第一篇:《变频调速应用》课程教学大纲
《变频调速应用》课程教学大纲
Variable Voltage and Variable Frequency Technology 课程编号:2000652
适用专业:电气工程及其自动化
学 时 数:32 学 分 数:2
执 笔 者:汤钰鹏 编写日期:2002年5月
一、课程的性质和目的
课程性质:《变频调速应用》是电气工程及其自动化专业的专业选修课。
主要任务:通过对《变频调速技术及应用》课程的学习,使学生对异步电动机变频调速系统有一个系统的了解,对变频调速方法的特点、重要性、应用领域有一个正确的认识,为在今后工作中解决实际问题打下良好的基础。
二、课程教学内容:
第一章 交流调速系统概述(讲授4学时)
了解交流调速传动的发展过程及其应用领域、应用目的,了解异步电动机的基本调速方法、了解变频器的基本分类。
重点:变频调速方法及特点。
第二章 异步电动机的变频调速(讲授4学时)
了解异步电动机在非正弦电源供电情况下的运行特点,掌握异步电动机的变频运行方式、运行特性(包括V/F运行方式、恒磁通运行方式和恒功运行方式);掌握在非正弦电源供电情况下异步电动机的磁通、电流、转矩分析方法及特点。
重点:异步电动机的变频运行方式、运行特性。
第三章 变频器的结构及工作原理(讲授2学时)
了解变频器的基本结构及工作原理,掌握逆变器的工作原理。重点:交直交电压型逆变器的工作原理。
第四章 脉宽调制技术(讲授8学时,实验4学时)
了解脉宽调制方式的种类和脉宽调制技术的作用。
重点:正旋脉宽调制技术、磁通轨迹控制(电压空间矢量控制)脉宽调制技术。第五章 变频调速系统(讲课2学时)
了解变频调速系统的构成、控制对象和控制方式。
重点:异步电动机、变频器和外围设备的选择。
第六章 通用变频器的运行功能(讲课2学时、实验2学时)
了解通用变频器的运行功能,掌握通用变频器的参数设置方法。
重点:变频器运行功能的选择。
第七章 通用变频器的应用(讲课4学时)
了解通用变频器的应用情况及其应用领域的相关技术,掌握通用变频器的应用方法。
重点:通用变频器的应用方法。
三、课程教学的基本要求
本课程的教学环节包括:课堂讲授、课外作业、实验和考试等。通过各个教学环节重点培养学生分析问题和解决问题的能力。
(一)课堂讲授
以案例教学和实验教学为主,教学中多提问题以引导学生思考,设置适当的课堂讨论,以加深学生对知识的理解和提高学生对知识的应用能力。
(二)课外习题
第一章1题、第二章2题、第三章1题、第四章2题、第五章1题、第六章2题。
(三)实验
开设6个学时的开放性实验,让学生了解电压型变频器的基本结构、熟悉输入测、直流测、输出测的电压波形和电流波形,掌握改善电流波形的方法。熟悉通用变频器的各项运行功能,掌握通用变频器的参数设置方法。
(四)考试环节
考试形式分为笔试和实际操作考试两部分,考试题型分为:简答题、论述题等。
四、本课程与其它课程的联系与分工
本课程的先修课为“电机学”、“电力电子技术”等。
五、建议教材与教学参考书
1.满永奎编著,《通用变频器及其应用》机械工业出版社
2.吴忠智编著,《变频器应用手册 》 机械工业出版社
第二篇:《变频调速应用》课程教学大纲
《变频调速应用》课程教学大纲
Variable Voltage and Variable Frequency Technology 课程编号:2000652
适用专业:电气工程及其自动化
学 时 数:32 学 分 数:2
执 笔 者:汤钰鹏 编写日期:2002年5月
一、课程的性质和目的
课程性质:《变频调速应用》是电气工程及其自动化专业的专业选修课。
主要任务:通过对《变频调速技术及应用》课程的学习,使学生对异步电动机变频调速系统有一个系统的了解,对变频调速方法的特点、重要性、应用领域有一个正确的认识,为在今后工作中解决实际问题打下良好的基础。
二、课程教学内容:
第一章 交流调速系统概述(讲授4学时)
了解交流调速传动的发展过程及其应用领域、应用目的,了解异步电动机的基本调速方法、了解变频器的基本分类。
重点:变频调速方法及特点。
第二章 异步电动机的变频调速(讲授4学时)
了解异步电动机在非正弦电源供电情况下的运行特点,掌握异步电动机的变频运行方式、运行特性(包括V/F运行方式、恒磁通运行方式和恒功运行方式);掌握在非正弦电源供电情况下异步电动机的磁通、电流、转矩分析方法及特点。
重点:异步电动机的变频运行方式、运行特性。
第三章 变频器的结构及工作原理(讲授2学时)
了解变频器的基本结构及工作原理,掌握逆变器的工作原理。重点:交直交电压型逆变器的工作原理。
第四章 脉宽调制技术(讲授8学时,实验4学时)
了解脉宽调制方式的种类和脉宽调制技术的作用。
重点:正旋脉宽调制技术、磁通轨迹控制(电压空间矢量控制)脉宽调制技术。第五章 变频调速系统(讲课2学时)
了解变频调速系统的构成、控制对象和控制方式。
重点:异步电动机、变频器和外围设备的选择。
第六章 通用变频器的运行功能(讲课2学时、实验2学时)
了解通用变频器的运行功能,掌握通用变频器的参数设置方法。
重点:变频器运行功能的选择。
第七章 通用变频器的应用(讲课4学时)
了解通用变频器的应用情况及其应用领域的相关技术,掌握通用变频器的应用方法。
重点:通用变频器的应用方法。
三、课程教学的基本要求
本课程的教学环节包括:课堂讲授、课外作业、实验和考试等。通过各个教学环节重点培养学生分析问题和解决问题的能力。
(一)课堂讲授
以案例教学和实验教学为主,教学中多提问题以引导学生思考,设置适当的课堂讨论,以加深学生对知识的理解和提高学生对知识的应用能力。
(二)课外习题
第一章1题、第二章2题、第三章1题、第四章2题、第五章1题、第六章2题。
(三)实验
开设6个学时的开放性实验,让学生了解电压型变频器的基本结构、熟悉输入测、直流测、输出测的电压波形和电流波形,掌握改善电流波形的方法。熟悉通用变频器的各项运行功能,掌握通用变频器的参数设置方法。
(四)考试环节
考试形式分为笔试和实际操作考试两部分,考试题型分为:简答题、论述题等。
四、本课程与其它课程的联系与分工
本课程的先修课为“电机学”、“电力电子技术”等。
五、建议教材与教学参考书
1.满永奎编著,《通用变频器及其应用》机械工业出版社 2.吴忠智编著,《变频器应用手册 》 机械工业出版社
1、变频器的分类方式?(1)、按变换频率方法分
a、交直交变频器 先由整流器将电网中的交流电流整流成直流电,经过滤波,而后由逆变器再将直流逆变成交流供给负载; b、交交变频器 只用一个变换环节就可以把恒压恒频的交流电源变换成变压变频电源,因此又称直接变频装置
(2)、按主电路工作方法分
a、电压型变频器 当中间直流环节采用大电容滤波时,称为电压型变频器b、电流型变频器 采用高阻抗电感滤波时成为电流型变频器
(3)、按变频器调压方法分
PAM变频器: 逆变器负责调节输出频率,通过改变直流环节的电压或电流来改变输出电压或电流;PWM变频器: PWM方式是在变频器输出波形的一个周期产生多个脉冲波,其等值电压为正弦波,波形较平滑
(4)、按控制方式分
a、U/F控制变频器 采用普通的VVVF控制方式实现; b、SF控制变频器 采用转差频率控制方式实现;c、VC控制变频器 采用矢量控制方式实现
2、一般的通用变频器包含哪几种电路?
整流电路、中间直流电路、逆变电路、制动电路、控制电路
3、四种调速方式?
(1)变频调速(2)变转差调速(3)串级调速(4)变极调
4、变频器调速系统的调试方法有哪些?
空载实验、带负载测试、全速停机试验、正常运行试验
5、变频器过流跳闸和过载跳闸的区别是什么?
过流主要用于保护变频器,而过载主要用于保护电动机。因为变频器的容量有时需要比电动机的容量加大一挡或两挡,这种情况下,电动机过载时,变频器不一定过流。过载保护由变频器内部的电子过热保护功能进行,在预置电子过热保护功能时,应该准确地预置“电流取用比”即电动机额定电流和变频器额定电流之比的百分数、
第三篇:变频调速在天车的应用分析
PLC-变频器在桥式起重机中的应用分析
引言
随着电力电子技术的发展,PLC、变频器等自动化产品在电力拖动领域得到了广泛应用。起重机械采用PLC-变频器调速逐渐得到推广和普及,PLC程序控制取代传统的继电-接触器控制逐渐成为起重机械电气控制的主流;用变频电动机或异步电动机取代绕线电机,再配合先进的现场总线技术和人机界面系统,提高了设备控制精度和稳定性,降低了故障率,且节能效果显著,易于检修维护,成为提高企业生产效率的好途径。
1 起重机械的组成及负载特点
起重机械最基本的工作机构有以下四种:即起升机构、小车机构、大车机构。起升机构是主要功能机构,其正反转工作变换比较频繁,每次的起吊重量差别比较大,且具有恒转矩负载的特点。起重机械的起升机构由电动机、减速器、卷筒等部分组成,其作用可将原动机的旋转运动转变为吊钩的垂直升降运动,实现吊具垂直升降的目的功能不可缺少的部分。
由于重物在空中具有位能,重物上升时,是电动机克服各种阻力(包括重物的重力、摩擦阻力等)而做功,属于阻力负载;重物下降时,由于重物本身具有按重力加速度下降的能力(位能),因此,当重物的重力大于传动机构的摩擦阻力时,电动机成为了能量的接受者,故属于动力负载。但当重物的重力小于传动机构的摩擦阻力时,重物仍须由电动机拖动下降,仍属于阻力负载。
为使重物在空中停止在某一位置,在起升机构中还必须设置制动器和停止器等控制部件。为了适应不同吊重对作业速度的不同要求,起升速度应能调节,并具有良好的微动控制性能。微动速度一般在0.25~0.4m/min范围。
通过对起升机构分析不难发现,其工作中的主要有三种转矩:
(1)电动机的转矩TM,即由电动机产生的转矩是主动转矩,其方向可正可负;
(2)重力转矩TG,即由重物及吊钩等作用于卷筒的转矩,其大小等于重物及吊钩等的复合重量G与卷筒半径r的乘积:
TG=G·r(1)
TG的方向永远是向下的。
(3)摩擦转矩T0,即由于减速机构的传动比较大,减速机构的摩擦转矩(包括其他损失转矩)不可忽视。摩擦转矩的特点是,其方向永远与运动方向相反。
2 变频调速的基本原理与电动机的机械特性 2.1 变频调速的基本原理
一般三相异步电动机调速方法有:(1)改变磁极对数p来改变电机转速,所得到的转速只能是3000、1500、1000…,为有级调速;(2)改变转差率s调速,常用的方法是改变定子电压调速和滑差电机调速,该方法转子损耗较大,效率低;(3)改变定子电源频率f1,其调速属于改变同步转速n1调速,由于没有人为的改变s,转子中不产生附加的转差功率损耗,所以效率高。其是一种较为理想的调速方法,但变频调速需要较复杂的控制电路组成。
三相异步电动机同步转速为(2)
式中,p——磁极对数;
f1——定子电流频率,即电源的频率,f1=50Hz;
s——转差率,即同步转速与转子转速二者之差与同步转速的比值。
由于交流电的频率,T为交流电的周期。变频调速就是改变逆变器输出交流电压的周期,就可以改变交流
电压的频率f。所谓改变周期,实际上是在控制电路上采用晶闸管,通过改变晶闸管的导通时间,实现交流电周期的改变。导通时间越短,输出交流电压周期越短,频率越高。即从控制上,用改变晶闸管门极驱动信号的频率控制逆变器输出电压的频率f1,从而实现电动机工作速度的调节。2.2 电动机变频调速的机械特性
起重机械各部分的拖动系统,一般都需要调速,在变频调速问世之前,已经发明了多种调速方法,获得了广泛的应用。例如:增大或改变转子回路内电阻的调速、电磁调速电动机等等。比较常见的是采用绕线转子异步电动机,调速方法是通过滑环和电刷在转子回路内串入若干段电阻,由接触器来控制接入电阻的多少,从而控制了转速。
n = n0-k(Ra + Ri)T(3)式中,n——电动机的输出转速;
n0 ——电动机理想空载转速;
k——比例系数;
Ra——电枢电阻;
Ri——回路内串电阻;
T ——电枢电流切割磁力线所产生的电磁转矩。
从图2不难发现,由于回路内串电阻的存在,其电动机的机械特性变软,输出速度降低;而机械特性越软,电动机的负载能力越差。
电动机采用变频调速,一方面可以实现节能,另一方面可以保持较硬的机械特性,负载能力较好。下面就起升过程中的电动机工作状态说明变频调速对机械特性的影响情况。
(1)重物起吊上升时,其旋转方向与电枢电流产生的转矩方向相同,即电动机受正向转矩作用,其机械特性在第1象限,如图3中之曲线①和所示,工作点为A点,转速为n1;
当通过降低频率而减速时,在频率刚下降的瞬间,机械特性已经切换至曲线②了,工作点由A点跳变至A’点,进入第二象限,其转矩变为反方向的制动转矩,使转速短时下降,并重新进入第一象限,至B点时,又处于稳定运行状态,B点便是频率降低后的新的工作点,这时,转速已降为n2。
(2)空钩(包括轻载)下降时,吊钩自身是不能下降的,必须由电动机反向运行来实现。此时电动机的转矩和转速都是负的,故机械特性曲线在第三象限,如图4中之曲线③,工作点为C点,转速为n3;
当通过降低频率而减速时,在频率刚下降的瞬间,机械特性已经切换至曲线④、工作点由C点跳变至C’点,进入第四象限,其转矩变为正方向,以阻止吊钩下降,所以也是制动转矩,使下降的速度减慢,并重新进入第三象限,至D点时,又处于稳定运行状态,D点便是频率降低后的新的工作点,这时,转速为n4。
(3)重载下降时,重物将因自身的重力而下降,电动机的旋转方向是反转(下降)的,但其转矩的方向却与旋转方向相反,是正方向的,其机械特性如图5的曲线⑤所示,工作点为E点,转速为n5。这时,电动机的作用是防止重物由于重力加速度的原因而不断加速、达到使重物匀速下降的目的。在这种情况下,摩擦转矩将阻碍重物下降,故重物在下降时构成的负载转矩比上升时小。
2.3 电动机变频调速与原拖动系统调速的机械特性比较
(1)重物上升时,两种调速方式其机械特性都在第一象限,如图6所示,曲线①表示变频调速时的机械特性,转速为nl。曲线②表示通过转子电路串入电阻来实现调速时的机械特性,即电压调速。从两条曲线可以看出,工作点由A点对应A’点,电动机的转矩大为减小,拖动系统因带不动负载而减速,直至到达B点时,电动机的转矩重新和负载转矩平衡,工作点转移至B点,转速为降n2,负载能力相对于变频调速变化明显。
(2)轻载下降时两种调速方式其工作特点与重物上升时相同,只是转矩和转速都是负的,机械特性在第三象限,如图6的曲线③和曲线④所示。
(3)重载下降时,原拖动系统的电动机从接法上说,是正方向的,产生的转矩也是正的。但由于在转子电路中串入了大量电阻,使机械特性倾斜至如曲线⑤所示。这时,电动机产生的正转矩比重力产生的转矩小,非但不能带动重物上升,反而由于重物的拖动,电动机的实际旋转方向是负的,其工作点在机械特性向第四象限的延伸线上,如图中E点所示,这时,转速为n5。这种工作状态的特点是:电动机的转矩是正的、却被重物“倒拉”着反转。解决这种现象的途径只能是选择较大的功率,这无形便增加了设备成本。
与变频调速方式(如图5所示)相比较,在重载下降时,两种调速方法的工作点都在第四象限,但电动机的工作状态是不同的。
3 采用变频调速需要注意的问题
(1)重物起吊时起动转矩Ts较大,通常在额定转矩 TN的150%以上。考虑到在实际工作中可能发生的电源电压下降以及短时过载等因素,一般情况下,起动转矩 Ts应按照额定转矩TN的150%~180%来进行选择:
Ts =(150% ~ 180 %)TN(4)
(2)起升机构工作过程中,在重物刚离开泊位上升的瞬间以及在重物刚到达新泊位下降的瞬间,负载转矩的变化是十分激烈的,应引起注意。
(3)起升装置在调整缆绳松弛度时,以及移动装置在进行定位控制时,都需要点动运行,应充分注意点动时的工作特性。
(4)在重物开始升降或停止时,要求制动器和电动机的动作之间,必须紧密配合。由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需要一定的时间(约6s),而电动机转矩的产生或消失是在通电或断电瞬间就立刻反映的。因此,两者在动作的配合上极易出现问题。如电动机已经通电,而制动器尚未松开,将导致电动机的严重过载;反之,如电动机已经断电,而制动器尚未抱紧,则重物必将下滑,即出现溜钩现象。起重机械变频调速采取的措施
4.1 选择合适的变频器容量
在起重机械中,因为升、降速时的电流较大,应求出对应于最大起动转矩和升降速转矩的电动机电流。
通常,起重机械用变频器容量按以下步骤求出:
(1)恒定负荷上升时的电动机容量PMN(kW)(5)
式中,GN——额定重量(kg),具体计算时,应考虑须有125%的过载能力;
v——额定线速度(m/min):
η——机械效率。
(2)变频器容量
变频器的额定电流可由下式求出:
变频器额定电流>电动机额定电流×(6)式中,k1——所需最大转矩÷电动机额定转矩;
k2——1.5(变频器的过载能力);
k3——1.1(余量)。4.2 溜钩的预防措施
起升机构中,由于重物具有重力的原因,如没有专门的制动装置,重物在空中是停不住的。为此,电动机轴上必须加装制动器,常用的有电磁铁制动器和液压电磁制动器等。多数制动器都采用常闭式的,即:线圈断电时制动器依靠弹簧的力量将轴抱住,线圈通电时松开。
为了有效地防止溜钩,某些新型变频器设置了一些独特的制动功能,如:
(1)零速全转矩功能变频器可以在速度为0的状态下,电动机的转矩也能达到额定转矩的150%。这就保证了吊钩由升、降速状态降为零速时,电动机能够使重物在空中暂时停住,直到电磁制动器将轴抱住为止,从而防止了溜钩。
(2)直流强励磁功能变频器可以在起动之前和停止时,自动进行强直流励磁。使电动机有足够大的转矩(可达额定转矩的200%),维持重物在空中的停住状态,以保证电磁制动器在释放和抱住过程中不会溜钩。
4.3 变频调速系统的控制
起重机械拖动系统的控制动作包括:吊钩的升降及速度档次、变幅功能等,都可以通过可编程序控制器(PLC)进行无触点控制。
5 结 语
异步电动机变频调速的电源是一种能调压的变频装置,应用时常采用由晶闸管元件或自关断的功率晶体管器件组成的变频器。除起重机械外,变频调速已经在许多领域内获得广泛应用。可以预见,随着生产技术水平的不断提高,变频调速必将获得更大的发展。
参考文献
1.王进.施工机械概论.北京:人民交通出版社,2002
2.李发海,王岩.电机与拖动基础(第二版).北京:清华大学出版社,2001
3.陈洪礼.交流电动机的近代调速系统.内蒙古:内蒙古大学出版社,1992
4.郑堤,唐可洪.机电一体化设计基础.北京:机械工业出版社,2002
第四篇:基于PLC的变频调速恒压供水系统的应用
基于PLC的变频调速恒压供水系统的应用
张雷雷
南山纺织服饰有限公司
摘要:随着社会主义市场的经济发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术·控制技术以及通讯技术,设计高性能·高节能·能适应不同领域的恒压供水系统成为必然的趋势。
本论文采用变频器和PLC实现恒压供水和数据传输。本论文的变频恒压供水系统以再国内许多实际的供水控制系统中得到应用,并取得稳定可靠的运行效果和良好的节能效果。经实践证明该系统具有高度的可靠性和实时行,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益。
关键字:恒压供水:变频调速:PLC:泵切换
随着电力技术的发展,以变频调速为核心的智能供水系统取代了以往高位水箱和压力罐等供水设备,启动平稳,启动电流可限制在额定电流以内,从而避免了启动时对电网的冲击;由于泵的平均转速降低了,从而可以延长泵和阀门等东西的使用寿命;可以消除启动和挺及时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将供水实现节水、节电、节省人力,最终达到高效率的运行目的。
PLC变频恒压供水系统是以PLC为控制核心,由PLC控制器、变频调速器、压力传感器等其他电控设备以及4台水泵组成,如图1.1所示
图1.1 变频调速恒压供水控制系统的原理图
其工作过程:设定一个水压值后,根据变频恒压供水原理,利用安装在供水管网上的压力传感器,连续采集供水管网中的水压及水压变化率信号,并将水压信号转换为电信号送入PLC,PLC根据实际水压值与设定水压值进行比较和经PID运算,并将运算结果转换为电信号,输出送到变频器的信号给定端,变频器根据给定信号,调节水泵的电源频率,从而调整水泵的转速,以维持供水管网中水压值在设定的水压范围内。当变频器频率到达最或大最小时,由PLC控制加泵或减泵实现恒压供水,从而达到恒压供水的目的。我公司在2009年11月份正式启用了该系统,并从中受益。本文介绍基于PLC变频调速恒压供水的设计
我公司水处理车间担负了南山纺织服饰有限公司下属单位和附属单位的工业及生活消防用水的任务。包括4台22KW的工业用水水泵和2台11KW的应急不压水泵。1.控制要求
1).水泵能自动变频软启动,四台水泵自动变频软启动,并根据用水量的大小自动调节水泵的台数。四台水泵自动轮换变频运行,工作泵故障时备用泵自动投入,可转换自动或人工手动开·停机。2).设备具有缺相、欠压、过压、短路、过载等多种电气保护功能,具有相许保护防止水泵反转抽空,并具有缺水保护及水位恢复开机功能。且有设备工作、停机、报警指示。2.PLC及变频器控制电路 2.1).供水系统主电路
该系统有四台水泵,如图2.1所示,合上空气开关(QS)后,当交流接触器KM1、KM3、KM5、KM7主触点闭合时,水泵为工频运行;当KM2、KM4、KM6、KM8主触点闭合时,水泵为变频运行。四个热继电器FR1、FR2、FR3、FR4分别对四台电动机进行保护,避免电动机在过载时可能产生的过热损坏。
图2.1恒压供水的主电路
2.2).供水系统的控制电路
如图2.2所示,Y0、Y7为PLC输出软继电器触点,其中Y0、Y2、Y4、Y6控制变频运行电路;Y1、Y3、Y5、Y7控制工频电路。SAC为转换开关,实现手动、自动控制切换。当SAC切在手动位时,通过1#SB24#SB2按钮分别启动四台水泵工频运行;当SAC在自动位时,由PLC控制水泵进行变频或工频状态的启动、切换、停止运行。
图2.2恒压供水系统的控制电路
1KA为缺水保护电路的中间继电器触点,当水池缺水或水位不足时,配合缺水保护装置断开控制电路,切断主电路,实现缺水保护作用。2.3).缺水保护电路
当水池缺水或水位不足时,若不及时切断电源就会损坏水泵,甚至发生事故。如图2.3所示。利用液位继电器等装置时刻检测水池里的水位,经电路转换及处理后对控制回路电源进行控制。水池水位正常时,控制回路电源接通,系统正常工作。水池缺水或水位不足时,液位继电器1K释放,系统报警、指示灯亮并通过1KA切断系统控制电路和主电路,水泵停止。水位正常后,液位继电器1K吸合,重新启动系统。
图2.3缺水保护电路 2.4).缺相相序保护电路
图2.4缺相相序保护电路
水泵工作在三相交流电,电源发生缺相时,电动机中某一相无电流,而另外两相电流会增大,容易烧坏电动机;另外,为了避免电源相序相反,电动机反转水泵抽空的现象,设置了缺相相序保护电路,如图2.4所示。采用缺相相序保护电路继电器KP接在主电路电源进线空气开关之后,三项正常时,KP得电吸合,控制电路中KP的1-2触点吸合,接通PLC控制电路。反之,缺相或反相时,KP的1-2触点断开,会切断PLC控制电路,系统停止工作,缺相相序保护指示灯亮。
2.5).硬件接线图
图2.5 硬件原理图
该系统的硬件连接图即PLC和系统的各个硬件的接线。由于PLC所输出的信号是数字信号,不能被变频器所识别,所以我们在他们之间加了个模拟量输入输出模块FXON-3A。其功能:该模块具有2路模拟量输入(0-10V直流或4-20mA直流)通道和1路模拟量输出通道。其输入通道数字分辨率为8位,A/D的转换时间为100us,在模拟与数字信号之间采用光电隔离,占用8个I/O点。2.6).变频器频率(速度)的设定及PID 1.最高频率:水泵属于平方率负载,当转速超过额定转速时,转速将按平方规律增加,导致电动机严重过载。因此,变频器的工作频率是不允许超过额定频率的,其最高频率只能与额定频率相等,即Fmax=Fn=50HZ。
2.上限频率:一般来说,上限频率以等于额定频率为宜。但有时也可以预置得略低一些,变频器内部有转差补偿功能,同在50HZ的情况下,水泵在变频运行时的实际转速要高于工频运行时的转速,从而增大了水泵和电机的负载;变频调速系统在50HZ下运行时,还不如直接在工频下运行,可以减少变频器本身的损失。因此,将上限频率预置为49HZ或49.5HZ是适宜的。
3.下限频率:在供水系统中,转速降低,会出现水泵的全扬程小于实际扬程,形成水泵“空转”的现象。所以,下限频率预置为25-30HZ 4.启动频率:水泵在启动时,如果从0HZ开始启动,水泵基本没有压力输出,为调节时间,应预置启动频率值为15-20HZ,及设置变频器PID输出值的下限为最大值的30%-40%。
变频器利用PID控制器将被控对象的传感等检测到控制量(反馈信号),将其与目标值(流量、压力等设定值)进行比较,再有PLC控制变频器输出。如图2.60若有偏差,则通过此功能的控制动作是偏差为零,也就是是反馈量与目标值保持一致,从而达到好好的调速作用。
图2.6 PID控制器接线图 2.7 PLC在系统中的控制
根据变频恒压供水原理,利用安装在供水管网上的压力传感器,连续采集供水管网中的水压及水压变化率信号,并将水压信号转换为电信号送入PLC,PLC根据实际水压值与设定水压值进行比较和经PID运算,并将运算结果转换为电信号,输出送到变频器的信号给定端,变频器根据给定信号,调节水泵的电源频率,从而调整水泵的转速,以维持供水管网中水压值在设定的水压范围内。当变频器频率到达最或大最小时,由PLC控制加泵或减泵实现恒压供水,PLC在系统中起主导作用是控制交流接触器组近进行工频-交频的切换和水泵工作数量的调整。如图2.7
系统运行之后,在自动运行方式下开始启动运行时,首先检测水池水位,若水池水位符合设定水位要求,1#变频交流接触器吸合,电机与变频器连通,变频器输出频率从0HZ开始上升,此时压力传感器检测压力信号反馈到PLC,由PLC经PID运算后控制变频器的频率输出;如压力不够,则频率上升至50HZ,延时一定时间后,将1#水泵切换为工频,2#水泵变频交流接触器吸合,变频启动#水泵,频率逐渐上升,直至出水压力达到设定压力,以此类推增加水泵。
如用水量减少,出水压力超过设定压力,则PLC控制变频器降低输出频率,减少出水量来稳定出水压力。若变频器输出频率低于某一设定值,而出水压力仍高于设定压力值时,PLC开始计时,若在一定时间内,出水压力降低到设定压力,PLC放弃计时,继续变频调速运行;若子一定时间,内压力仍高于设定值,根据先停机的原则,PLC将停止正在运行的水泵中运行时间最长的工频泵,直至出水压力达到设定值。若系统中只有一台水泵变频运行且连续一段时间频率低于设定出水频率,则切除变频运行主泵,投入小流量泵,既保护主泵电动机,又节约能源。当外来管网压力达到设定压力时,则控制其完全停止各泵的工作。
在变频器发生故障时也要不间断供水。当变频器发生故障时蜂鸣器报警,则PLC发出指令使全部水泵停止工作,然后1#水泵工频运行,经一定演示后根据压力变化情况在使2#泵工频运行。此时,PLC切换泵则根据实际水压的变化在工频泵之间切换。当出现水池无水停机、电动机欠压、过压、错相、电机故障等情况时,均能有蜂鸣器发出报警声。3.结束语
由于变频恒压供水系统的应用,它取代了传统的水塔、高位水箱或气压罐,不但大大的提高和改善了厂区工业及生活消防供水系统的性能,而且节能环保,具有良好的经济和技术效益。我公司自2009年11月投入使用以来,未出现过大的技术问题,保障了了公司下属和附属单位的正常可靠的工业用水,为企业的发展提供了强有力的保障。
参考文献:
1.张还.《控制其原理及控制过程》,北京:中国电力出版社,2008-10 2.岳大为.《变频器应用技术》,北京:化学工业出版社,2009-6 3.周志敏.《变频器调速系统》,北京:电子工业出版社,2008-5 4.宫淑贞.《可编程序制器原理与应用》,北京:人民店有出版社,2004
第五篇:变频调速的电气制动方式及应用
变频调速的电气制动方式及应用
摘 要:随着变频器在各种生产机械的应用越来越多,根据实际情况选择经济有效的制动方法与制动功能是设计交流变频调速系统十分重要的环节,也是设备安全运行的重要保证。本文详细分析了变频调速的电气制动原理及制动电阻的选择计算,并对电气制动方式的不同种类及应用进行了详尽的介绍。关键词:变频调速;电气制动;应用 引言
随着电力电子技术和自动化技术的不断进步和发展,各类低压变频器的性能也越来越先进,应用范围越来越广泛。无论是在调速节能运行、提高生产效率、适应生产工艺要求、提高产品质量方面,还是在设备设计合理化和简单化、减少维护成本、改善和适应环境等方面都有了广泛的应用。在变频器应用中,在使运动的机构减速或者停止、势能负载的下落拖动、多级传动的同步控制及应对负载的突变或在设备出现事故需要紧急停车时,都需要应用到变频器的制动方式。根据实际情况选择经济有效的制动方法与制动功能不但是设计交流变频调速系统十分重要的环节。也是设备安全运行的重要保证。要对变频调速的制动方式进行合理的设置应用,就必须对变频调速制动控制的原理及应用范围足够的了解。变频调速的电气制动原理及分类 在通用变频调速系统中,当电动机减速或者拖动位能负载下降时,异步电动机将处于再生发电状态,传动系统中所储存的机械能经异步电动机转化电能。这种工作状态下,电动机处于再生制动状态,这种制动方式被称为再生制动。在电动机处于再生发电制动状态时,逆变器的六个回馈二极管将产生的电能回馈到直流侧,此时的逆变器处于整流状态。如果在标准型的变频器(网侧变流器为不控的二极管整流桥)中不采取另外的措施,这部分能量将导致中间回路的储电电容器的电压上升。如果电动机的制动并不太快,电容器电压升高的值并不明显,一但电动机恢复到电动状态,这部分能量又会被负载重新利用。但在频繁制动或负载为提升较重重物负载下降时,电容器的电压升高就会过快过大,变频器内的保护装置就会动作,对变频器进行过压保护。
制动问题的实质在于机械能转换为电能,电能储存在变频器的中间环节电解电容中,制动方案就是如何保证中间环节电解电容的电压不超过变频器允许的范围。因此,解决制动问题的方法有二: 一是改变系统控制策略,合理设置变频器参数,避免电机出现机械能转换为电能,从源头上消除能量的持续累积;二是将不断积累的能量通过系统内部交换或者一定的渠道泻放掉,即采用共用直流母线、能耗制动或者回馈制动等策略。
还有一种制动方式叫能耗制动,即再异步电动机定子通入直流电流,来达到机构准确停车或起动前制止电动机由外界因素引起的不规则旋转。还可用于消除驱动系统在转速接近于零时的“爬行”现象。电气制动方式的应用
⑴再生制动
再生制动主要发生在设备的稳速运行和减速过程中。在变频器应用中,对再生制动方式的选择应用主要目的是解决异步电动机处于再生发电运行状态时产生的能量问题。为了处理电动机的再生制动电能,一般大致可归类为两种处理方式:
① 耗散到直流回路中与电容器并联的“制动电阻”中。这种方式又叫动力制动(有的文章又叫能耗制动)。一般情况下,若系统制动转矩不大于电动机额定转矩的20%时,则不需要另外的制动电阻,仅电动机内部的有功损耗的作用就可以使中间直流回路电压限制在电压保护的水平之下。
在小功率的通用变频器,制动电阻内置于变频器内或直接外接于变频器对应端子。在制动功率较大的情况下,多数变频控制系统采用制动单元加制动电阻(或采用多个制动单元并联)的接线方式。制动单元就是在直流母线回路中加接一检测直流母线电压的IGBT管,一旦直流母线回路电压超过一定的界限,该晶体管导通,并将过剩的电能通过与之相连接的制动电阻器转化为热能耗。通过制动电阻耗散这部分能量后,使电动机的制动能力大幅提高,同时缩短了机械设备减速时间,提高了生产效率。动力制动控制方式简单,成本低,但节能效果不如回馈制动。
对于制动电阻的选择,包括制动电阻的阻值及容量可以按照下列式计算:
RBOUC20.1047TB0.2TMn1()
式中UC——直流回路电压(V);
TB——制动转矩(N·m);
TM——电动机额定转矩(N·m);
n1——开始减速时速度(r/min);
本式中0.2 TM指电动机内部的有功损耗可以折合成制动转矩的部分。
由于受到制动晶体管最大允许电流IC的限制,制动电阻的最小允许值RMIN(Ω)为 RminUCIC
式中UC为直流回路电压(V)。
因此,选用的直流制动电阻RB应按照RMIN<RB<RBO的关系来决定。制动电阻平均消耗功率PRO的计算公式为: Pro0.1047(TB0.2TM)n1n22103(KW)
式中n1为减速开始速度(r/min);n2为减速结束速度(r/min)。制动电阻额定功率Pr的计算:
PrProm(KW)
式中m为电阻器的允许功率增加系数,其大小与制动电阻使用率有关。使用率越高,m值越小。二者的关系图可查阅相关资料。根据如上计算的RBO和Pr,可在市场上选用合乎要求的标准电阻器。电阻值选择越小,制动力矩越大,流过制动单元的电流越大。当在快速制动出现过电压时,说明电阻值过大来不及放电,应减少电阻值。在电阻器安装时应考虑电阻器的散热问题。
公共直流母线系统也是能耗制动的一种方式。应用于两台或者两台以上变频器运行的多电机传动系统中。在该系统中,往往存在一部分变频器在电动运行和另外一部分在发电运行的情况。如果能够全部或者部分有选择的将电动与发电运行变频器的直流母线连接起来,处于制动状态的电机感生能量就反馈到直流回路。通过直流回路,这部分反馈能量就可以消耗在其他处在电动状态的电机上,可以保证发电制动的能量得到及时的利用,防止母线电压的上升,制动要求特别高时,只需要在共用母线上并上一个共用制动单元即可。这样可以做到既节能、又环保,大大减小了制动组件或者回馈组件的功率,降低了整个系统的成本。在此方案中,母线并联必须串入快速熔断器来防止个别单元损坏后造成故障的进一步扩大。这里需要强调一点的是,快速熔断器的容量必须以对应变频器的容量作为选择依据。采用共用直流母线的制动方式,具有以下显著的特点:
a.共用直流母线和共用制动单元,可以大大减少整流器和制动单元的重复配置,结构简单合理,经济可靠。
b.共用直流母线的中间直流电压恒定,电容并联储能容量大; c.各电动机工作在不同状态下,能量回馈互补,优化了系统的动态特性; d.提高系统功率因数,降低电网谐波电流,提高系统用电效率。
②要实现直流回路与电源间的双向能量传递,一种最有效的办法就是采用有源逆变技术:即将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。通过网侧可逆变流器(或其他形式可逆变流器)使之回馈到电网实现制动的这种方式又叫回馈制动。回馈制动的原理是:当给定频率下降时,如果电机的同步转速低于转子转速的情况,这时电机处于再生制动的状态。如果此时有回馈制动单元,那么它可以将电机再生的电能反馈到电网中,从而使整个调速系统处于回馈制动状态,不但节省了能源,还增大了制动转矩。这对于中大功率电机、开卷机和起重机械下放重物的工作状态来说,尤为重要。
整流回馈单元既能为变频器提供公共直流电源,又能使电机制动的能量回馈电网,因此它适用于回馈能量较多的系统,同时也可以由一台整流回馈单元构成公共直流母线下挂多台变频器的形式。回馈制动方式虽然节能效果好,能连续长时间制动,但控制复杂,且成本比较高,对电网要求高,所以采用的不多。
需要注意的是,回馈制动单元也称为有源逆变单元,实现有源逆变的两个基本条件是:主线路应有一个具有较高质量的不低于90%额定值的交流电源;主线路的设计功率必须足够大(相当于所连接变频器总功率的100倍)。
⑵直流制动(又称DC制动)
直流制动一般应用在设备静止或减速后使设备静止的过程中。直流制动是指变频器向异步电动机的定子通直流电,异步电动机处于直流制动状态的情况。这种情况下变频器的输出频率为零,异步电动机的定子形成一个固定的磁场,旋转的电动机转子切割这个静止的磁场而产生制动转矩。机械动能转换成电能消耗于异步电动机的转子回路中。通用变频器对直流能耗制动的控制,主要通过设定DC直流制动起始频率fBD,制动电流IDB和制动时间tDB来实现。
通常情况下,起始制动频率不易设定太高,太高时,异步电动机的转子电流的频率和幅度都相当大,转子铁损也就会很大,导致电动机发热严重。特别是对于要求频繁制动停车的生产机械,更不易将fDB设得太高,不然电动机将过热严重。对于IDB的设定,实际上是对异步电动机定子电流的设定。制动电流IDB不同,则制动状态下的转矩特性亦不同。电动机fBD所对应
图3 利用直流制动实现准确停车
图4 运行前的直流制动停止
转速到零所用的时间由旋转系统的GD生产机械的静阻力矩和变频器的IDB等共同决定。如果这个时间大于变频器内的最大允许设定tDB,则电动机可能进入自由停车的滑行状态,在设定时应当注意这一点。
图
3、图4是直流制动应用的两种情况的时序图。直流制动时序图因变频器内部参数设置的不同会有所不同。其中IDB为制动电流;tDB为制动时间; fBD在图3中指制动起始频率;在图4中指起动频率。结束语
以上谈到的制动都是电动机由变频器系统控制的制动,均属于电气制动方式。如果变频器参数调整得当,电动机经历再生制动减速和直流制动最终停止,生产机械将准确地停止在预定位置上。当生产机械静止并需要保持静止的制动时,则应采用机械制动。作为静止保持或者万一变频器等出现故障的一种补救措施,机械制动器是必不可少的。例如吊车提升机构,重物在空中静止的工况常采用机械抱闸实现静止保持。在变频器控制系统中,一般是电气制动先于机械抱闸制动,这样机械抱闸几乎仅在静止中使用,则大大降低了机械抱闸带来的冲击和闸衬(闸皮)磨损。通过对电气制动的合理设置应用,减少了机械维修量和维修费用,提高了机械使用寿命和设备安全性能。参考文献
[1]通用变频器及其应用(第二版)/韩安荣主编
北京:机械工业出版社 2000 [2]VACON CX/CXL/CXS变频器用户手册 注:文中附图为CAD图