第一篇:[数学运算]抽屉原理
晨风公务员考试QQ讨论群
8326127 抽屉原理一
把4只苹果放到3个抽屉里去,共有4种放法,不论如何放,必有一个抽屉里至少放进两个苹果。
同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。
……
更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。
利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
想一想,例2中4改为7,3改为6,结论成立吗?
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。
【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
晨风公务员考试QQ讨论群
8326127
晨风公务员考试QQ讨论群
8326127
【分析与解】从最“不利”的取出情况入手。
最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。
接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。
故总共至少应取出10+5=15个球,才能符合要求。
思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?
当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。
教练员提示语
抽屉原理还可以反过来理解:假如把n+1个苹果放到n个抽屉里,放2个或2个以上苹果的抽屉一个也没有(与“必有一个抽屉放2个或2个以上的苹果”相反),那么,每个抽屉最多只放1个苹果,n个抽屉最多有n个苹果,与“n+1个苹果”的条件矛盾。
运用抽屉原理的关键是“制造抽屉”。通常,可采用把n个“苹果”进行合理分类的方法来制造抽屉。比如,若干个同学可按出生的月份不同分为12类,自然数可按被3除所得余数分为3类等等
抽屉原理二
这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。
抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。
从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。
不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。
例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?
分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉
晨风公务员考试QQ讨论群
8326127
晨风公务员考试QQ讨论群
8326127 原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。
例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?
分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。
例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?
分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。
订一种杂志有:订甲、订乙、订丙3种情况;
订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;
订三种杂志有:订甲乙丙1种情况。
总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。
例4篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?
分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。
81÷10=8……1(个)。
根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。
例5学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?
分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生
晨风公务员考试QQ讨论群
8326127
晨风公务员考试QQ讨论群
8326127
7×(5-1)+1=29(名)。
晨风公务员考试QQ讨论群
8326127
第二篇:数学运算之抽屉原理专题
数学运算之抽屉原理专题 数学运算之抽屉原理专题
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。
假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为:
第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。
若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:
第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。制造抽屉是运用原则的一大关键
例
1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?
A.12 B.13 C.15 D.16
【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。
例
2、从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?
A.7
B.10
C.9
D.8
【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。
例
3、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()
A.3
B.4
C.5
D.6 【解析】这是一道典型的抽屉原理,只不过比上面举的例子复杂一些,仔细分析其实并不难。解这种题时,要从最坏的情况考虑,所谓的最不利原则,假定摸出的前4粒都不同色,则再摸出的1粒(第5粒)一定可以保证可以和前面中的一粒同色。因此选C。传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。保证:5粒可以保证始终有两粒同色,如少于5粒(比如4粒),我们取红、黄、蓝、白各一个,就不能“保证”,所以“保证”指的是要一定没有意外。
最小:不能取大于5的,如为6,那么5也能“保证”,就为5。例
4、从一副完整的扑克牌中至少抽出()张牌.才能保证至少 6 张牌的花色相同。
A.21
B.22
C.23
D.24 解析:2+5*4+1=23 转载自:http://
第三篇:数学运算之抽屉原理专题公务员
数学运算之抽屉原理专题
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。
假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为:
第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。
若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:
第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
制造抽屉是运用原则的一大关键
例
1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? A.12 B.13 C.15 D.16 【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。例
2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?
A.7
B.10
C.9
D.8 【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。
例
3、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()
A.3 B.4 C.5 D.6 【解析】这是一道典型的抽屉原理,只不过比上面举的例子复杂一些,仔细分析其实并不难。解这种题时,要从最坏的情况考虑,所谓的最不利原则,假定摸出的前4粒都不同色,则再摸出的1粒(第5粒)一定可以保证可以和前面中的一粒同色。因此选C。
传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。
保证:5粒可以保证始终有两粒同色,如少于5粒(比如4粒),我们取红、黄、蓝、白各一个,就不能“保证”,所以“保证”指的是要一定没有意外。最小:不能取大于5的,如为6,那么5也能“保证”,就为5。
例
4、从一副完整的扑克牌中至少抽出()张牌.才能保证至少 6 张牌的花色相同。
A.21
B.22
C.23
D.24 解析:2+5*4+1=23
第四篇:抽屉原理
《抽屉原理》教学设计 芙蓉中心小学 简淑梅 【教学内容】:
人教版《义务教育课程标准实验教科书●数学》六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。【教材分析】:
这是一类与“存在性”有关的问题,教材通过几个直观例子,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,从而抽象出“抽屉原理”的一般规律。并利用这一规律对一些简单的实际问题加以“模型化”。即:只需要确定实际生活中某个物体(或某个人、或种现象)的存在就可以了。【学情分析】:
抽屉原理是学生从未接触过的新知识,很难理解抽屉原理的真正含义,尤其是对平均分就能保证“至少”的情况难以理解。
年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。【教学目标】:
1.知识与能力目标:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
2.过程与方法目标:
经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感、态度与价值观目标:
通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学准备】:
多媒体课件、扑克牌、盒子、铅笔、书、练习纸。【教学过程】:
一、课前游戏,激趣引新。
上课伊始,老师高举3张卡片。(高兴状)
(1)老师这有3张漂亮的卡片,我想把它们送给在坐的三位同学,想要吗?
(2)在送之前,我想请同学们猜一猜,这三张卡片会到男生手上还是会到女生手上?(学生思考后回答:可能送给了3名女生、可能送给了3名男生、也有可能送给了2名男生和1名女生、还有可能送给了2名女生和1名男生。)
(3)同学们列出的这四种情况是这个活动中可能存在的现象,你能从这四种可能存在的现象中找到一种确定现象吗?(学生思考后回答:得到卡片的三个同学当中,至少会有两个同学的性别相同。)
(4)老师背对着学生把卡片抛出验证学生的说法。
(5)如果老师再抛几次还会有这种现象出现吗?其实这里面蕴藏着一个非常有趣的数学原理,也就是我们今天这节课要研究的学习内容,想不想研究啊?
〖设计意图〗:在知识探究之前通过送卡片的游戏,从之前学过的“可能性”导入到今天的学习内容。一方面是使教师和学生进行自然的沟通交流;二是要激发学生的兴趣,引起探究的愿望;三是要让学生明白这种“确定现象”与“可能性”之间的联系,为接下来的探究埋下伏笔。
二、操作探究,发现规律。
1.动手摆摆,感性认识。
把4枝铅笔放进3个文具盒中。
(1)小组合作摆一摆、记一记、说一说,把可能出现的情况都列举出来。
(2)提问:不管怎么放,一定会出现哪种情况?讨论后引导学生得出:不管怎样放,总有一个文具盒里至少放了2只铅笔。
〖设计意图〗:抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中
至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。
2.提出问题,优化摆法。
(1)如果把 5支铅笔放进4个文具盒里呢?结果是否一样?怎样解释这一现象?(学生自由摆放,并解释些种现象存在的确定性。)
(2)老师指着一名摆得非常快的同学问:怎么你比别人摆得更快呢?你是否有最简洁、最快速的方法,快快说出来和同学一起分享好吗?
(3)学生汇报了自己的方法后,教师围绕假设法(平均分的方法),组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?
(4)在讨论的基础上,师生小结:假如每个杯子放入一根小棒,剩下的一根还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2根小棒。只有平均分才能将小棒尽可能地分散,保证“至少”的情况。
〖设计意图〗:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。
3.步步逼近,理性认识。
(1)师:把6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔吗?为什么?
把7支铅笔放进6个文具盒里呢?
把8枝笔放进7个盒子里呢?
把20枝笔放进19个盒子里呢?
……
(2)符合这种结果的情况你能一一说完吗?你会用一句归纳这些情况吗?
(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)
〖设计意图〗:通过这个连续的过程发展了学生的类推能力,形成比较抽象的数学思维,从而达到理性认识“抽屉原理”。
4.数量积累,发现方法。
7只鸽子要飞进5个鸽舍里,无论怎么飞,至少会有两子鸽子飞进同一个鸽舍。为什么?
(1)如果要用一个算式表示,你会吗?
(2)算式中告诉我们经过第一次平均分配后,还余下了2只鸽子,这两只鸽子会怎么飞呢?(有可能两只飞进了同一个鸽舍里,也有可能飞进了不同的鸽舍里。)
(3)不管怎么飞,一定会出现哪种情况?
(4)讨论:刚才是铅笔数比文具盒数多1枝的情况,现在鸽子数比鸽舍要多2只,为什么还是“至少有2只鸽子要飞进同一个鸽舍里”?
(4)如果是“8只鸽子要飞进取5个鸽舍里呢?”(余下3只鸽子。)
(5)“9只鸽子要飞进取5个鸽舍里呢?”(余下4只鸽子。)
根据学生的回答,用算式表示以上各题,并板书。
〖设计意图〗:从余数1到余数2、3、4……,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。并发现余下的鸽子数只要小于鸽舍数,就一定有“至少有两子鸽子飞进同一个鸽舍”的现象发生。
5.构建模型,解释原理。
(1)观察黑板上的算式,你有了什么新的发现?(只要鸽子数比盒鸽舍数多,且小于鸽舍数的两倍,至少有2只鸽子飞进了同一个鸽舍里。)
(2)刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉。
(3)课件出示:“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
(4)请你用“抽屉原理”解释我们的课前游戏,为什么不管老师怎么送,得到卡片的同学一定有两个同学的性别是一样的?其中什么相当于“物体”?什么相当于“抽屉”?
〖设计意图〗:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着,并让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。
三、循序渐进,总结规律。
(1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。为什么?
A、该如何解决这个问题呢?
B、如何用一个式子表示呢?
C、你又发现了什么?
教师根据学生的回答,继续板书算式。
(2)如果一共有7本书呢?9本书呢?
(3)思考、讨论:总有一个抽屉至少放进的本数是“商+1”还是“商+余数”呢?为什么?
教师师让学生充分讨论后得出正确的结论:总有一个抽屉至少放进的本数是“商+1”(教师板书。)
〖设计意图〗:对规律的认识是循序渐进的。在初次发现规律的基础上,引导学生抓住假设法最核心的思路---“有余数除法”,学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。从而得出“某个抽屉书的至少数”是除法算式中的商加“1”,而不是商加“余数”,从而使学生从本质上理解了“抽屉原理”。四.运用原理,解决问题。
1、基本类型,说说做做。
(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?
2、深化练习,拓展提升。
(1)有一副扑克牌,去掉了两张王牌,还剩52张,如果请五位同学每人任意抽1张,同种花色的至少有几张?为什么?
如果9个人每一个人抽一张呢?
(2)某街道办事处统计人口显示,本街道辖区内当年共有 370名婴儿出生。统计员断定:“至少有2名婴儿是在同一天出生的。”这是为什么? 至少有多少名婴儿是在同一个月出生的?为什么?
〖设计意图〗:让学生运用所学知识去分析、解决生活实际问题,不仅是学生掌握知识的继续拓展与延伸,还是他们成功解决问题后获取愉悦心情的重要途经;不同题型、不同难度的练习不仅能进一步调动学生学习的积极性,还能满足不同的孩子学到不同的数学,并体会抽屉原理的形式是多种多样的。
五、全课小结,课外延伸。
(1)说一说:今天这节课,我们又学习了什么新知识?你还有什么困惑?
(2)用今天学到的知识向你的家长解释下列现象:
从1、2、3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢?
〖设计意图〗:既让学生说数学知识的收获,也引导学生谈情感上的感受,同时培养他们的质疑能力,使三维目标落到实处;把课堂知识延伸到课外,与家长一起分析思考,主要是想拓展学生思维,达到“家校牵手,共话数学”的教学目的。
板书设计。
抽屉原理
物体数 抽屉数 至少数 =商+1
(铅笔数)(盒子数)
2
3
÷ 4 =1……1 2 =1+1 ÷ 5 =1……2 2 =1+1 ÷ 2 =2……1 3 =2+1 ÷ 2 =3……1 4 =3+1
〖设计意图〗:这样的板书设计是在教学过程中动态生成的,按讲思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。
第五篇:抽屉原理
《抽屉原理》教学反思
严田小学彭性良
《课程标准》指出:数学必须注意从学生的生活情景和感兴趣的事物出发,为他们提供参与的机会,使他们体会数学就在身边,对数学产生浓厚的兴趣和亲近感。也就是创设丰富的学习氛围,激发学生的学习兴趣。通过让学生放苹果的环节,激发学生的学习兴趣,引出本节课学习的内容。通过3个苹果放入2个抽屉的各种情况的猜测,进一步感知抽屉原理。认识抽屉原理不同的表述方式:①至少有一个抽屉的苹果有2个或2个以上;②至少有一个抽屉的苹果不止一个。
充分利用学生的生活经验,对可能出现的结果进行猜测,然后放手让学生自主思考,采用自己的方法进行“证明”,接着再进行交流,在交流中引导学生对“枚举法”、“假设法”等方法进行比较,教师进一步比较优化,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理。最后出示练习,让学生灵活应用所学知识,解决生活中的实际问题,使学生所学知识得到进一步的拓展。
这种“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,让学生经历建模的过程,促进学生对数学原理的理解,进一步培养学生良好的数学思维能力。