概率论与数理统计_范玉妹_教学大纲

时间:2019-05-15 08:16:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率论与数理统计_范玉妹_教学大纲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率论与数理统计_范玉妹_教学大纲》。

第一篇:概率论与数理统计_范玉妹_教学大纲

一.课程教学目的

概率论与数理统计是一门研究不确定现象的规律性的数学学科,概率统计的理论与方法的应用几乎遍及所有科学技术领域和国民经济的各个方面与部门。因此,概率统计已成为高等院校学生的必修课程。本课程包括概率论与应用统计两部分,概率论部分是从数量关系角度研究自然界和社会生活中普遍存在的不确定现象,即随机现象的规律性,并为后续内容提供理论基础。应用统计部分是从理论与实际相结合的角度研究随机现象的统计规律性,它以概率论为理论基础,根据试验或观察得到的数据来研究随机现象,对研究对象的客观规律性作出合理的估计与判断。

通过对本课程的学习,使学生掌握概率论与数理统计的基本概念、基本理论及基本方法,使学生初步掌握处理随机现象的基本思想和方法,培养他们运用概率论与数理统计的方法去分析和解决有关实际问题的能力,并为今后学习后继课程打下必需的基础。

二.课程教学基本要求 1.课程重点:

随机事件及其概率中的重点:计算随机事件的概率,特别要掌握乘法公式、全概率公式、贝叶斯公式、事件的独立性以及对贝努利概型的事件的概率的计算。

随机变量及其分布中的重点:熟练掌握离散型随机变量与连续型随机变量的几个常用的分布;熟练掌握分布函数的求法;掌握求随机变量的一些简单函数的概率分布。

多维随机变量及其分布中的重点:对二维随机变量有全面的了解,掌握二维随机变量的边缘分布和联合分布的关系;并会计算两个随机变量和的分布。

随机变量的数字特征中的重点:理解数学期望和方差的概念及其性质,掌握数学期望和方差的求法,熟悉常用分布的数学期望和方差。大数定律和中心极限定理中的重点:会用契比雪夫不等式估计有关事件的概率;领会大数定律的实质;掌握用中心极限定理计算概率的近似值的方法。

样本及其抽样分布中的重点:理解数理统计中常用的四大分布的定义,会查表进行计算,特别是熟悉正态总体的常用统计量的分布及运用这些统计量进行计算。

参数估计中的重点:能熟练运用极大似然估计法对总体的参数进行估计,会对单个正态总体和两个正态总体的均值与方差进行区间估计。

假设检验中的重点:熟练掌握关于单个正态总体对均值与方差的假设检验;掌握两个正态总体对均值与方差的假设检验。

2.课程难点:

随机事件及其概率中的难点:用乘法公式、全概率公式、贝叶斯公式、事件的独立性对事件的概率的计算。

随机变量及其分布中的难点:随机变量的理解以及分布函数的求法。

多维随机变量及其分布中的难点:二维随机变量联合分布函数的求法以及两个随机变量函数的分布。

随机变量的数字特征中的难点:数学期望和方差的求法以及相关的证明。大数定律和中心极限定理中的难点:领会大数定律及中心极限定理的实质;用中心极限定理计算概率的近似值的方法。

样本及其抽样分布中的难点:理解数理统计中常用的四大分布的定义以及上 分位点的定义。

参数估计与假设检验中的难点:如何针对实际问题运用正态总体的常用统计量进行估计与检验。

3.能力培养要求: 为了能使学生能熟练地运用所学的知识来解决实际的问题,培养与提高学生理论与实践相结合的能力以及数据处理能力。适当安排课外上机训练。

在课内教学活动中要侧重培养学生对概率统计中的实际背景的理解;理解与掌握解决实际问题的常用方法,会运用课本中的基本知识分析及解决一些较简单的实际问题。

课外的上机演练及通过解决实际问题的全过程,了解和掌握建立数学模型的初步方法,并会利用计算机与相关的数学软件求出问题的数值解;使学生具有初步从事科研的能力。

三.课程教学内容与学时 课堂教学(42学时)

1. 概率论基本概念(8学时)1.1 随机事件

随机事件的概论,随机事件的关系与运算 1.2 随机事件的概率

概率的统计定义,概率的古典定义,概率的公理化定义,概率的性质 1.3 概率的运算规律

加法原理,条件概率,乘法原理,全概率公式与贝叶斯公式 1.4 事件的独立性

事件的独立性,重复独立试验 2. 随机变量及其分布(6学时)2.1 随机变量及其分布函数 随机变量,随机变量的分布函数 2.2 离散型随机变量 概率分布律,几种常见的离散型随机变量的分布 2.3 连续型随机变量

概率密度函数,几种常见的连续型随机变量的分布 2.4 随机变量函数的分布

离散型、连续型随机变量的函数的分布 3. 多维随机变量及其分布(6学时)3.1 二维随机变量及分布函数概念

3.2 二维离散型随机变量及其分布,二维连续型随机变量及其分布 3.3 二维随机变量的独立性 3.4 二维随机变量函数的分布 4. 随机变量的数字特征(8学时)4.1 数学期望

数学期望的定义与性质,几种常用分布的数学期望 4.2 方差

方差的定义与性质,几种常用分布的方差 4.3 协方差与相关系数

协方差定义与性质,相关系数定义与性质 5. 大数定律与中心极限定理(3学时)5.1 大数定律

契比雪夫不等式,契比雪夫定理,贝努利定理 5.2 中心极限定理

独立同分布中心极限定理,李雅普诺夫中心极限定理 6. 样本与抽样分布(3学时)6.1 随机样本与统计量

总体与样本,随机抽样及其它抽样方法,样本统计量和总体参数 6.2 样本分布函数与直方图 样本分布函数,列表法与直方图法 6.3 几个常用统计量的分布

样本均值的分布,χ2分布,t分布,F分布 7. 参数估计(4学时)7.1 点估计

点估计问题的一般提法,矩估计法,极大似然估计法 7.2 估计量的评选标准 无偏性,有效性,一致性 7.3 区间估计

置信区间与置信度,一个正态总体的区间估计(期望的区间估计与方差的区间估计,两个正态总体的区间估计(期望差的区间估计与方差比的区间估计)

8. 假设检验(4学时)8.1 假设检验的思想

假设检验的基本思想,判断假设检验的根据,假设检验的两类错误,假设检验的一般方法

8.2 一个正态总体的假设检验 σ2已知时关于μ的检验(U检验),σ2未知时关于μ的检验(t检验),μ与σ2均未知时检验关于H0:σ2=σ2o,(χ2检验)8.3 两个正态总体的假设检验

σ21与σ22已知时检验H0:μ1=μ2(t检验),σ21 =σ22 =σ2 未知时检验H0:μ1=μ2(t检验),μ1与μ2 未知时检验H0:σ21 =σ22(F检验)

第二篇:概率论与数理统计A,教学大纲

概率论与数理统计A

Probability & Statistics A

课程编码:09A00210 学分:3.5 课程类别:专业基础课 计划学时:56

其中讲课:56 实验或实践:0 上机:0 适用专业:部分理工类、经济、管理类学院各专业,主要有信息学院、机械学院、电气自动化、土建学院、资环学院、商学院、物理学院等。

推荐教材:杨殿武 苗丽安主编,《概率论与数理统计》,科学出版社,2014年;参考书目:浙江大学盛骤主编,《概率论与数理统计》,高等教育出版社,2009年;吴赣昌主编,《概率论与数理统计》,中国人民大学出版社,2006年。

课程的教学目的与任务

本课程是大部分理工科、管理、经济类各专业的专业基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。课程的任务在于通过本课程的学习,要使学生获得:随机事件与概率、一元与多元随机变量及其分布、随机变量的数字特征;、数理统计的基本概念、参数估计与假设检验等方面的基本概念、基本理论和基本运算技能,培养学生抽象思维能力、逻辑推理能力以及运用数学知识分析问题和解决随机问题的能力,提高学生的数学素质和解决实际问题的能力。

课程的基本要求

(一)概率论基础

掌握古典概型、几何概型的计算;掌握全概率公式及贝叶斯公式的运用及独立性。

(二)随机变量及其分布

掌握一维离散型和连续型随机变量的概率分布的计算及一维随机变量的函数的分布。

(三)多维随机变量及其分布

1、掌握二维离散型随机变量的概率分布及二维连续型随机变量的概率密度的性质。

2、掌握二维离散和连续型随机变量的边缘分布和随机变量的独立性及二维随机变量的函数的分布。

(四)随机变量的数字特征

1、掌握数学期望、方差的性质及运算;掌握六种常见分布的数学期望和方差。

2、掌握协方差及相关系数的性质及相关性。

(五)大数定律与中心极限定理

了解切比雪夫不等式,了解独立同分布中心极限定理和棣莫佛--拉普拉斯定理。

(六)参数估计

掌握三大分布χ2 分布、t分布及F分布及正态总体的常用的统计量分布;掌握矩估计法、最大似然估计法和区间估计的方法。

(七)假设检验

理解假设检验的基本思想,掌握单个正态总体的均值与方差的假设检验,了解两个正态总体均值与方差相等的假设检验。

各章节授课内容、教学方法及学时分配建议

第1章 概率论基础 建议学时:10学时

[教学目的与要求] 理解随机事件的概念,掌握事件之间的关系与运算;理解概率、条件概率的定义,掌握概率的基本性质,会计算古典概型和几何概型的概率;掌握概率的加法公式,乘法公式,会应用全概率公式和贝叶斯公式;理解事件独立性的概念,掌握应用事件独立性进行概率计算的方法.[教学重点与难点] 重点:事件之间的关系与运算、概率的基本性质与计算;难点:全概率公式和贝叶斯公式的应用。

[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 1.1 概率论的基本概念 1.2 概率的定义 1.3 条件概率 1.4 事件的独立性

第2章 随机变量及其分布

建议学时:10学时

[教学目的与要求] 理解随机变量、分布函数的概念及性质,会计算与随机变量有关的事件的概率;理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、泊松分布及其应用;理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系;掌握正态分布,均匀分布和指数分布及其应用;会求简单随机变量函数的概率分布。

[教学重点与难点] 重点:离散型、连续型随机变量的概率计算,六种常见随机变量的分布;难点:连续型随机变量的概率计算。[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 2.1 随机变量

2.2 离散型随机变量及其概率分布 2.3 随机变量的分布函数 2.4 连续型随机变量及其概率分布 2.5 随机变量函数的分布

第3章 多维随机变量及其分布 建议学时:10学时

[教学目的与要求] 理解二维随机变量、联合分布的概念、性质及两种基本形式:离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度,会利用二维概率分布求有关事件的概率;理解随机变量的独立性的概念,掌握离散型和连续型随机变量独立的条件;掌握二维均匀分布,了解二维正态分布的概率密度;会求两个独立随机变量的简单函数的分布。

[教学重点与难点] 重点:二维离散型、连续型随机变量的概率计算,独立性的概念;难点:二维连续型随机变量的概率计算,随机变量函数的分布。

[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 3.1 多维随机变量及其分布函数 3.2 二维随机变量及其分布 3.3 随机变量的独立性与条件分布 3.4 多维随机变量函数的分布

第4章

随机变量的数字特征 建议学时:8学时

[教学目的与要求] 理解随机变量数字特征(数学期望、方差、标准差、协方差,相关系数)的概念;并会运用数字特征的基本性质计算具体分布的数字特征;掌握常用分布的数字特征的概念意义和实际背景;会根据随机变量的概率分布求其函数的数学期望;会根据随机变量的联合概率分布求其函数的数学期望;掌握随机变量独立性与相关系数的相互关系。

[教学重点与难点] 重点:常用六种随机变量的数字特征的概念意义及计算,边缘分布的求法;难点:随机变量函数的数字特征,相关系数。[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容]

4.1 数学期望

4.2 方差

4.3 协方差与相关系数

第5章 大数定律与中心极限定理 建议学时:2学时

[教学目的与要求] 了解大数定律与中心极限定理的中心思想与意义。[教学重点与难点] 辛钦大数定律、棣莫佛--拉普拉斯定理。[授 课 方 法] 以课堂讲授为主,课堂讨论和课下自学为辅。[授 课 内 容]

5.1 大数定律

5.2 中心极限定理

第6章 参数估计

建议学时:8学时

[教学目的与要求] 理解样本和统计量等基本概念;掌握样本均值、样本方差的计算;熟悉χ2 分布、t分布及F分布及正态总体的常用的统计量的分布。理解参数的点估计、估计量与估计值的概念;掌握矩估计法和最大似然估计法;了解估计量的无偏性,有效性和一致性的概念,并会验证估计量的无偏性;了解区间估计的概念,会求单正态总体的均值与方差的置信区间。

[教学重点与难点] χ2 分布、t分布及F分布及正态总体的常用统计量的分布,矩估计法、最大似然估计法,正态总体的均值与方差的置信区间。

[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容]

6.1 数理统计的基本概念 6.2 点估计

6.3 区间估计

第7章 假设检验

建议学时:8学时

[教学目的与要求] 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;了解单正态总体均值与方差的假设检验方法及双正态总体均值与方差的假设检验方法。

[教学重点与难点] 单正态总体均值与方差的假设检验;双正态总体均值与方差的假设检验。[授 课 方 法] 以课堂多媒体教学为主,结合课堂练习与讨论,课后练习及答疑为辅。[授 课 内 容] 7.1 假设检验概述 7.2 单个正态总体的假设检验 7.3 两个正态总体的假设检验

撰稿人:王金梅

审核人:杨殿武

第三篇:概率论与数理统计课程教学大纲

《概率论与数理统计》课程教学大纲

(2002年制定 2004年修订)

课程编号:

英 文 名:Probability Theory and Mathematical Statistics 课程类别:学科基础课 前 置 课:高等数学

后 置 课:计量经济学、抽样调查、试验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论

学 分:5学分 课

时:85课时 修读对象:统计学专业学生 主讲教师:杨益民等

选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年(第三版)

课程概述:

本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生考试的重要专业基础课。本课程由概率论与数理统计两部分组成。概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。包括数理统计的基本概念、参数统计、假设检验、非参数检验、方差分析和回归分析等。教学目的:

通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布、顺序统计量的分布。理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。了解大数定律和中心极限定量的内容及应用,熟悉数据处理、数据分析、数据推断的各种基本方法,能用所掌握的方法具体解决所遇到的各种社会经济问题,为学生进一步学习统计专业课打下坚实的基础。教学方法:

本课程具有很强的应用性,在教学过程中要注意理论联系实际,从实际问题出发,通过抽象、概括,引出新的概念。由于本课程是研究随机现象的科学,学生之前从未接触过,学习起来会感到难度较大,授课时应突出重点,讲清难点。要使学生明白,本课程主要研究哪些方面的问题,从何角度、用何原理和方法进行研究的,是怎样研究的,得到哪些结论,如何用这些方法和结论处理今后遇到的社会经济问题。在教育中要坚持以人为本,全面体现学生的主体地位,教师应充分发挥引导作用,注意随时根据学生的理解状况调整教学进度。授课要体现两方面的作用:一是为学生自学准备必要的理论知识和方法,二是激发学生学习兴趣,引导学生自学。在教学中要体现计算机辅助教学的作用,采用多媒体技术,提高课堂教学的信息量。通过课堂计算机演示实验,帮助学生加深对概念的理解。每次课后必须布置较大数量的思考题和作业,并加强课外辅导和答疑。

各章教学要求及教学要点

第一章 概率论的基本概念

课时分配:13课时 教学要求:

1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算。

2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、减法公式、全概率公式,以及贝叶斯公式。

3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。教学内容:1、2、3、4、5、6、随机试验、随机事件与样本空间。

事件的关系与运算、完全事件组。

概率的概念、概率的基本性质、概率的基本公式。等可能概型(古典概型)、几何型概率。条件概率、全概率公式、贝叶斯公式。

事件的独立性、独立重复试验。

思考题:

1、事件A表示三个人对某问题的回答中至少有一人说“否”,B表示三个人对某问题的回答都说“是”。试问:事件AB、AB各表示什么涵义?

2、社会经济现象是否只分成确定性现象和随机现象?“某天的天气状况”是否属于这两类现象?试举出至少三种不属于这两类现象的社会经济现象。

3、随机事件与集合的对应关系是怎样的?

4、对立事件和不相容事件有何区别?

5、全概率公式和贝叶斯公式有何区别,各自能解决什么问题?

6、“小概率事件”是否不会发生?

7、“概率为零的事件”是否必然是不可能事件?

第二章 随机变量及其分布

课时分配:10课时 教学要求:

1、理解随机变量及其概率分布的概念;理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。

2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。

3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,)、指数分布及其应用。

5、根据自变量的概率分布求其简单函数的概率分布。

2教学内容:1、2、3、4、5、随机变量及其分布函数的概念及其性质。离散型随机变量及其分布律。连续型随机变量及其概率密度。常见随机变量的概率分布。

随机变量的函数分布。

思考题:

1、引入随机变量的意义何在?如何用微积分的工具来研究随机试验?

2、分布函数有哪些性质?

n3、离散型随机变量的分布律有哪些性质?若有一组数pi0,且i1它们是不是某pi1.2,个离散型随机变量的概率分布?

4、二项分布何时取得极大值?其极大值是什么?

5、什么类型的实际问题可以用二项分布来研究?如何解决二项分布的计算问题?

6、什么类型的实际问题可以用泊松(Poisson)分布来研究?

7、指数分布的密度函数在不同的教材上有不同的定义,它们的区别何在?

8、连续型随机变量的概率密度有哪些性质?

9、正态分布N(μ,)与标准正态分布的分布函数之间有何联系?如何利用标准正态分布来计算正态分布N(μ,)落在某个区间的概率?

10、什么是正态分布的“3法则”?如何利用“3法则”来研究实际问题?

11、若随机变量X的密度函数不单调,如何求Yf(X)密度函数?

第三章 多维随机变量及其概率分布

课时分配:12课时 教学要求:

1、理解二维随机变量的概念、理解二维随机变量的联合分布的概念、性质及两种基本形式:离散型联合概率分布,边缘分布和条件分布;连续型联合概率密度、边缘密度和条件密度。会利用二维概率分布求有关事件的概率。

2、理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。

3、掌握二维均匀分布,了解二维正态分布的联合概率密度,理解其中参数的概率意义。

4、会求两个随机变量的简单函数(和、顺序统计量)的分布。教学内容:

1、二维随机变量及其概率分布。

2、二维离散型随机变量的概率分布、边缘分布和条件分布。

3、二维连续型随机变量的概率密度、边缘密度和条件密度,常用二维随机变量的概率分布。

4、随机变量的独立性和相关性。

5、两个随机变量函数的分布。思考题: 221、二维随机变量概率分布和相应的两个一维随机变量的概率分布间有何联系?

2、如何用一张概率分布表同时表示二维随机变量的联合分布律、边缘分布律?能否同时表示两个条件分布律?

3、二维均匀分布的联合概率密度与一维均匀分布的概率密度有何共性?如何由此推出三维及n维随机变量的联合概率密度?

4、二维正态分布的联合概率密度和相应的两个一维正态分布的概率密度间有何联系?

5、二维正态分布的联合概率密度各参数的涵义是什么?何时相应的两个一维正态分布是相互独立的?

6、如何确定条件密度表达式的函数定义域?

7、设某离散型随机变量与某连续型随机变量是相互独立的,如何求它们的和分布?

8、哪些独立随机变量具有可加性?

9、随机变量的独立性与事件的独立性有何区别?

第四章 随机变量的数字特征

课时分配:12课时 教学要求:

1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,并会运用数字特征基本性质计算具体分布的数字特征,掌握常用分布(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的数字特征。

2、会根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其函数的数学期望。

3、了解切比雪夫不等式及其应用。教学内容:

1、随机变量的数学期望(均值)、随机变量函数的数学期望。

2、方差、标准差及其性质,切比雪夫(Chebyshev)不等式。

3、协方差、相关系数及其性质。

4、矩、协方差矩阵。思考题:

1、数学期望和方差的统计意义是什么?

2、如何求一维与二维随机变量函数的期望?

3、写出0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布的数学期望和方差。

4、数学期望和方差有哪些重要性质?其中哪些性质需要“相互独立”这一前提条件?

5、切比雪夫不等式的表达式是什么?它的证明过程中关键步骤是什么?它在处理实际问题中有何作用?

6、方差与协方差的实用计算公式是什么?

7、不相关与相互独立之间的关系是怎样的?若随机变量X与Y不相关,它们是否必然相互独立?若随机变量X与Y是正态分布,结论怎样?

8、若随机变量X与Y的相关系数r=0,是否说明X与Y之间没有关系?举例说明之。

9、事件A与B的相关系数是如何定义的?写出其定义式。

10、n维正态分布有哪些重要性质?

第五章 大数定律和中心极限定理

课时分配:4课时 教学要求:

1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)。

2、了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)。教学内容:

1、几乎处处收敛、依概率收敛、依分布收敛。

2、切比雪夫大数定律、伯努利大数定律、辛钦(Khinchine)大数定律。

3、棣莫弗-拉普拉斯(De Moivre-Laplace)定理、列维-林德伯格(Levy-Lindberg)定理。思考题:

1、几乎处处收敛、依概率收敛、依分布收敛之间的关系是怎样的?

2、切比雪夫大数定律、伯努利大数定律、辛钦(Khinchine)大数定律成立的条件是什么,它们之间的差别是什么?

3、哪个大数定律可以用来说明频率的稳定性?试说明之。

4、棣莫弗-拉普拉斯定理和列维-林德伯格定理之间的关系是怎样的?

5、如何用列维-林德伯格定理来近似求独立同分布随机变量的和分布?

第六章 样本及抽样分布

课时分配:6课时 教学要求:

1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。

2、了解 分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算。

3、了解正态总体的某些常用抽样分布。教学内容:

1、总体、个体、简单随机样本、统计量、样本均值、样本方差和样本矩。

2、 分布、t分布和F分布,分位数,正态总体的常用抽样分布。思考题:

1、总体和随机变量之间有何关系?

2、什么是简单随机样本?

3、数理统计中所说样本空间和随机变量X的样本空间是否同一概念?

4、为何能用样本观察值推断总体的状况?它依据的原理是什么?

5、什么叫统计量?常用的统计量有哪些?

6、 分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。

7、t分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。

8、F分布是怎样定义的?它有哪些重要的性质?它的主要作用是什么?写出它的数学期望和方差。2229、随机变量的上侧分位数和双侧分位数是怎样定义的?如何通过查表求标准正态分布、 分布、t分布和F分布的分位数?

210、关于正态总体的样本均值、样本方差有何重要结论?

第七章 参数估计

课时分配:8课时 教学要求:

1、理解参数的点估计、估计量与估计值的概念。

2、掌握矩估计法(一阶、二阶矩)和最大似然估计法。

3、了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。

4、了解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间。教学内容:

1、点估计的概念、估计量与估计值。

2、矩估计法、最大似然估计法。

3、估计量的评选标准。

4、区间估计的概念。

5、单个正态总体的均值和方差的区间估计。

6、两个正态总体的均值差和方差比的区间估计。

7、(0-1)分布参数的区间估计。

8、单侧置信区间。思考题:

1、参数估计主要处理在社会经济中遇到的什么类型的问题?

2、矩估计法的优点和缺陷各是什么?

3、最大似然估计法依据的原理是什么?

4、写出一般情况下最大似然估计法的解题步骤。这个步骤对服从均匀分布的总体是否适用?如何用最大似然估计法对服从均匀分布的总体进行点估计?

5、估计量有哪几个评选标准?其中最基本的标准是什么?

6、为何要进行参数的区间估计?它与点估计相比有何优越性?

7、写出确定参数的置信区间的一般步骤。

8、单个正态总体均值的区间估计用到哪几种抽样分布?

9、单个正态总体方差的区间估计用到哪种抽样分布?

10、两个正态总体的均值差的区间估计用到哪几种抽样分布?

11、两个正态总体方差比的区间估计用到哪种抽样分布?

第八章 假设检验

课时分配:7课时 教学要求:

1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

2、了解单个及两个正态总体的均值和方差的假设检验,会用公式进行单边及双边假设检验。

3、了解分布拟合检验和秩和检验概念与步骤。教学内容:

1、显著性检验。

2、单个及两个正态总体的均值和方差的假设检验。

3、假设检验的两类错误,样本容量的选取。

4、区间估计与假设检验之间的关系。

5、分布拟合检验。

6、秩和检验。思考题:

1、假设检验分为哪两种类型?

2、假设检验主要处理在社会经济中遇到的什么类型的问题?

3、假设检验依据的原理是什么?

4、确定双边假设检验与单边假设检验的原则是什么?

5、对单边假设检验如何确定备择假设?

6、写出显著性检验的一般步骤。

7、单个正态总体均值的假设检验用到哪几种抽样分布?它和区间估计有何异同?

8、单个正态总体方差的假设检验用到哪种抽样分布?它和区间估计有何异同?

9、两个正态总体均值差的假设检验用到哪几种抽样分布?它和区间估计有何异同?

10、两个正态总体方差比的假设检验用到哪几种抽样分布?它和区间估计有何异同?

11、什么叫施行特征函数?如何用它来描述犯“取伪”错误的概率?

12、对单边及双边假设检验,为同时控制犯两类错误的概率,其必要样本容量应取多大?分别写出其表达式。

13、假设检验和区间估计之间的差别何在?

14、 拟合检验法、偏度、峄度检验法、秩和检验法各自适用于检验什么问题?如何提出原假设?

第九章

方差分析和回归分析

课时分配:9课时 教学要求:

1、了解方差分析的基本思想,试验因素和水平的意义。

2、掌握平方和的分解,会作出方差分析表。

3、了解回归分析的基本思想。

4、掌握一元线性回归,了解可化为线性回归的一元非线性回归和多元线性回归。

5、了解线性相关性检验和利用回归方程进行预测和控制。教学内容:

1、单因素和双因素试验的方差分析。

2、一元线性回归、非线性回归、多元线性回归。思考题:

1、方差分析主要处理在社会经济中遇到的什么类型的问题?

2、写出方差分析的一般步骤。

23、如何进行平方和的分解?总偏差平方和、误差平方和、效应平方和的统计特性怎样?它们的自由度之间有何关系?

4、回归分析主要处理在社会经济中遇到的什么类型的问题?

5、如何用最小二乘法求一元线性回归方程的系数?

6、相关系数与回归系数间有何关系?

7、如何将特殊的非线性回归转化为线性回归?

8、如何用回归方程进行预测与控制?

复习、机动:4课时

附录:参考书目

1、茆诗松等,《概率论与数理统计》,中国统计出版社,2000

2、苏均和,《概率论与数理统计》,上海财经大学出版社,1999

3、华东师范大学数学系编,《概率论与数理统计》,中国科学技术大学出版社,1992

4、复旦大学数学系编,《概率论》(第一、二册),人民教育出版社,1979

5、唐象能、戴俭华,《数理统计》,机械工业出版社,1994

6、[俄]A.A.史威斯尼科夫等,《概率论解题指南》,上海科学技术大学出版社,1981

7、周复恭等,《应用数理统计学》,中国人民大学出版社,1989

8、[印度]C.R.劳,《线性统计推断及其应用》,科学出版社,1987

9、郑德如,《相关分析和回归分析》,上海人民出版社,1984

10、吴喜之,《非参数统计》,中国统计出版社,1999

11、Vendables, W.N.& Ripley.B.D.,《Modern Applied Statistics with S-plus》,Springer-Verlag,New York,1997

12、张尧庭,《定性资料的统计分析》,广西师范大学出版社,1991

13、[美]戴维.R.安德森等,《商务与经济统计》,机械工业出版社,2000

执笔人: 杨益民 2004年5月 审定人: 管于华 2004年5月 院(系、部)负责人: 钱书法 2004年5月

第四篇:概率论与数理统计第一章教学大纲

概率论与数理统计第一章教学大纲

第一章随机事件与概率(10学时)

理论教学内容

1、了解随机实验、样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算。

2.了解概率的各种定义,掌握概率的基本性质,概率的加法公式、减法公式,并能应用这些公式进行概率计算.

3.掌握古典概型及其计算,能将实际问题归结为古典概型并计算。掌握几何概型及其计算,能将实际问题归结为几何概型并计算.4.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。

5.理解事件的独立性概念,掌握运用事件独立性进行概率计算.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.

重点内容:事件间的关系与运算,概率的加法公式,古典概型,乘法公式,全概率公式及贝叶斯公式,事件的独立性。

难点内容:古典概型的求解,乘法公式、全概率公式、贝叶斯公式的应用。

第五篇:概率论与数理统计B教学大纲

“概率论与数理统计(B)”教学大纲

The Theory of Probability and Mathematical Statistics(B)

预修课程: 高等数学 总学时: 54 学分:3

一、教学目标及要求

本课程是高校理工类各专业的基础课,通过本课程的学习,使学生能系统正确地掌握概率论与数理统计学的基础知识和应用方法,为学习专业课程打下基础。

二、教学重点和难点

教学重点:概率统计思想方法的应用。教学难点:概率统计概念的直观理解。

三、教材及主要参考书

教材:《概率论与数理统计》陈希孺编,中国科技大学出版社,1992年。

主要参考书:《基本统计方法教程》傅权、胡蓓华编,华东师范大学出版社,1986年。

四、课程章节与课时分配

第一章 事件的概率(9学时)§1.1概率是什么? §1.2古典概率计算

§1.3事件的运算,条件概率与独立性

第二章 随机变量及其概率分布(9学时)§2.1一维随机变量 §2.2多维随机变量

§2.3条件概率分布与随机变量的独立性 §2.4随机变量的函数的概率分布

第三章 随机变量的数字特征(9学时)§3.1数学期望与中位数 §3.2方差与矩

§3.3协方差与相关系数

§3.4大数定理和中心极限定理

第四章 参数估计(12学时)§4.1数理统计的基本概念 §4.2矩估计,极大似然估计 §4.3点估计的优良性准则 §4.4区间估计(置信区间)

第五章 假设检验(15学时)§5.1问题的提法和基本概念 §5.2重要参数的检验 §5.3拟合优度检验

下载概率论与数理统计_范玉妹_教学大纲word格式文档
下载概率论与数理统计_范玉妹_教学大纲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    概率论与数理统计

    《概率论与数理统计》公共基础课教学实践 1012502-31 汤建波 概率与数理统计在现实的牛产和生活中有着广泛的应用,因此,《概率论与数理统计》作为公共课是很多专业所必修的......

    概率论与数理统计

    概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同数学的方向还是比较多的,比如金融,......

    概率论与数理统计

    概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式......

    概率论与数理统计实验报告

    概率论与数理统计 实验报告 题目1:n个人中至少有两人生日相同的概率是多少?通过计算机模拟此结果。 问题分析:n编程: n=input('请输入总人数n='); a=365^n; m=n-1; b=1; for i=......

    《概率论与数理统计》课程标准

    《概率论与数理统计》课程建设 课程标准 第一部分 前言 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随......

    概率论与数理统计 学习心得

    - 《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。 学生们在学习《概率论与数理统计》时通常的反映之一是“......

    概率论与数理统计学习心得

    概率论与数理统计学习心得 摘要:通过概率论与数理统计这门课的学习,我掌握了基本的概率论的知识,当然学习中也曾遇到过很多的问题。本文主要就概率论的发展历史、我的学习心得......

    概率论与数理统计学习方法

    《概率论与数理统计》学习方法 学习方法是指学生在接受、吸收、消化、掌握知识的过程中,有意识地主动实施的学习方案和技巧。我们在《概率论与数理统计》课程的教学活动中,为......