白道理,而另一小部分的学生只能是一知半解,不能及时消化。当然消化是需要一定的过程的,我们不能急,欲速而不能达。我干脆让这一部分的学生一知半解下去,用练习去强化算理,在练习的过程中逐步内化。作为分数乘法的第一节课分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。必须强调这一点!。
第四篇:小学六年级数学上册《分数乘整数》教案
第一课时 分数乘整数
教学内容:青岛版六年级数学上册教材第2~5页及《新课堂》相关题目。教学目标:
1.结合具体情境,理解分数乘以整数的意义及计算的算理;掌握分数乘整数的计算法则并进行适当优化。通过观察、对比、试算等活动,经历分数乘整数的计算方法的探索过程。3.运用已有知识和经验主动进行探索性思考,并进行分析和归纳。4.在探索计算方法的过程中,培养合作意识、优化意识及良好的逻辑思维能力,体验探索学习的乐趣,获得成功的体验。
教学重点:
理解分数乘以整数的算理及计算方法。教学难点:
探究分数乘以整数的计算方法及算法的优化。教学准备: 课件 练习材料 教学过程:
一、创设情境,提出问题。
(1)谈话导入:同学们,学校要举行一次小手艺展示活动,我们班的王明同学也想参加。看,(课件出示信息窗1情境图)他准备制作一个漂亮的风筝,这个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,王明遇到困难了,不知道该用多少材料,咱们都来帮帮他,好吗?
(2)交流信息,提出问题。
师:仔细看图,你了解到哪些信息?根据这些信息,能提出什么数学问题? 学生收集信息思考问题。
预设:因为图中给的信息是“风筝的尾巴是由6根布条做成的,每根布条长1米”,学生最容易想到的问题是:“做这个风筝的尾巴,一共需要多少米布?”
2二、自主学习,小组探究。1.探索分数乘整数的意义。
(1)要解决这个问题可以怎样列式?你是怎样想的? 预设
1111111生1:+++++,因为每根尾巴长米,一共有6根尾巴,所以***个相加。师板书:+++++ 2222222生2:我们学习整数乘法时,求几个相同加数的和,可以用乘法计算,所以我想6个111相加也可以用×6。师板书:×6 222(2)评价小结:这个同学说的真棒,他能通过相同整数连加可以用乘法算式表示,联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。
(3)揭示课题
1质疑:在这个乘法算式中,是什么数?(板书:分数)6呢?(板书:整
2数)这是什么样的算式?(板书课题:分数乘整数)能不能再举出几道这样的题目?
学生举例,老师随机板书。
明确:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
过渡:了解了分数乘整数的意义,怎样计算分数乘整数呢?这是我们这节课要研究的第二个问题。
2.探索分数乘整数的计算方法。(1)独立计算,尝试解决。谈话:尝试计算
1×6,你觉得怎样算好就怎样算,把你的做法写在作业纸2上,不仅要会算,还要把道理说清楚。
(2)小组活动。把你的做法说给组内同学听,相互交流,看有没有不同做法,小组长作好记录,以待汇报。
三、汇报交流,评价质疑。1.小组汇报,评价质疑。
以小组为单位汇报,要求每小组只介绍一种方法,过程要清晰。同时组织学生养成倾听的好习惯。
(1)小组展示交流。预设:
1×6=0.5×6=3(米)211111116②×6=+++++==3(米)222222221*661③×6= ==3(米)222①(2)互相质疑评价。第一种方法是把
1转化成0.5,再按小数乘法计算,这种计算方法熟悉,但2有些分数化小数过程很麻烦,还有的分数不能化成有限小数。这种方法有一定的局限性。
第二种方法利用了乘法和加法的联系来解决问题,很清晰,但书写过程较麻烦,能简单些就好了。
第三种方法既简单又清晰,但为什么分母2不变,只把分子1和6相乘呢?(3)教师评价:同学们的做法都很好,评价得很到位,问题提得很有价值,如果能把乘法和加法联系起来思考,思路就更加清晰明朗。下面我们把②③两种方法结合起来
课件演示方法③的计算道理。
现在大家明白为什么分母2不变,只把分子1和6相乘了吧。今后在教师时,我们可以把第二步和第三步省略,直接按方法③写就可以了。
2.沟通优化,促进发展。(1)独立计算7×9 12(2)组间交流:说说计算的道理。(3)全班交流:
①请1位学生板演计算过程。②说计算道理。③质疑:
为什么不用第①和第②种方法计算?(引导体会第①和第②种方法或有局限性,或者麻烦,所以用第③种方法较普遍,适用于任何一道分数乘整数题。)
(4)小结分数乘整数的计算方法。3.探索计算中的简便方法(1)独立计算10×(2)独立计算
2,之后请一位同学说计算过程。1511×36。18①质疑:怎么这次的做题速度明显落后了,你们遇到什么问题?(使学生产生探究简便方法的心理需求)
②讨论:能不能在原有方法的基础上,想办法使计算再变得简单一些? ③课件出示简便算法:先约分再计算。
13(3)独立计算×21,再次感受简便算法。
四、抽象概括,总结提升。
同学们,以上我们通过替王明解决做风筝的尾巴需要多少材料的问题,理解了分数乘整数的意义与整数乘法的意义相同,探究了分数乘整数的计算方法,知
道了当分数的分母与整数能约分时,应该先约分再计算。需要注意的是:不是所有的整数与分母都能约分。
五、巩固应用,拓展提高。1.自主练习1.仔细看图,看谁填得又快又好。
(1)学生独立完成。
(2)全班交流,随时纠正出现的问题。2.自主练习2.出示题目。
学生收集信息,发现问题,弄懂题目意思,找出隐含的条件。学生列式解答,至少有一步计算过程。
展示交流,集体评议。重点评议是否做到先约分再计算。3.自主练习7.学生独立计算。
指名汇报计算结果,并简要说说计算过程。观察这两组算式,你发现了什么?
引导学生发现:两个数相乘,一个因数不变,积随着另一个因数的变化而变化。
4.对比练习:想一想,再计算。
12+ 242477(2)×6 +6 3636(1)12×看清运算符号,再计算。完成后,小组交流。5.自主练习3.过关测试:看谁能在3分钟内把这八道题全部做对,能约分的写出约分过程。6.总结:
师:时间过得真快,一节课就要结束了,大家有什么收获?谁会用一个字母式子表示分数乘整数的计算方法?
师:用含有字母的式子能更清楚、明了地表示计算方法。这节课,同学们不仅探索出了分数乘整数的计算方法,而且还能用它解决问题。收获真不少!
板书设计:
分数乘整数
使用说明:
1.教学反思:回味课堂,我感觉亮点之处有:
(1)注重充分挖掘文本资源,有效突破难点。在教学过程中,注重留给学生充足的时间和空间,放手让学生运用已有的知识和经验自主探索计算方法,极大程度地发挥了学生的主体性,产生了多种算法,有效地落实“解决问题策略多样化”的理念。“为什么分母2不变,只用分子1去乘6”,这是理解的难点,在教学中,通过不断地“追问”,看似多用了时间,多费了笔墨,实则提升了学生对问题的认识和理解,也为后面总结计算方法提供了有力的支撑。
(2)引导学生体会算法多样化和算法优化的有效结合。先约后乘这种简便计算方法的教学并不是教师强加给学生,而是在师生共同计算、观察、比较的基础上自然生成出来的。教师在教学完分数乘整数的一般计算方法后,教师并没有
立刻把算法优化,而是引导学生继续用这种方法做,促使学生自己亲身体验后发现:一般方法挺麻烦。通过这一引导,寻找更优算法的想法呼之欲出,并成了全体学生的追求方向,这样,再引入简便算法的学习就水到渠成了。
(3)注重学生符号感的培养。课的最后,老师不仅与学生一起回顾了本节课学到的数学知识,还要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号感。
2.使用建议:
这节课内容相对比较简单,如果学生约分掌握比较熟练,可适当增加练习。3.需破解的问题:
以上练习题的解题思路基本同已学过的整数、小数解题方法相同,教材未对一些应用题的数量关系及解题方法进行讲解,课堂上是否安排一些相应的题目以复习数量关系及整数、小数的计算方法?
第五篇:数学分数乘整数教学反思
数学分数乘整数教学反思
数学分数乘整数教学反思1
这节课主要是通过以活动的形式,让学生在实践的过程中感受学习的乐趣,感悟学习知识。使学生在自己的认知的基础上进行学习。通过教学来看,效果比较好,学生学习的积极性高,学习兴趣浓。可以从以下几个方面来思考,以求取得更好的效果。
1、教学采用通过实践“感悟”的教学,让学生从实践的过程中自觉领悟互相垂直的概念。先采用学生生活中的事例,在生活中抽象出互相垂直的图形。
从上面的图形中可以看出互相垂直的直观图形在学生的头脑中已经有了很清晰的印象,这是一种为学生提供的凭直觉感悟的过程。从实践看来学生接受的效果很好。
2、学生实践,把长方形、正方形和平形四边形的纸折出两条互相垂直的线,出现了下面的情况:
教师通过引导学生观察,学生得出用一张纸先折一次,然后沿折痕对折,就可以得到两条互相垂直的直线。在折的时候,出现了有的同学折得很复杂,找出了很多组互相垂直的线。
3、学生悟出结论: 要形成互相垂直的必备条件是:在同一平面内相交、交角成直角。
4、这节课成功地采取选择贴近学生思维的素材,通过学生实践感悟学习的教学方法,成功地从培养学生的创新能力和探究问题的能力着手,让学生主动获取知识,发现知识。尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决互相垂直的知识置于生活实践之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角、相交等知识结合起来。
数学分数乘整数教学反思2
在这一片断中,学生积极主动地投入到问题的研讨和解决之中,课堂气氛轻松、活泼。反思这一教学过程的成功,主要有以下两个原因。
一、尊重学生的数学现实。
在第一次教学《分数乘整数》之后,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题探讨研究得出结论)进行教学,学生就会觉得这些知识我早就知道了,没什么可学的了。,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时,我故意将分数乘整数的结论灌输给学生,省去了获取结论的研究过程,意在让学生问为什么。这时学生抓住这一质疑点,提出:为什么只把分子与整数相乘,分母10不和3相乘?接下来的教学就引导学生带着为什么去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学学习的个性化。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,教师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了不同的人学习不同的数学的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果;也有的学生通过生动的数学实例进行了分析。由此我深深地体会到,包或教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
数学分数乘整数教学反思3
这节课的教学,让学生进入一个生动活泼、主动的和富有个性的活动,以学生为主体的、和谐的课堂氛围。学生兴趣高涨,进行了充分的活动,并且自主探索,在充分的体验中,感悟到了周长的实际含义。教学过程比较好地体现了新课标的“让学生经历知识形成的全过程”这一理念。
1、明暗双线交融,关注三维目标
以小蚂蚁的引领为主线,小蚂蚁从“客人”到“同学”,最后到“小蚂蚁考一考我们”关注学生的情感态度,小蚂蚁――这个使学生平视的形象融合在整个课堂中,从象小蚂蚁一样描边线,到小蚂蚁提出的问题,让学生关注自己、关注他人――小蚂蚁。以周长的认识为暗线,实现过程性和知识目标――经历周长的认识过程,理解周长的含义。两条线相互交融,共同着力于学生的发展。
2、动手体验数学,动脑提炼数学
学生在学习过程,通过自己动手,用手摸物体的边线一周,用笔描树叶和图形的轮廓,测量周长等亲身体验周长的意义与测量方法,学生学习兴趣高涨,使学生把周长这个抽象的概念与生活中具体的事例联系起来,在亲身体验和经历中真切的感受周长。同时,在体验之后动脑提炼周长的含义:选择一个图形,比较快地测量出它的周长;测量老师的腰围时,先让学生估测老师的腰围,然后选用合适的工具实际去测量,借此来估计自己的腰围。通过这个环节,学生在初步体验的基础上上,拓宽对周长意义的理解,实现了对周长的深入建构。
3、鼓励猜测,激发自主学习热情
我在教学中,鼓励学生大胆地进行数学想象,以激起学生饱满的学习热情和积极的思维,促进学生自主探究。如“∠”有没有周长?这一问题的设计,鼓励孩子进行大胆猜测。有的孩子说有,而有的孩子说没有,这一矛盾的激化,孩子们很自然地投入到研究中。在老师的指导下,应用所学知识,通过猜测、思考、讨论、表达等数学活动,主动探索出“角”没有周长,只有封闭图形才有周长。从而进一步认识周长。
反思至此,我最大的感触是: 优点与遗憾是每一堂课必经的两道风景。我这节课的遗憾是:在每一次活动进行总结时 引导学生进行总结时,要多给学生机会说说。在测量腰围时,有的学生隔着很厚的衣服从外面测量腰围,出现了很不准确的估算结果,教师指导不到位。 如果我们每一位教师都能冷静珍视每一堂课,化遗憾为经验,我们的课堂不就达到了“柳暗花明又一村”的境界了吗?
数学分数乘整数教学反思4
首先,给学生创设学习情境,三个图形的比较,学生通过仔细观察,发现圆环的特点,(引出圆环)激发了学生的学习兴趣。再通过引导学生主动探究,发现了圆环面积的计算方法。然后通过观察算式的特点引导出另一种方法。
在课堂评价时,我想了很多鼓励学生的话,学生在得到赏心悦目的语言评价中得到自信和兴趣。
本节课我感觉有几个思考的地方。1,在试一试做完后,我应该马上总结出要求圆环的面积必须知道哪些条件。(两个半径)2,出现环宽的两个应用题,是否简单,是否要出示。可能直接出示“圆形花园周围铺上一条石子小路,求出小路的面积。”更简单一些。也更形象一些。3,可以利用学生做的圆环来贯穿下面的练习。首先可以让他们量出他们做的圆环的大小半径和环宽,这样就可以形象地让学生理解环宽的概念。避免了我在练习中涉及环宽的概念而说不清楚的尴尬。然后可以求出圆环的面积,这样学生就通过实际操作,真正理解了圆环的面积计算。达到理想的效果。4,3.14×(R2—r2)这个公式还是出现比较好.学生可以更清楚地运用这个简单的运算方法。
数学分数乘整数教学反思5
把这次公开课选为《分数乘整数》这一内容,是因为上学年听了冬梅老师讲了若干遍《分数乘分数》,并一举在市名列前茅。我选了《分数乘分数》的.前一信息窗,内容相对来说比较简单。对此类课的教学思路有了一定的了解,感觉有信心上好这节课。
课堂上,我是按照事先设计好的方案一步一步地进行着。结果第一环节提出数学问题,根据已有的经验列出算式就出了问题,我提出:“‘求做一个风筝一共需要多少米布条?’其实就是求什么?”。一下子把孩子问在那里了。周折了一小会儿才开始列式计算了。紧接着第二个环节列式计算,并理解分数乘整数算式的意义还好。很顺利地进行到第三个环节学习计算方法。大部分学生都用分母不变,只把分子与整数相乘的方法计算的。我不失时机地启发学生思考:为什么只把分子与整数相乘呢?比比看谁的理由最充分。这时学生们都陷入了思考,带着“为什么”去探索。在课堂上迫不及待。积极主动地进行讨论,在理清算理的基础上通过课件演示总结出法则。这一环节我自己还比较满意。到了第四环节,通过法则指导计算,并学会简便方法约分时,又出问题了,学生不理解为什么约分后的分子相乘分数的大小还不变,一直在那里纠结,足足耽误了将近十分钟的练习时间。
通过评课,同行们给我找明了问题的关键:
1、教师在第一环节的提问绕圈子了,不要问学生“要求这个问题就是求什么?”直接让学生列式解答即可。在列式的基础上让学生自己发现6个相加可以写成×6的形式,从而明白分数乘整数的意义。
2、在探究算法的过程中,应当与算理相融合,一位同学探究说出算理和算法以后,应该结合课件再多找几个学生强化一下,这样落实面才会更广一些。
3、当学生提出对于约分环节的不理解时,教师不要急于解释,可让其在练习的基础上验证一下,或告知其下课后继续研究,一定不要把时间浪费在与个别学生纠结一些价值不大的问题。教师要有主观能控力。
4、分数的书写顺序要注意标准。
听了大家伙的建议,自己感觉很有道理,不再去邻班讲一次真对不住朋友们提出的这些大好建议。感谢教研组的评课,各路高手就像是一位位神医,帮我查找到这节课的各种病症,只不过要想医治成功还需要“患者”的努力。
数学分数乘整数教学反思6
本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:
一、直观演示是学生理解分数与除法的关系的前提。
由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。
二、培养学生提出问题的意识与能力是培养学生创新精神的关键。
爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:
a:你们是几块几块的分的?
b:每人每次分得多少块饼?
c:分了几次,共分了多少块?(就是3个块就是几块)
d:怎样才能看出是几块?
问题的提出针对性强,有利于学生把握数学的本质。
三、用发展的思维去理解所学的知识,注重了知识的系统性。
数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。
数学分数乘整数教学反思7
数学是研究现实世界的空间形式和数量关系的科学。数学学习是中学生增长学习能力和创造能力的广阔天地。而数学学习方法指导是教育者通过一定的教育途径对学习者进行学习方法的传授、诱导、诊治,使学习者掌握科学的学习方法并灵活运用于学习之中,逐步形成较强的自学能力的方法。
长期以来,对教师教学的要求强调领会教学大纲、驾驭教材较多,因此教师钻研教材多,研究教法多,而研究学生思维活动较少,因而选择适合学生认知过程的教法也少。学生对知识的获得一般都要经过主动探究,小组合作,主动建构过程。在新课程背景下,如何让感到数学好学,把学数学当成一种乐趣,真正做初中数学的小主人。然后有计划、有步骤、分阶段、分层次、有针对性地指导学生掌握各种学习方法。使我们的学生能够主动地、独立地学习,达到新课程要求标准。具体数学学习方法的指导是长期艰巨的任务,抓好学法指导对今后的学习会起到至关重要的作用。主要从以下几个方面来谈一谈。
一、引导学生预习,细心读教材培养学生的自学能力
学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课堂的学习效率,寻求正确的学习方法。
在教学过程中,教师应指导学生学会读书的方法,做到眼到、口到、心到、手到。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容的重点、难点所在,对不理解的地方打上记号。然后细细的读,即根据每章节后的学习要求一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
二、加强互助学习,共同提高
教师在教学中要注意培养差生的自信心外,更应该充分利用优等生这个教育资源,进行好生差生配对,这也是合作学习的一种方式,它从以人为本的理念出发,关注了差生的发展,构建了团结,合作共同发展的良好的,和谐的学习环境。同时它也弥补了教师课后辅导时间不足的缺陷。
三、课内重视听讲,培养学生的思维能力
初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼、精力分散,使听课效率下降,因此,重视听法指导,使他们学会听,是提高学习效率的关键。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。听教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定掌握最佳讲授时间,使学生听之有效。这样,让学生抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能使其由“听会”转变为“会听”。
四、指导学生思考
数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的联系,形成新的数学认知结构的过程。由于这种工作最终必须由每个学习者相对独立地完成。因此,在教学过程中老师对学生要进行思法指导,教师应着力于以下几点:使学生达到融会贯通的境界。在思维方法指导时,应使学生注意:多思、勤思,随听随思;深思,即追根溯源地思考,善于大胆提出问题;善思,由听和观察去联想、猜想、归纳;
五、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,但不是烂做搞题海战术,熟悉掌握各种题型的解题思路。学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。
在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
六、指导学生记忆。
教学生如何克服遗忘,以科学的方法记忆数学知识,对学生来说是很有益处的。初中新生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行记忆方法指导,这是初中数学教学的必然要求。
教学中,首先要重视改革教学方法,抛弃满堂灌,以避免学生“消化不良”,其次要善于结合数学实际,教给学生相应的方法。总之,对初中生数学学习方法的指导,必须与教学改革同步进行,协调开展,持之以恒。要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法、同时要理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。
以上这些只是我个人在从事数学教学过程中的一点心得体会,说出来,与大家共勉。
数学分数乘整数教学反思8
教学片断:
师:哪些同学知道3/103的计算结果?
(绝大多数学生举起了手,部分同学迫不及待地说出了答案:9/10。)
师:说一说你是怎么计算的?
生1:我从书上看到,分数与整数相乘时,只要把分子与整数相乘就可以了,分母不变。所以,33=9,分子是9,分母仍然是10,结果就是9/10。
(举手的学生都点头表示同意生1的发言,有个别学生表示是从课外数学班的学习中了解到的。)
师:老师也同意用这个方法进行分数与整数相乘的计算。对于这个内容,大家还有什么疑问?
生2:为什么只把分子与整数相乘,分母10不和3相乘?
师:多好的问题!(这个问题正是理解算理的关键。)大家有什么想法?可以在小组内交流。
(几分钟以后,许多同学举起了手。)
生3:我是这么想的:3/10表示3个1/10相加,同分母分数加减法的计算法则是,分母不变,只把分子相加减。所以分母不变,只计算分子3+3+3,也就是33就可以了。
师:你能抓住分数乘整数的意义,从而将分数乘整数与分数加法的计算方法联系起来思考,真好!
生4:3/10里面有3个1/10,3/10的3倍就是有9个1/10,也就是9/10。
师:你对分数的计算单位以及分数单位的个数理解得很透彻!
生5:如果将3/10的分子和分母都乘3,根据分数的基本性质,结果还是3/10,而不是3个3/10。
师:生5从反面给我们讲明了分母不能与整数相乘的道理,谢谢你。
生6:我认为3/10等于0.3,0.33等于0.9,也就是9/10。所以,3/103等于9/10。
生7:我想给大家举个例子说明3/103等于9。老师拿来10支粉笔,每天用去3/10,也就是3支,三天用去9支,也就是用去这些粉笔的9/10。
师:用日常生活中的实例来理解数学,也是一种非常好的学习方法。
数学分数乘整数教学反思9
一.在问题的引入上,新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲:
1.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过 程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。利用温度计引入调动学生学习的积极 性。
2.教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
二、在问题的探索上:
我采用了师生互动,通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索 发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学 生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。
三、习题的配备:
整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方。在讲解完例题后,让学生互 相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。但我总体感觉习题的量不够充足,学生的练习机会较少。
四.不足之处:
学生通过学习掌握了画数轴时原点的位置和单位长度可以实际情况来确定,但由于受课本练习册数轴图形的影响,有部分学生认为只有向右的方向才能作为数轴的正 方向,遇到向其它方向为正方向数轴图形就认为它不是数轴了。这有待在今后的教学中改进教学方法使学生加深对这方面的理解。
数学分数乘整数教学反思10
“四则运算”是人教版小学四年级数学下册第一单元的资料,四则运算是贯穿于小学数学教学全部过程。其资料占小学教学知识的主要位置,可见计算潜力的培养在数学教学过程中起到举足轻重的作用。我在这一单元的教学中,充分利用教材带给的生活素材,把解决问题与四则混合运算顺序有机结合起来,将探求解题思路与理解运算顺序有机结合起来,让学生在经历解决问题的过程中明确先求什么,用什么方法计算;再求什么,又用什么方法计算;最后求什么,用什么方法计算。感受混合运算顺序的必要性,掌握混合运算顺序。
在教学过程中我主要有以下几点体会:
1、对四则运算顺序的理解
通过学习学生基本能记住掌握四则运算的基本顺序,即先括号内,后括号外,先乘除后加减,单一加减或单一乘除要从左到右的顺序计算,学生虽说能记住,但在实际的练习中出现了以下的问题或者说是误解应值得教师注意。
(1)对“先”字的理解,我发此刻很多学生的练习中出现误解现象,他们认为先算的就就应写在前面,如计算12+(13-4)-6就会这样些=9+12-6把先算的括号写在前面,还如12+5×6-15就会这样写=30+12-15,打乱运算的顺序。
(2)在理解“先乘除,后加减”时误认为要先算乘法后算除法,先算加法后算减法,如计算12÷3×2写成=12÷6=2,计算12-3+6就写成=12-9=3。而实际所谓先乘除后加减是指乘除哪种运算法则在前九先算哪种,加减也是。
以上两点对“先”字的理解先算出现的误解现象值得教师注意纠正指导。
2、很多学生在解答如“326与290的差去乘18与24的和,积是多少?”一类的问题时,对“与”、“和”两个字的含义理解出现误解,个性是“和”的含义。在学生的练习中我发现很多学生出现错误,不理解其意思导致出现错误。“和”在题目中是表示连接两个数字的关系的连词使用还是表示运算法则中的加法来使用,老师必须要给学生将清,引导学生区别,正确的理解含义并写出正确的四则余混合算式。
3、让学生用数学语言把算式说出来。(如x除以a减b的差。)这也为学生对文字题的理解打下了基础。
4、遇到学生错误的典型例题时,进行错误的辨析,让学生知其所以然。使学生在经历
探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。
数学分数乘整数教学反思11
本节课我从复习同分母分数加法引入,得出整数乘法的意义和分数乘整数的意义相同都是求几个相同加数和的简便运算,由此进入分数乘整数方法的计算教学。教学方法时我注重算理的讲解、注重图形和算式的联系。可以说这节课的内容很简单,但作业反馈的情况看正确率却很低。存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,就比较爱出错。再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。
数学分数乘整数教学反思12
时间过得飞快,一眨眼之间开学的第一次月考已经结束了。应对这一张张优而不尖和“绊脚石”似的的分数令我不禁陷入沉思;看看一道道不该错的题目被打上大大的叉时,心底里感到无限地自责……
数学的成绩确实不能让自己满意。数学是开学以来主攻的科目,时间精力的投入收到了必须效果,但是细节与知识的结合还有漏洞,在以前没有养成良好的学习习惯,对概念的模糊,都在这份数学试卷中暴露了。压轴题上不去,细节还扣分,这样高不成低不就的学习是务必要摒弃的。学习知识就要新旧结合,同时还要锻炼思维的严谨性,把知识点学透不能摸棱两个。只有把只是学透了,思维才能得到充分的发散。还有一些完全是粗心造成的,使那本该属于我的分数离我而去。学习务必循序渐进。只有地基打牢固了,高楼大厦才不会倾斜;只有走稳了,才会简单地跑。学习任何知识,务必注重基本训练,要一步一个脚印,由易到难,扎扎实实地练好基本功,不要前面的资料没有学懂,就急着去学习后面的知识;更不能基本的习题没有做好,就一味去钻偏题、难题。这是十分有害的。
在今后的学习生活中,仍然有一段很长的路要走,良好的学习习惯是成功的保障。我的目标就是在所有考试中不丢让自己觉得遗憾的分。学习而不思考,等于吃饭不消化,我相信对于学习中的问题,有了好的学习态度,在经过自己的思考和总结必须会提升自己的学习质量。
数学分数乘整数教学反思13
“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义.在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
(1)、让学生用画图的方式强化理解一个分数的几分之几用乘法计算.
(2)、强化分率与数量的一一对应关系.并根据关键句说出数量关系。
(3)、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同.
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
数学分数乘整数教学反思14
自我反思有助于改造和提升教师的教学经验,经验+反思=成长,只有经过反思,使原始的经验不断地处于被审视、被修正、被强化、被否定等思维加工中,去粗存精,去伪存真,这样经验才会得到提炼、得到升华,从而成为一种开放性的系统和理性的力量,唯其如此,经验才能成为促进教师专业成长的有力杠杆。阅读这篇数学教学反思之《分数乘整数计算法则》,和小编来感受它的魅力吧!
在教学“分数乘整数计算法则”时,我从一道计算题入手,让学生联系生活实际,创设问题情境,较好地体现了学生学习的主体性,沟通了数学与生活实际的联系,使学生认识到“数学”是生活中的数学,是有用的数学。同时这道计算题还沟通了与新的知识的联系,引出了分数乘整数的意义,并能让学生凭借这个知识点,探索出分数乘整数的计算法则。在教学分数乘整数的计算法则时,我还注重了放手让学生去探索,注重了学生的合作交流,通过讨论发现知识的奥秘,通过交流拓宽全体学生的知识面。由此我深深地体会到,教师不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。我们教师在课堂上只是学生的引路人,是导师
这则数学教学反思之《分数乘整数计算法则》希望能给你的学习生活增添益处。
数学分数乘整数教学反思15
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2
解后笔者便引导学生进行反思小结.
(1)计算常出现哪些方面的错误?
(2)出现这些错误的原因有哪些?
(3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。