第一篇:《轴对称图形》教学教案设计
《轴对称图形》教学教案设计
教材简析:
《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。在本章教材的编排顺序中起着承上启下的作用。把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。从而更好地发展学生的空间观念。
教学重点:掌握轴对称图形的概念。
教学难点:能找出轴对称图形的对称轴。
学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。
设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标:
1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。
2、通过操作活动培养学生观察能力,概括能力。
3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。
教学流程:
1、观察下面的图形,这些图形有什么特点?
2、指出:像前三个这样的图形,我们把它叫轴对称图形。
3、引入课题:轴对称图形
【实施动手操作,合作交流方式教学,让学生主动参与学习活动,经历和体验检验轴对称图形的方法。引导学生在课堂教学活动中感悟知识的生成、发展与变化。】
1、揭示轴对称图形的概念。
思考:现在你能用什么方法来检验一下这几个图形是轴对称图形。
a、学生试说轴对称图形的概念。
b、教师板书:轴对称图形的概念
c、让学生谈谈你是如何理解轴对称图形的。
【让学生自由组合成小组进行操作活动,让学生从操作中得出结论,从而更牢固的掌握了新知,尤其是让每一个学生都能亲自实验,培养了学生的操作能力和探索精神。】
d、教师结合图形说明对称轴的概念。
2、完成做一做。
3、我们已经学过不少平面图形,现在你动手折一折、看一看哪些图形是轴对称图形,对称轴各有几条,请你画出来。
【这一环节体现了教师注重学法指导,并能鼓励学生运用科学的方法学习。学生在教师自然而巧妙的引导下,运用多种器官参与观察活动,发展了学生的辨析概括能力,促进学生的思维向纵向发展。】
4、完成做一做1
5、完成做一做2
教师小结:这节课我们学习了轴对称图形,知道如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。并且知道折痕所在的这条直线叫做对称轴,我们还通过动手操作知道我们学过的平面图形中哪些是轴对称图形以及各有几条对称轴。
【教师作为学习过程的组织者、参与者、指导者,与学生共同探索、剖析、整理,层次分明,思维清晰。起到画龙点睛的作用。】
6、质疑。
巩固练习:
1、数书P1021
2、数书P1024
3、画出每组图形的对称轴。
【让学生不仅能做出正确判断,且能准确画出,进一步发展学生的空间观念,培养学生主动探索,勇于实践的科学精神。】
4、在自然界和日常生活中具有轴对称性质的事物有很多,你能不能举例说明?
5、欣赏具有轴对称性质的事物。
【突出数学知识与日常生活的紧密联系,从而培养学生自觉的把数学应用于实际的意识和态度,进而培养学生的应用意识。】
6、判断:
所有的平行四边形都不是轴对称图形
所有的平行四边形都是对称图形
【在运用中练习,在练习中提高,练习具有目的性、针对性、层次性和趣味性,使学生既巩固了知识又培养了能力。】
【通过这种方式引导学生小结本节课主要知识及学习活动,养成学习----总结----学习的良好学习习惯,发挥自我评价的作用,培养学生的语言表达能力。】
第二篇:《轴对称图形》教案设计
《轴对称图形》教案设计
教学内容:人教版小学数学第十一册第130页-132页
教学目标:使学生初步认识轴对称图形,知道轴对称图形的含义,能够找出轴对称图形的对称轴。
教学重点: 使学生知道轴对称图形的含义,并了解轴对称图形的特征。
教学难点:
1、了解轴对称图形的特征;
2、找出轴对称图形的对称轴。
教具准备:
1、一张不对称的人的脸部图;
2、写有轴对称图形含义的纸条;
学具准备:
1、每位学生找一些树叶;
2、准备已经学过的平面图形的纸;
3、一张白纸;
4、一把小剪刀。
教学过程:
一、谈话导入新课
同学们,老师带来了一张大家都非常熟悉的人的脸部图形,看后笑声可不能太大哟。(出示两眼都在左边的大头娃娃的脸部图形。)
提问:你们为什么笑?
通过学生的说逐步引导,得出“对称”的含义。
那请同学们想一想,生活中还有哪些地方有对称的情况?
(学生个别口述。)
那我们今天就来研究这样的图形的特征。(板书课题:轴对称图形)
二、新授:
(一)教学轴对称图形的含义:
1、下面请同学们拿出老师给你的纸,先对折一下,然后随你剪一个什么图形,(注意剪时从折痕边下剪。)再展开,并观察一下,你有什么发现?(个别口述)
2、让学生把各自的作品上来展示,并请同学们说出这些图形的共同之处。(个别口述)在学生说的基础上,共同总结出:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴(出示纸条,学生齐读定义)。
3、让学生口述如何区别“轴对称”和“对称轴”的意义
4、让学生相互指出刚才所剪图形的对称轴。
(二)研究树叶中的对称情况:
1、要求学生把课前准备的树叶拿出来,按今天所学把它们分成两大类。(学生小组讨论、合作完成。)
2、然后选出有代表性的轴对称树叶到展示平台上展示,并让学 生说理由。(个别口述。)
3、学生举例生活中还有哪些地方用了轴对称知识?(个别举例。)
(三)研究学过的平面图形中有哪些是轴对称图形?
1、学生拿出课前准备的学过的各种图形的纸片,找出轴对称图形,并分工画出它们的对称轴。(学生小组合作,共同讨论研究。)
2、学生先汇报哪些是轴对称图形,教师注意对特殊图形要加以指导,比如平行四边形、一般的梯形等。
3、进一步研究刚才的轴对称图形中各有几条对称轴?
(学生口述,教师注意对特殊图形要全班交流、讨论、校对。比如等边三角形、等腰梯形、圆形等。)
三、练习:
完成第131页“练一练”中的第3小题
四、全课小结:
通过刚才的学习,你有什么收获?(个别口述。)
五、主题延伸:
1、展示精美的蝴蝶图案,让学生欣赏,进一步体验对称美。
2、要求学生课后到生活中去寻找轴对称的美。
3、也可以自己设计精美的轴对称图形,相互进行交流。
六、课后作业:
完成练习二十七的第5题。
轴对称图形教后自评
实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。学校现有的教学方式比较适应以纸张为载体的印刷时代,当纸张载体向网络载体发展时,网络成了人们信息获取、传输、存储和处理的重要工具。国家基础教育课程改革纲要(试行)指出:“教学过程中要大力推进信息技术在教学中的普遍应用,促进信息技术与学科课程整合,逐步实现教学内容呈现方式、学生学习的方式、教师教学方式和师生互动方式的改革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”为了更好的适应网络时代的发展,我们尝试着进行信息技术与其它学科教学整合的教与学方式探索研究。
根据学校课改精神,我进行了《美丽的轴对称图形》网络教学的实验探索。之所以选择这一内容,是因为自然界和日常生活中具有轴对称性质的很多事物,学习材料贴近学生生活实际,操作性强,适合学生进行自主探索、自主发现。
在瑞博数字化教学平台下制作完成的学件分为自学导航、自主探究、在线测试、智力冲浪、信息港湾、我的作品、你说我说、小小调查共8个板块。学生在教师的引导下完成
在整个学与教的过程基本体现了以下特点:网络资源的建设的丰富性;学生学习体现研究性、实践性;学生作品具有创新性;信息技术与设备的工具性;小组合作策略采用体的必要性。教后思考:
1、界面友好、形象直观的交互式学习环境,为学生提供了图文声像并茂的多种感官综合刺激,超文本、超链接方式组织管理学科知识和各种教学信息,不仅有利于学生的主动发现、主动探索,还有利于发展联想思维和建立新旧知识之间的联系。学生通过上网搜寻资料不但满足了知识吸取的需要,而且掌握了利用网络学习和研究数学的方法,激发学生自主学习数学的愿望,而且培养了学生收集、处理信息的能力。
2、网络教学个别化教学特点满足了不同学生的学习需求,对数学有特殊才能和爱好的学生提供了更多的发展机会,他们可以进入互联网查寻、浏览、思考更多的数学问题。又帮助数学学习能力差的学生,使他们达到最低要求,得到一种成功的体验,从而在学习中建立一种自信的人格,符合大众教学面向每个学生的思想,使“大众数学”思想在具体的教学实践中得以充分体现。
3、当教师的教学设计富有创造性时,才能把学生带入创造之中,才能使学生的学习过程具有研究性、实践性,学生的学习成果才能富有创新性。学生裁剪的小衣服富有创意,课后学生剪窗花装饰班级,教师及时将作品拍摄下来,让学生自主上传自己的作品,对作品创作、品评、欣赏的过程使学生兴趣盎然。因为这个美感里面包含着对创造美的成就感,包含了对自身力量和价值的体验。学生的学习活动充满创造性的时候,学习过程便充满美的魅力,更成为学生积极进取、自我完善的过程。不足:本节课是我首次运用瑞博教学平台的尝试教学,在实践操作中未能很好的体现设计意图,网络教学的优势体现不足。由于对学生的电脑操作程度了解不够,凭着自己的主观想法进行设计的课件内容比较多,在一节课的时间内不能很好的完成教学任务,例如在学生自主练习后,没有时间进行反馈,另外在智力冲浪板块中,学生依据轴对称图形的特征修复小熊的画像,也没能在课堂上进行及时发聩。困惑:对于网络教学,最能体现其优势的恐怕就是充分让学生进行自主学习,然而我在进行教学中,基本上还是以我的思路带领着学生进行发现探索,怎样才能更好的体现不同的学生学习不同的数学,充分发挥学生的主体性呢?
另外,在进行在线测试后,计算机能对学生的解答及时进行反馈,如果有错还会提示重新测试,这是教师是否有必要在进行集体反馈呢?如果要进行反馈,则以怎样的形式进行呢?这些都是我们今后实验教学中所需考虑的问题。
《简单的轴对称图形》课堂实录与点评
教学目标
1、通过折叠,验证线段和角是轴对称图形;
2、理解线段的垂直平分线(或中垂线)的概念;了解“线段垂直平分线上的点到线段两端的距离相等”、“角平分线上的点到角的两边距离相等”这两个结论;
3、通过积极思考、自主探索与合作交流,让学生经历“提出猜想一验证猜想一应用与拓展”的过程,以获得知识,形成能力,发展思维。
教学重点:通过动手操作,验证线段和角的轴对称性。
教学难点:运用轴对称图形的有关知识解决一些简单的问题。[目标明确具体,转变了传统几何教学的观念,弱化了推理证明的过高要求,突出了操作验证的探索过程,使《标准》提出的“让学生经历……的过程”的课程目标得到了具体的落实。]
教学过程
一、课题导入
师:通过前面的学习,我们知道生活中有着许多轴对称图形,同学们能举出些例子吗?
生1:飞机、蝴蝶。
生2:眼镜。
生3:长方体、天安门城楼。
师:刚才同学们所举的例子都是立体图形,上学期我们学习过一些基本的平面图形,同学们还记得是哪些图形吗?
生:……
师:这些平面图形中有没有轴对称图形呢?
点评:通过举例引导学生回顾轴对称的有关概念,避免了直白的提问。从回忆基本的平面图形入手,自然地导入了课题。
二、简单的轴对称图形——线段
1、探索
师:(出示纸上画好的线段)线段是不是轴对称图形呢? 生:是。
师:你能验证吗?
(生在纸上作线段AB,对折,使两个端点重合。一学生到讲台前演示。确认:线段是轴对称图形。师在黑板上作出线段AB。)
师:它的对称轴是什么?
生:就是折痕。
学生作出对称轴,师板书:线段AB的对称轴是直线CD。
师:请大家观察一下,CD与AB在位置上有什么关系?
生:垂直。
师:是看出来的?
生:……。
师:能说明吗? [《标准》所关注的“证明”,是对证明必要性的理解,对证明基本方法和基本过程的体验,而不是追求所证命题的数量和证明的技巧。这里教师的追问,将实验、观察等探索过程自然地延伸到说理的训练,这是对学生理性思维的很好的培养。]
生:因为对折后,而∠COB=∠COA,而∠AOB=180°是平角,因为∠COB=90°
师:说得很好,板书:CD⊥AB。垂足为O。
师:垂足O把线段AB分成的两部分有什么关系?
生1:OA=OB。
师:也是看出来的?
生:通过折叠发现OA和OB重合。∴OA=OB。
师:(给予充分的肯定,并板书:OA=OB。)
师:CD与AB的交点O恰好是线段AB的中点,这时我们也常常说CD平分AB。
师:通过刚才的讨论,大家发现CD与AB的位置关系有什么特征?
生:(众)①CD垂直于AB;②CD平分AB;
师生共同小结得出垂直平分线的概念,师板书:垂直且平分一条线段的直线叫做这条线段的垂直平分线(或中垂线)。
师:“射线有垂直平分线吗?为什么?”
生:“没有。因为射线不能被平分成相等长度的两部分。”
[垂直平分线这一概念是学生在探索中形成并完善的,对这一概念的进一步理解需要借助于数学符号及数学语言的表述。如:CD是线段AB的垂直平分线;直线CD垂直平分线段AB;∵CD垂直平分线段AB,∴且OA=OB;在AO、BO上取点E、F,使AE=BF,则CD是线段EF的垂直平分线吗?等等。教者若能在这里安排一些有关线段垂直平分线的辨析,使得图形语言、符号语言、文字语言的表述三位一体,学生对这一概念的理解会更全面。此外,教者应示范怎样用有刻度的三角板作一条线段的垂直平分线。]
2、线段垂直平分线的性质
师:在线段AB的垂直平分线上任取一点M,连接MA、MB,则线段MA、MB的长度就是点M分别到线段的两个端点A、B的距离。(师画图板书,学生在纸上操作)师:想一想,MA与MB有什么关系呢?
生(经过思考)相等。
师:你是怎么知道的呢?
(学生动手操作。)
生:通过折叠发现MA与MB完全重合,所以MA=MB。
师:再取一点N,连接NA、NB,看一看,你可以得出什么结论呢?
生:动手操作发现通过折叠发现NA与NB重合。
师:再取几个点试一试。
(生动手操作,反复验证。)师:“通过这几次操作,你有什么发现吗?”
(生先独立思考,在小组谈论,后全班交流。)
生1:在垂直平分线上任意取一点,连接这一点和线段的两个端点,这两段线段的长度相等。
生2:在垂直平分线上任意取一点,这一点到线段的两个端点距离相等。
生3:线段的垂直平分线上的点到线段的两个端点距离相等。
(师给予学生充分的肯定和鼓励。并板书上述性质。)
[线段垂直平分线性质的发现,是在教师的指引下由学生操作完成的。但回头看上面的设计总有点遗憾:①发现过程的含金量不足,学生所做的是按教师的指令操作;②从动手探索的过程中学生缺乏发现新问题的思考。能否提出一些留有空间的问题,在发现上作些引导?如,从整体上看,线段AB的垂直平分线CD具有两个引人注目的特征,即既垂直又平分。线是由点组成的,直线CD上的点又有怎样的特征呢?……CD上有一个很特殊的点,就是垂足O,能否从点O入手,或取几个点试试看看有什么发现?有问题,学生的思考才有附着 点;问题有空间,小组讨论才有讨论的内容,也才能驱动学生作一些深层次的探索而不是浅层次的操作和模仿。]
3、应用
例1:如图,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△EBC的周长。
(学生独立思考,一学生回答,说一说自己是怎么想的,全班交流。)
师:“本题解题的关键是什么?”
生:“关键是根据线段垂直平分线的性质得出EC=EB=6。”
[这里追问得好,引起了学生对自己解题过程的反思。]
三、简单的轴对称图形——角
1、师:“刚才我们通过研究,知道线段这一基本图形是轴对称图形,我们还知道哪些基本图形呢?”
(生举例。)
师:“现在我们来研究角是不是轴对称图形。你认为角是不是轴对称图形呢?”
生:是的。
师:“我们怎么来验证呢?”
生作出∠AOB,验证角是否是轴对称图形。通过折叠的方法得出角是轴对称图形。
师:用直尺画出折痕OM,看看射线OM与∠AOB有什么关系?
生:OM是它的角平分线。
师:“角的对称轴是什么呢?”
生:“是它的角平分线OM。”
生:“不对,角的平分线是射线,而对称轴应该是一条直线。”
师:“那么,我们应该怎么说呢?”
生:“应该说是角平分线所在的直线。”(为这位同学喝彩)
2、师:“在OM上任意取一点,这一点到角的两边距离会有什么样的关系呢?”
生动手操作,在OM上任取一点P,过点P作OA、OB的垂线,垂足分别为D、E,通过折发现PD=PE。再任意取几点试一试,发现了相同的结论。
师:“你能仿照上面的结论,用语言来描述这个结论吗?”
给予学生充分的时间考虑,生先独立思考,在小组讨论。全班交流。
生:在一个角的角平分线上任意取一点,这个点到角的两边距离相等。
生:角平分线上的点到角的两边距离相等。(充分肯定学生的回答)
[有了前面探索的基础,学生对角的轴对称性的研究是水到渠成的。也正因为有了前面的基础,给学生的空间可以再大些。如,可向学生提问:你能否参照线段垂直平分线的性质,对角平分线上的点可能具有的性质提出一个猜想,并设法验证。(这里更深一层的数学思想是,对称轴上的点到轴对称图形上对称点、对称线的距离相等。)在得出角平分线上的点的特征后,让学生辨析一下两种距离的区别是有必要的。]
3、小结
师:“通过刚才的学习,我们知道了线段、角这两个基本图形都是轴对称图形,以及得出了两个重要的结论。下面我们将运用我们所学的知识来解决一些问题,同学们有没有信心啊?”
生(大声的回答):“有!”
四、巩固应用
1、如图,P是线段AB的垂直平分线MN上的一点,O是MN与AB的交点,PA=5cm,OB=3cm,求△PAB的周长。
先独立思考,一学生说出思考过程,全班评析。给予肯定。
2、如图,点M在∠AOB的角平分线OC上,MD、ME分别垂直于OA、OB,且MD=2,则ME= 口答,说出理由。
3、用直尺和量角器在图中的直线MN上找一点P,使点P到射线OA、OB的距离相等。(要求独立完成,做好之后同桌之间相互交流一下自己的解题思路。一学生板演。)
师:“为什么要作出∠AOB的角平分线呢?”
生:“因为点P要到角的两边距离相等,所以必须要在角的平分线上,而且点P还要在直线MN上,所以点P应该是角平分线和直线MN的交点。”
(师生给予这位同学表扬。)
4、在△ABC中,用刻度尺和量角器画出线段AB、AC、BC的垂直平分线,你有什么发现吗?
(学生动手操作,发现三条边上的中垂线交于一点。)
师:“在想一想,你还可以有什么结论吗?”
小组交流探索。
生:“我发现三条中垂线的交点到三角形的三个顶点的距离相等。”
师:“你能说一说理由吗?”
生:“设交点为P,因为点P在线段AB的中垂线上,所以PA=PB,同样的道理PA=PC,PC=PB。所以点P到三角形的三个顶点距离相等。”
师:“他说得好不好?”
(生齐回答好。一起为这位同学鼓掌。)
[教材中没有作这样的拓展,但根据学生的实际情况作这样的延拓是必要的,为巩固性质,训练说理提供了载体。]
师:“得到了这个结论,下面这一题就容易解决了。我们来看。”
5、在下图中,点A、B、C分别表示不在同一直线上的三个村庄。你能不能找到一点,使得这一点到三个村庄的距离相等呢?试试看。
五、总结
通过这节课的学习你学到了哪些知识呢?你觉得还有哪些地方应该引起我们的重视呢?
六、思考
圆是不是辖对称图形呢?如果是,那么它的对称轴是什么呢?这是杨波老师参加县初中数学课改优秀课评比时的课堂教学实录。从课堂教学的情况看,杨波老师有着较好的教学素质和较强的驾驭课堂的能力。整个设计符合课改的精神,是一节成功的课。教学中,杨老师对新教材的几何教学的“度”把握得较有分寸,突出了猜想、操作、验证,同时还兼顾了说理的训练,注重发问、追问,引导学生对解题的过程进行反思,注重小组讨论的效率和质量等,这些都是本课的亮点。对一些细节的评析不再赘述。提出如下几点供参考的建议:
1、情境引入可与实际生活相联系,但情境中一定要有问题,要有与本课密切相关的问题。
2、对几何教学尺度的把握要循序渐近,逐步提高;可根据学生的实际水平作必要的调整。既要重视几何教学的直观性,也要重视其在训练学生逻辑推理能力方面的独特价值;要重视读图、表述、说理等环节的训练。使几何教学区别于其它内容的教学。
3、小组合作、动手探索已成为目前课堂教学中的常见形式,如何使这一形式不“形式”,需要老师精心设计探索的问题、讨论的问题,问题要有空间,老师要适时点拨,不能让学生成为老师指令下的操作工。要加大探索中思维培养和训练的力度。
4、解题反思应逐渐成为学生的自觉意识和提高解决问题能力的有效手段。教学中应引起足够的重视。要指导学生怎样反思,反思什么,逐步提高学生反思的水平。轴对称图形(说课稿)
一、说教材
今天我说课的内容是人教版小学数学第十一册的内容。这一内容的编排从具体到抽象,从感性到理性,从实践到理论,再用实践检验理论,指导学生认识自然界和生活中具有轴对称性质的事物,从而使学生进一步认识前面所学的平面图形的特征。层次分明,循序渐进。
二、说教法
依据学生的认知规律,本节课在教学方法中力求体现以下几方面理念:从生活情景出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用电化教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。
三、教学目标
根据教学内容的特点,结合六年级学生的实际水平,本节课我确定了如下教学目标:
1、通过观察,初步感知轴对称图形并理解轴对称图形的含义。
2、能准确地判断出哪些是轴对称图形,并能找出轴对称图形的对称轴。
3、通过观察、思考和动手操作培养学生的抽象思维和空间想象能力。
4、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
四、重点难点
根据轴对称图形的特征判断一个图形是否轴对称图形。
能够在轴对称图形上正确画出对称轴。
五、说教学过程
(一)“玩”对称、谈话激趣
出示一张白纸,问学生怎么玩这张白纸?激发学生的兴趣,然后让他们通过观察老师怎样玩这张白纸,自己也来这样玩这张白纸,让学生初步感知轴对称图形。
(二)“识”对称,体悟特征
1、展示学生的几副作品,引导学生观察这些作品的共同点(这样既激发了学生浓厚的学习兴趣,又为学习新知作好了铺垫)。学生通过观察得知:这些图形的折痕的两侧大小、形状、面积相等,对折后能完全重合。为了让学生体会这些特点,我让他们再重新沿着折痕对折,看看是否是这样的,进一步验证对称图形的特征。
2、引导学生进行比较、概括、抽象出这类平面图形的特点,揭示课题:轴对称图形,问学生看着这个题目,你有些什么不明白的吗?学生提出什么是轴?从而引出对称轴的概念,再通过看一看、画一画使 学生明白了什么是对称轴,应该怎样表示对称轴。
3、在学生掌握轴对称图形特征和对称轴的基础上,让学生先大胆猜想认识的一些平面图形是否是轴对称图形,然后四人小组合作折一折、比一比来验证猜想,这样通过动手操作,学生不仅知道哪些基本的平面图形是轴对称图形,哪些不是,而且知道了为什么是和不是,对轴对称图形的认识也就更深入一步了。
5、为了让学生进一步熟练地找对称轴,我又挑出了刚才已验证过的是轴对称图形的三个平面图形问他们:既然是轴对称图形,那可以怎样折呢?让学生挑选最有把握的一个说说,学生说出圆可以从下往上对折,也可以从左往右对折,还有的说可以斜着对折,这时我顺势引导学生得出圆有无数条对称轴,是否是这样的,我让他们再通过折一折验证,关于正五边形有几条对称轴先让学生说说,他们说出有五条,然后再让他们通过折的方法得到验证。这样在动手操作中学生充分调动各种感官参与学习,既发挥了学生学习的主动性,又培养了学生的发散思维。
三、“判、猜”对称,深化体验
1、让学生根据对称轴的特征来判断国旗中的图案以及常见的交通标志中的图案是否是轴对称图形,并说明理由,进一步深化轴对称的知 识。
2、根据图形的一半猜测它的另一半,这是检验学生对轴对称的知识掌握的如何以及是否留意生活中的一些轴对称的图形。从学生的回答情况来看,对于生活中的一些轴对称的图形他们并不是很熟悉,对于一些常见的比较著名的标志也不是很了解,视野不够开阔。
四、“赏”对称,提升认识
播放桂林山水的片段,以及蝴蝶,树叶,大雁等让学生体会对称美。同时也让他们感受到生活中处处都有对称,只要我们留心观察就会发现我们身边的对称。
第三篇:轴对称图形教案设计
轴对称图形教案设计
[教学内容]六年级上册第59页轴对称图形 [教学目标]
1.知识目标:感知轴对称是现实生活中的广泛存在的现象,体会其丰富的文化价值。理解轴对称图形的特征,能正确画出轴对称图形的对称轴,数出对称轴的条数。
2.能力目标:在活动中培养学生从具体到抽象,再从抽象回到具体的思维方法。培养观察、操作、表达的思维能力与探索意识,激发学生的想像力、创造力。
3.情感目标:在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发学生学好数学的欲望。
教学准备:
1.老师:课件、剪刀、彩纸、尺、轴对称图形若干。2.学生:剪刀、彩纸、彩笔、尺、轴对称图形若干。[教学过程]
一、看一看,想一想 1.激趣导入:
拿出一张彩纸,对折后描出“爱心”图的一半。谈话:老师把这张彩纸对折一下,沿着这条边剪一个图形,你能猜出老师剪的是什么图形吗?(演示:剪出图形并展开),原来是一个“爱心”图。我希
望6(2)班的同学们每人都有一颗爱心。(把“爱心”图贴在黑板上)请你们仔细观察一下,这个图形的左右两边是怎样的?
预设:(1)左右两边是一样的;(2)左右两边是对称的„„
小结:像这样的图形,两边是对称的。有趣吗?今天我们就来学习像这样的图形。(板书:对称)
二、探索新知
1、课件演示边谈话
教师:刚才我们看见了什么?它们都有什么特点?
学生:枫叶、蜻蜓、天平、蝴蝶,它们都可以通过对折使两边完全重合。教师:这些图形对折后能完全重合,我们给它们起个什么名字好呢?
(生答)略
教师:我们来看看书上是怎么说的,打开书100页找到答案。读一读,说一说。
教师利用课件演示对称图形的特征。
学生明确了轴对称图形的特征和理解了对称轴后,在书上画对称轴。3自学课本第59面
讨论:
1、我们学过的平面图形哪些是轴对称图形?哪些不是?
2、这些平面内的轴对称图形它们各有几条对称轴?
课件演示平面图形,学生说他们的猜想。
学生领取实验材料,分组进行猜想验证。教师巡回指导,表扬合作得好的小组。集体汇报实验结果,教师板书成表格。
课件演示分类
三、反馈拓展
下面的图形中,哪些是轴对称图形?各有几条对称轴?你能画出它们的对称轴吗?
四、欣赏放松
1、欣赏欣赏中国的建筑、国外著名的轴对称建筑,让学生体会和感叹对称美和其在生活中的广泛应用,明白学习知识的重要性。
2、发动学生自己动手剪一剪、画一画
五、教师小结:
对称可以说是大自然创造万物的一个原则,自然界中不少植物、动物都有自己的对称形式。
对称也是艺术家们创造艺术作品的重要准则,古今中外的很多建筑、艺术品都具有对称的性质。对称更是数学研究的重要内容,如这节课所要研究的轴对称图形就是其中之一。
同学们回忆一下我们这节课学了什么?你学会了什么? 课堂作业:略
江西省宜春市上高县锦江小学 熊光华 2010年4月19日
第四篇:轴对称图形教案设计
轴对称图形教案设计
教学内容:人教版九年义务教材第十一册100页 教学目标:
(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。
(2)能准确判断哪些图形、事物是轴对称图形。(3)能找出并画出轴对称图形的对称轴。
(4)通过动手操作,培养学生的抽象思维和空间想象能力。(5)结合教材和联系生活实际,使学生受到美的熏陶,培养学生的审美能力。
教学重点:
(1)认识轴对称图形的特点,建立轴对称图形的概念;(2)准确判断生活中哪些事物是轴对称图形。教学准备:多媒体课件。教学过程:
一.动手操作,初步感知 1.谈话引入,激发兴趣。出示两幅剪纸艺术品。
同学们,一上课,我们来欣赏两幅剪纸艺术品。这两幅作品美吗?(美)你们猜一猜,这两幅作品是用剪刀剪出来的吗?
师:我告诉你们吧,它不是用剪刀剪出来的,(出示相应的图片)而是山西古交的民间艺术大师武四新,用手撕出来的。你们看,他不仅可以撕纸,而且还可以蒙着眼睛撕。
他的“撕纸绝技”首次冲出国界,走向世界,并受到世界人民的喜爱和欢迎。
他撕纸的诀窍就是将纸“对折”,然后将心中的图案“拼撕”出来。
有着他的启发,我也想撕出我心中的图形。你们想吗?(想)那我们一起来吧。
我们将这张白纸对折,然后从折痕的一端,撕出心中想到的图形。师:同学们,你们可以先看看我是怎样撕的。师示范折、撕。
我心中想到的是一棵大树的图形,你们看,像大树吗? 贴在黑板上。2.折一折,撕一撕。
师:你们会了吗?好了,开始吧!
师:你们将纸对折后,可以想怎么撕,就怎么撕,撕出你自己喜欢的图形。(学生撕纸)
师:撕完了吗?谁愿意把你的作品给大家展示一下? 在黑板上张贴展示学生的作品(二、三个学生的作品)。二.讨论、交流,探究新知 1.讨论、交流,揭示课题。
师:同学们,我们仔细看一看这些图形,这些图形的大小一样吗?形状相同吗?
师:我们深入的观察这些图形,你能不能从中发现它们有什么共同的地方吗?
师:(指黑板帖图)像这样对折后,两边的形状、大小都完全相同,能够完全重合的图形或者物体,我们就说它是对称的。中间的折痕呢?就像一条转动的轴,我们就说它是对称轴。
师:像这种对折后,两边能够完全重合的图形,我们就叫它为轴对称图形。这就是我们本节课要学习的内容:轴对称图形。
板书课题:轴对称图形。2.看书自学,深入理解。
师:我们读一读课本,看看书上是怎么介绍轴对称图形的? 生读书。
师:谁来说说书上是怎么介绍轴对称图形的?
师:我们来找一找这些图形的对称轴(指黑板贴图),折痕所在的这条直线,就是这个图形的对称轴(手势演示)。
师:我们把它画下来,对称轴通常用“点划线”来表示。师板书演示。
师:你会画了吗?在自己的作品上画上一条对称轴。学生动手画。
三.辨别新知,加深理解 1.辨别轴对称图形。
师:老师给你们带来了一些平面图形,你能不能说出哪些图形是轴对称图形?哪些不是轴对称图形?
出示一组图 :
师:请拿出课前我给你们带来的好玩的小礼物,它们就是这4个图形。我建议,每个小组的4位同学,先想一想这些图形,哪些是轴对称图形,哪些不是轴对称图形。然后每个人选一个图形,折一折,看看它究竟是不是轴对称图形,再把你的结果在小组内的交流、交流,讨论、讨论。
生折、讨论、交流。
师:好了,很多小组已经达成共识了,下面我们进入汇报阶段。机会不多,只有4个,每个同学可以选择自己最有把握的一个来说。(说一说它是不是轴对称图形,然后简要的说一说你是怎么想的。)
讨论等腰梯形,等边三角形,平行四边形,圆。
(学生说理由的时候,可以让学生演示对折,两边能不能完全重合;平行四边形是不是轴对称图形可能有争论,顺势引导。)
2.辨别特殊与一般。师生讨论。
小结:我们在讨论梯形、三角形、平行四边形时,既要考虑一般的图形,又要考虑特殊的图形,但是,关于圆形,无须考虑那么多,正如你们所说的,所有的圆形都是轴对称图形,不存在特殊的情况。
3.深入研究一个图形的对称轴的条数。出示等腰梯形,等边三角形、圆。
师:通过讨论、交流,我们知道了这三个图形都是轴对称图形,难到它们就没有不一样的地方吗?(对称轴的条数不同。)
生说得不到位时,加以引导。四.联系生活,寻找轴对称图形(多媒体课件出示)1.辨别图案。
师:请你说说这些图案是不是轴对称图形? 生辨别,说理由。
(师:它可以怎样对折?还可以怎样对折?那它有几条对称轴?)
追问有几条对称轴后,课件出示相应的对称轴。2.辨别交通图标志和汽车标志。师:看看哪些标志是轴对称图形? 让学生自己找一找。
3.想象轴对称图形的另一半。出示隐藏一半的标志图。
师:也是一些常见的著名的标志,它们都是轴对称图形,但是我只给出了这些图案的一半,你能不能根据轴对称图形的特征,想象出它的另一半,然后猜一猜它是什么标志。
生说,师随机引导。五.欣赏,延伸
师:最后我们随着优美的音乐一起走进生活中轴对称世界!边放音乐边放图片边介绍:
1、民间剪纸 2.中外建筑图片 3.千手观音图片 4.自然界图片
第五篇:《轴对称图形》
轴对称图形
执教教师:福安实小阳泉校区 陈雪丹 指导老师:福安市教师进修学校 林 萍
福安实小阳泉校区 林桂忠
教学设计思考和提出的问题
⒈苏教版第一学段对于“轴对称图形”的编排与人教版、北师大版有何不同,编排意图是什么?
⒉第一学段与第二学段的教学要求、侧重点的区别在哪?怎样实现第一学段的教学目标,又能为第二学段做铺垫呢?
⒊判断平面图形是否为轴对称图形如何把握尺度,判断复杂的标志图案是否超出了二年级学生认知理解的范围?
磨课要点
⒈起点。
知识起点:学生已经认识了长方形、正方形、三角形、平行四边形、圆等平面图形,认识了多边形。
已有生活认知:学生积累了一些剪纸的经验,会用对折的方法剪纸,认识了生活中一些物体或图形具有两边一样的特点。
思维特点:学生虽然认识到两边一样的现象,但并不大明白什么是“对称”。二年级学生年龄偏低,抽象思维能力还相对较弱的实际情况,对于“轴对称图形”概念的建立更应做到具体形象。
⒉终点:理解判断轴对称图形的本质就是对折后图形的两边是否完全重合。⒊过程与方法:学生新知的习得离不开已有的生活认知。本课的设计从猜测物体引出对称,通过“折一折、剪一剪、拼一拼”等活动理解轴对称图形的特征,最后通过平面图形、标志图案的判断丰富学生对轴对称图形的认识,学会运用知识解决问题,感受数学的价值。
教学内容
《义务教育教科书·数学》(苏教版)三年级上册第83-85页。
教学目标
⒈通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征。
⒉根据轴对称图形的特征,在一组实物图案或简单平面图形中识别出轴对称图形,能做出轴对称图形。
⒊欣赏图形对称所创造的美,进一步感受对称在生活中的应用,体会数学的价值。
教学重点:理解轴对称图形的特征。教学难点:学会准确判断轴对称图形。教学准备
学具:企鹅、飞机图形,剪刀、蜡光纸,四个小正方形,平行四边形每生一个。
教具:课件、企鹅和飞机图形等。
教学过程
一、游戏引入,感知特征 ⒈游戏竞猜,感知对称。
出示:企鹅、飞机、剪刀、梳子的一半图。
师:孩子们,我们一块来玩个游戏:“猜一猜我是谁”。游戏规则是:只露出物体的一半,看谁能很快猜出来。
师:为什么这三个物体你们一下子猜出来了,而最后一个不能确定呢? 师:这些物体两边形状大小都一样,就叫对称。
师:像这样两边对称的物体,你能在我们身边找到吗?抽象成图形,认识对称。
师:我们用眼睛观察发现这些图形的两边是对称,有办法证明吗? 师:请拿出其中的两个图形,自己动手折一折。折完你发现了什么? 师:哦,这两边叠在一起,哪边也不多哪边也不少,这就叫完全重合了!(板书:完全重合)
⒉动手操作,理解概念。
师:企鹅图形左右对折后两边完全重合了,这架飞机图形左右对折后,会不会完全重合呢?那它怎么也是对称图形呀?
师:那这只蜻蜓,你会朝哪个方向对折验证呢?
师:刚才我们通过对折(板书:对折),发现这些图形的折痕两边能完全重合,这就是今天我们要认识的轴对称图形。(板书:轴对称图形)
⒊剪纸活动,感知特征。⑴激活经验,交流方法。师:这张金鱼剪纸也是轴对称图形,你能猜出它是怎么剪出来的吗? ⑵动手剪纸,创造对称。
师:就按照你们刚才说的方法,自己设计一个喜欢的图案并把它剪下来。⑶交流反馈,领悟特征。
师:黑板上这些作品是轴对称图形吗?怎么让别人知道是呢? 师:用对折的方法同桌互相检查一下。
【设计意图:从游戏猜一猜中引入生活中对称现象,再由生活中的对称现象引出轴对称图形,这样的安排有利于学生由具体到抽象,由模糊到清晰,逐步体会轴对称图形的基本特征,获得轴对称图形的正确表象。学生初步认识轴对称图形的概念之后,紧接着通过剪纸活动,巩固对轴对称图形特征的认识。】
二、判断练习,体会特征 ⒈图形的判断。
师:如果不用动手对折,你能判断我们学过的图形朋友,他们是不是轴对称图形呢?
出示:长方形、正方形、不规则三角形、等腰三角形、平行四边形。重点研究平行四边形:这个平行四边形是轴对称图形吗?出现不同的看法,动手验证一下谁的想法正确。
师:这个平行四边形怎么折都不会完全重合,所以他不是轴对称图形。⒉车牌的竞猜。
师:平面图形中轴对称,汉字、字母、数字中也有呢!这个车牌的这些汉字,字母数字都是轴对称图形,但是他们只露出一半,你能猜出完整车牌号吗?
⒊剪纸图想象。
师:请看,这是一张纸,将它对折剪去两个圆。想想,摊开会是怎么样的? 师:我这里有三个选项,你认为会是哪一个呢? 师:说说你的想法。
师:孩子们,看来两边形状相同对折后可不一定是轴对称图形!图形的创造。
师:孩子们光会想象轴对称图形可不够,还要会创造呢!用四个小正方形拼成一个轴对称图形,想一想有几种不同的拼法,再和同桌一块拼一拼。
【设计意图:这个环节设计了四个活动:辨一辨——猜一猜——想一想——摆一摆,逐层递进,循环上升。让学生从不同角度体会轴对称图形的特征,在想象和动手操作中进一步激活学生的思维,也进一步培养了学生的空间想象和推理能力。】
三、联系生活,运用特征
师:孩子们,不仅图形中有轴对称,一些标志图案上也有呢!
师:这个汽车图案是轴对称图形吗?用手势表示折痕在哪? 师:行人图呢?圆形呢?这个圆形可以怎么对折呢?
师:把这个圆形和行人合在一起,就是一个什么交通标志?他是轴对称图形吗?
师:看来要判断一个图形是不是轴对称图形,不光得看外面的形状,还得考虑里面的图案。
师:既然行人图案不是轴对称图形,把它换成汽车,它是一个轴对称图形吗? 师:在判断轴对称图形时,多一些观察,多一份思考,就会多一份收获!【设计意图:数学知识来源于生活,通过让学生判断生活中一些常见的标志图案,丰富学生的感性认识。从一个简单的图案到两个组合的图案,由易到难,逐步提高学生综合判断能力,渗透从不同角度观察会有不同的收获的思想。如何把不对称的图形转变成对称图形,体现了思维的创造性和开拓性。】
四、总结回顾,拓展延伸
师:孩子们学完这节课,你对轴对称图形有了哪些认识?
师:罗丹曾说过“这个世界不是缺少美,而是缺少发现美的眼睛。”课后请孩子们继续去寻找生活中的对称现象,发现感受他们的美妙!
【设计意图:课后总结回顾,让学生对知识进行归纳整理,深化认识。同时鼓励孩子到生活中去寻找对称,感受数学与生活的密切联系,激发学生的学习热情。】
执教者简介
陈雪丹,女,本科学历,小学数学高级教师,福安市阳泉校区数学备课组组长。自1998年参加工作以来,始终恪守“一个都不能少这才是理想的教育”这句格言,用心对待学生,用青春和热情默默耕耘自己的三尺讲台。她从一名青涩的教师逐渐成长为福安市学科带头人、福安市名师、“阮志强名师工作室”成员,宁德市教坛新秀。执教的录像课“长方形和正方形的认识”获省一等奖,微课“解决问题的策略”获福建省三等奖,“认识角”一课获地区三优联评二等奖,2015年12月撰写的论文《微课在数学中的运用》发表于《考试周刊》。
所用教材内容