第一篇:抽屉原理及其简单应用
抽屉原理及其应用
摘 要: 本文着重从抽屉的构造方法阐述抽屉原理,介绍了抽屉原理及其常见形式,并结合实例探讨了这一原理在高等数学和初等数论中的应用。关键词: 组合数学;抽屉原理;抽屉构造
1.引言
抽屉原理也叫鸽笼原理, 它是德国数学家狄利克雷(P.G.T.Dirichlet)首先提出来的, 因此也称作狄利克雷原理.它是数学中一个基本的原理,在数论和组合论中有着广泛的应用。在数学的学习研究中,我们也可以把它看作是一种重要的非常规解题方法,应用它能解决许多涉及存在性的数学问题。
2.抽屉原理的基本形式与构造
2.1基本形式
陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理Ⅰ 把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素。
原理Ⅱ 把m个元素任意放到n(mn)个集合里,则至少有一个集合里至少有k个元素,其中
m , 当n能整除m时,nkm 1 , 当n不能整除m时.n原理Ⅲ 把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素。
2.2基本构造
利用抽屉原理解题过程中首先要注意指明什么是元素,什么是抽屉,元素进入抽屉的规则是什么,以及在同一个盒子中,所有元素具有的性质。构造抽屉是用抽屉原理解题的关键。有的题目运用一次抽屉原理就能解决,有的则需反复用多次;有些问题明显能用抽屉原理解决,但对于较复杂的问题则需经过一番剖析转化才能用抽屉原理解决。3.利用抽屉原理解题的常用方法
3.1利用划分数组构造抽屉
例1 在前12个自然数中任取七个数,那么, 一定存在两个数, 其中的一个数是另一个数的整数倍。
分析:若能把前12个自然数划分成六个集合, 即构成六个抽屉,使每个抽屉内的数或只有一个, 或任意的两个数, 其中的一个是另一个的整数倍,这样, 就可以由抽屉原理来推出结论。现在的问题是如何对这12个自然数:1,2 ,„,12 进行分组, 注意到一个自然数, 它要么是奇数, 要么是偶数。若是偶数, 我们总能把它表达为奇数与2k(k1,2,3...)的乘积的形式,这样, 如果允许上述乘积中的因子2k的指数K可以等于零, 则每一个自然数都可表达成“ 奇数2k”(k1,2,3...)的形式, 于是, 把1,2,3„,12个自然数用上述表达式进行表达, 并把式中“奇数” 部分相同的自然数作为一组, 构成一个抽屉。
证明: 把前12个自然数划分为如下六个抽屉:
A1={120,121,122,123} A2={320,321,322} A3={520,521} A4={720} A5={920} A6={1120} 显然, 上述六个抽屉内的任意两个抽屉无公共元素, 且A1+A2+...+A6={1,2,3,...,12}.于是,由抽屉原理得,对于前12个自然数不论以何种方式从其中取出七个数,必定存在两个数同在上述六个抽屉的某一个抽屉内。设x、y是这两个数,因为A4、A5、A6都是单元素集,因此,x、y不可能同在这三个抽屉中的任何一个抽屉内。可见,x、y必同在A1、A2、A3的三个抽屉中的某一个之内,这样x和y两个数中,较大的数必是较小数的整数倍。例2 学校组织1993名学生参观天安门,人民大会堂和历史博物馆,规定每人必须去一处,最多去两处参观。那么至少有多少学生参观的地方完全相同?
分析:我们可以把某学生参观某处记作“1”,没有去参观记作“0”。并用有序数组{a,b,c}表示学生去参观天安门、人民大会堂和历史博物馆的不同情况。因为规定每人必须去一处,最多去两处,所以参观的方式,只有下列六种可能:
{1、1、0} {1、0、1} {0、1、1} {1、0、0} {0、1、0} {0、0、1} 把这六种情况作为六个抽屉,根据抽屉原理,在1993名学生中,至少有(1993)+1=333人参观的地方相同。63.2利用余数构造抽屉
把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m1]表示。在研究与整除有关的问题时,常常用剩余类作为抽屉。
例3 对于任意的五个自然数,证明其中必有3 个数的和能被3 整除。
证明:任何数除以3 所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]
1、若这五个自然数除以3 后所得余数分别分布在这3 个抽屉中(即抽屉中分别为含有余数为0,1,2 的数),我们从这三个抽屉中各取1 个(如1到5中取3,4,5),其和(3+4+5=12)必能被3 整除。
2、若这5 个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3 个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3 个自然数之和是3 的倍数。
3、若这5 个余数分布在其中的一个抽屉中,很显然,必有3 个自然数之和能被3 整除。
3.3利用等分区间构造抽屉
所谓等分区间简单的说即是:如果在长度为1的区间内有多于n个的点,可考虑把区间n等分成n个子区间,这样由抽屉原理可知,一定有两点落在同一子
1区间,它们之间的距离不大于这种构造法常用于处理一些不等式的证明。
n例4 已知11个数x1,x2,,x11,全满足0xi1 ,i=1, 2 ,11,证明必有两个xi,xj(ij)满足xixj1.101.由抽屉原理,10证明:如图1,将实数轴上介于0与1那段(连同端点)等分为10小段(这10个小段也就是10个等分区间,即10个抽屉),每一小段长为
1111个点(数)中至少有+1=2个点落在同一条小线段上,这两点相应的数之差
10的绝对值 1.100
图1 对于给定了一定的长度或区间并要证明不等式的问题,我们常常采用等分区间的构造方法来构造抽屉,正如上面的例子,在等分区间的基础上我们便很方便的构造了抽屉,从而寻找到了证明不等式的一种非常特殊而又简易的方法,与通常的不等式的证明方法(构造函数法,移位相减法)相比,等分区间构造抽屉更简易,更容易被人接受。
3.4利用几何元素构造抽屉
在涉及到一个几何图形内有若干点时,常常是把图形巧妙地分割成适当的部分,然后用分割所得的小图形作抽屉。这种分割一般符合一个“分划”的定义,即抽屉间的元素既互不重复,也无遗漏;但有时根据解题需要,分割也可使得抽屉之间含有公共元素。
例5 如果直径为5的圆内有10个点,求证其中有某两点的距离小于2。分析:把圆等分成9个扇形而构造出9个抽屉,是最先考虑到的,但显然是不行的(虽然有两个点在某一扇形内,但不能确认它们之间的距离小于2)。转而考虑先用一个与已知圆同心,半径为1 的不包含边界的小圆作为一个抽屉,然后把圆环部分等分成八个部分,如图二所示,这样就构成了9个抽屉。
证明:先将圆分成八个全等的扇形,再在中间作一个直径d=1.8的圆(如图2),这就把已知的圆分成了9个区域(抽屉).由抽屉原理,圆内的10个点(球),必有两点落在同一区域内,只须证明每个区域中的两点的距离都小于2.显然,小圆内任两点间的距离小于2,又曲边扇形ABCD中,AB2,AD2,CD2,而任两点距离最大者AC,有
AC =OA2OC22OAOCcos45
=2.520.922.50.92=3.88<2.图2
3.5利用状态制构造抽屉
例6 设有六点,任意三点不共线,四点不共面,如果把这六个点两两用直线联系起来,并把这些直线涂以红色或者蓝色.求证:不论如何涂色,总可以找到三点,做成以它们为顶点的三角形,而这三角形三边涂有相同的颜色。
分析:设已知六点为A1,A2,A3,A4,A5,A6,由于任三点不共线,所以任三点均可作为某三角形的三个顶点。
证明:从六个点中任取一点A1,将A1与其余五点相连得到五条线段,线段如下所示: A1A2,A1A3,A1A4,A1A5,A1A6,这五条线段只有两种颜色即红色或者蓝色,由抽屉原理知,至少有三条涂有同一种颜色。颜色为抽屉,线段为元素,不妨设A1A2,A1A3,A1A4,涂有红色,这时我们考察△A2A3A4
(1)若△A2A3A4中有一条红色边,如A2A3,则△A1A2A3为三边同红的三角形;
(2)若△A2A3A4中无一条红色边,则△A2A3A4就是三边均为蓝色的三角形。4.抽屉原理的应用
4.1抽屉原理在高等数学中的应用
高等数学中一些问题抽象,复杂,解答比较困难,如果一些问题巧妙地运用抽屉原理会收到很好的效果,下列举例介绍抽屉原理在高等数学中的巧妙应用。
例7 设A为n阶方阵,证明:存在1in,使秩(Ai)=秩(Ai1)=秩(Ai2)
证明:因为n阶方阵的秩只能是0,1 , 2, ,n这n+1个一,由抽屉原理可知,存在k,l满EA0,A,A2,,An,An1,E的个数多于秩的个数,足1k 秩(Ak)= 秩(Al), 但 秩(Ak)秩(Ak1)„秩(Al), 所以 秩(Ak)=秩(Ak1), 利用此式与秩的性质得 秩(ABC)秩(AB)+秩(BC)-秩(B), 这里的A,B,C是任意三个可乘矩阵,用数学归纳法可证 秩(Akm)=秩(Akm1).其中m为非负整数,故命题的结论成立。 4.2抽屉原理在初等数论中的应用 例8(中国剩余定理)令m和n为两个互素的正整数,并令a和b为整数,且0am1以及0bn1,则存在一个正整数x,使得x 除以m 的余数是a,并且x 除以n 的余数为b,即x可以写成xpma的同时又可以写成xqnb的形式,这里p 和q 是整数。 (n1)ma,证明: 为了证明这个结论考虑n 个整数a,ma,2ma,„,这些整数中的每一个除以m都余a.设其中的两个除以n 有相同的余数r. 令这两个数为ima 和jma,其中存在两整数qi和qj,使得imaqinr及jmaqjnr,0ijn1.因此,这两个方程相减可得(ji)m(qjqi)n.于是n是(ji)m的一个因子. 由于n和m没有除1 之外的公因子,因此n是ji的因子. 然而,0ijn1意味着,0jin1,也就是说n 不可能是ji的因子. 该矛盾产生于我们的假设: n个整数a,ma,2ma,...,(n1)ma中有两个除以n会有相同的余数。 因此这n个数中的每一个数除以n 都有不同的余数。 根据抽屉原理,n个数0,1,„,n1 中的每一个作为余数都要出现,特别地,数b也是如此。令p 为整数,满足0pn1,且使数xpma 除以n余数为b. 则对于某个适当的q,有xqnb. 因此,xpma且xqnb,从而x具有所要求的性质。 5.结束语 本文对抽屉原理的常见形式及其应用结合实例做了一些探讨,为数学解题提供了一种简便的方法.应用抽屉原理解题的难点在于如何恰当的构造抽屉,而制造抽屉的办法是灵活多变的, 不能生搬硬套某个模式, 需要灵活运用。 参考文献 [1]陈景林,阎满富.组合数学与图论.北京:中国铁道出版社出版,2000.4-6 [2]曹汝成.组合数学.广州:华南理工大学出版社,2001.170-173 [3]钟颖.关于抽屉原理[J].成都教育学院学报,2003,17(7):75.[4]朱华伟,符开广.抽屉原理[J].数学通讯,2006,19(17):37.[5]忘向东,周士藩等.高等代数常用方法.山西:高校联合出版社,1989.64-66 [6]刘否南.华夏文集.太原:高校联合出版社,1995.88-90 [7]魏鸿增等.抽屉原理在高等数学中的应用.数学通报,1995,2.3-4 [8]严示健.抽屉原则及其它的一些应用.数学通报,1998,4.10-11 The Principle And Application Of The Drawer Liu Xiaoli Abstract: this article emphatically from the drawer methods of constructing this drawer principle, and introduces the drawer principle and common form, and combined with the discusses the principle in the higher mathematics elementary theory and the application.Keywords: combinatorial mathematics;drawer principle;theory of drawer structure 宁夏慧思源学校 小学六年级数学 2010年培优A班 简单的抽屉原理 姓名: 日期: 成绩: 教学重点 学会找抽屉 教学难点 把抽屉问题运用到实际问题中 【知识要点】 把5个苹果放在4个抽屉里,那么可以肯定至少有一个抽屉至少放了2个苹果;3只鸽子飞进2个笼子,那么至少有一个笼子飞进两只鸽子;10条鱼放进三个鱼缸里,肯定至少有一个鱼缸放了至少4条鱼。以上三个例子所表述的数学原理就是“抽屉原理”。 根据抽屉原理,可以得到以下两个结论: 1.如果把n+1件东西放入n个抽屉里,则至少有一个抽屉里至少有2件东西。2.把K件东西放入N个抽屉中,当K能被N整除时,那么至少有一个抽屉至少会有K/N件东西;当K不能被N整除时,则至少有一个抽屉至少会有[K/N]+1件东西。(“[A]”表示取一个不大于数A的最大整数,如:[3/2]=[1.5]=1,[1/9]=0。) 这一原理看似很简单却能变化出很多复杂的问题。 【典型例题】 例1 从一副扑克牌中至少要取出多少张牌才能保证有4张牌的花色是一样的。 例2 黑色、黄色、白色袜子分别有5只、6只、7只,相同颜色的袜子两只为一双。如果闭上眼睛,保证从中选出两双同颜色的袜子,至少要取多少只袜子? 每一份私下的努力,都会有倍增的回报!宁夏慧思源学校 小学六年级数学 2010年培优A班 例3 袋子里有红、黑、黄、白球若干个,每人随意摸两个球,至少有多少人才能保证他们当中一定有两人所摸的花色的情况是相同的? 例4 一些科学家参观一个学术讨论会,他们每人只会英语、俄语、德语、法语、日语、拉丁语中的三门语言,至少有多少人参加讨论会,才能保证有两人所说的外语相同。 例5 从1—50中至多取出多少个自然数,任意两个数的和都不是6的倍数。 随堂小测 姓 名 成 绩 1.一副扑克牌共54张(包括大、小王)问至少抽出多少张才能保证有3张牌的点数一样。 2.把5张红卡片,7张绿卡片,11张黄卡片,12张白卡片放入抽屉里: (1)保证各种颜色卡片都拿到,至少要在抽屉里取出多少张卡片? (2)保证取到的卡片中至少有4张同颜色卡片,至少要从抽屉里取出多少张卡片? 每一份私下的努力,都会有倍增的回报!宁夏慧思源学校 小学六年级数学 2010年培优A班 3.一位运动员用9秒跑完100米,证明:在跑的过程中必有一秒内所跑的路程超过11米。 4.把152本书分给17个同学,如果每个同学至少要拿一本书,那么不管怎样分,一定会有两个同学得到的本数相同。为什么? 5.400本书随意分给若干名同学,但每人不得超过11本,试证明:至少有七名同学得到的书的本数相同。 6.有3根白色筷子,10根黑色筷子,8根黄色筷子,2根篮色筷子,7根红色筷子。问在黑暗中至少取出多少根才能保证有两双颜色一样的筷子。(相同颜色的筷子为一双) 7.有故事书、科技书、文艺书三种书,每个同学可以任意选择两本书。那么至少有几个同学才能保证两个同学借的书完全相同。 8.六 (一)班有43名学生报名参加数学、美术、书法三个课外活动小组,每人可以参加一个组,两个组或者三个组。问这些学生中至少有几个人参加了完全相同的组。 9.五(1)班有40名学生。班里有1个小书架,同学们可以任意借阅。试问小书架上至少要有多少本书,才能保证至少有一个同学至少能借到2本书? 每一份私下的努力,都会有倍增的回报! 抽屉原理及其应用 张 志 修 摘要:抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。 关键词:代数 几何 染色 存在性 引言 抽屉原理最早是由德国数学家狄利克雷发现的,因此也叫狄利克雷重叠原则。抽屉原理是一条重要的理论。运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。 抽屉原理的内容 第一抽屉原理: 原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。 [证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的nkk1,这不可能。 原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m1个或多于m1个的物体。 [证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉 至多放进mn个物体,与题设不符,故不可能。 原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。.原理1 2 3都是第一抽屉原理的表述 第二抽屉原理: 把mn﹣1个物体放入n个抽屉中,其中必有一个抽屉中至多有mn﹣1个物体。 [证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。 一、应用抽屉原理解决代数问题 抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题,它易于接受,在数学问题中有重要的作用。 1、整除问题常用剩余类作为抽屉。把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用0,„,2,1,m﹣1表示。 例1:对于任意的五个自然数,证明其中必有3个数的和能被3整除。 证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: 0,1,2 ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中 (即抽屉中分别为含有余数为0,1,2,的数),我们从这三个抽屉中各取1个(如1到5中取3,4,5),其和34512 必能被3整除。 ②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数。 ③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除。 2、还有的以集合造抽屉 例2:从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? 分析与解答:在这12个自然数中,差是7的自然数有以下5对:12,5 11,4 10,3 9,2 8,1。另外,还有2个不能配对的数是6 7。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为12,5 11,4 10,3 9,2 8,1 6 7,显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7。 二、应用抽屉原理解决几何问题 利用分割图形的方法构造抽屉 本方法主要用于解决点在几何图形中的位置分布和性质问题,通常我们把一个几何图形分割成几部分,然后把每一部分当做一个“抽屉”,每个抽屉里放入相应的元素。 例3:已知边长1为的等边三角形内有5个点,则至少有两个点 距离不大于1/2。 证明:用两边中点的连线将边长为1的等边三角形分成 四个边长为1/2的等边三角形,若规定边DE、EF、FD上的 点属于三角形DEF,则三角形ABC内的所有点被分为 4个全等的小等边三角形,由抽屉原理,三角形内的任意5个点至少有2个点属于同一小等边三角形,由“三角形内(包括边界)任意两点间的距离不大于其最大边长”知这两个点距离不大于1/2。 抽屉原理与中学数学的关系,常用抽屉原理的最值的思路解中学数学题。 例4:用柯西不等式及二元均值不等式证明了如下三角不等式: 在△ABC中,有sin2Asin2Bsin2C.证明:由抽屉原理知sinA,sinB,sinC中必有两个不大于或不小于3294,不妨设sinA33,sinB22或sinA33,sinB22则[sin2A(323)][sin2B()2]0,故 2243sin2Asin2Bsin2Asin2B 34于是 43sin2Asin2Bsin2Csin2Asin2Bsin2C 344cos(AB)cos(AB)23]sin2C =[32413(1cosC)21cos2C 34219(cosC)2 3249 4 三、应用抽屉原理解决染色问题 染色问题是数学中的重要内容之一,也是深受广大师生喜爱的的题目类型之一。染色问题是借用图论的思想心提高解决问题的能力,所涉及的各科数学知识都不是很难,但染色法解数学问题技巧性非常强,而且解题的途径都比较独特,难度往往在于寻求解决问题的关键所在或最佳方法. 平面染色问题为点染色或线染色问题。通常是根据各个物体所存在的状态,将它们的状态看作抽屉原理中的“抽屉”和“元素”,从而来解决问题的。 (1)点染色问题 例5:将平面上每点都任意地染上黑白两色之一。求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色。 证明:在这个平面上作一个边长为1的正三角形。如果A、B、C这三点同色,则结论成立,故不妨设A和B异色。以线段AB为底边,作一个腰长为2的等腰ABD。由于点A和B异色,故无论D为何色,总有一腰的两个端点异色。不妨设点A和D异色。设AD的中点为E,则AE=ED=1。不妨设点A和E为白色,点D为黑色。 以AE为一边,在直线AD两侧各作一个等边三角形:AEF与AEG。若点F和G中有一个是白点,则导致一个边长为1的等边三角形的三个顶点都是白点;否则,边长为3的等边DFG的三个顶点同为黑点。 (2)边染色问题 例6:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色? 解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。 四、应用抽屉原理解决实际问题 在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。 例7:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求? 解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。第一步先确保取出的筷子中 有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4711根筷子,就能保证达到目的。 例8:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答:共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n﹣1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n﹣2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n﹣2,还是后一种状态1、2、3、„、n-1,握手次数都只有n﹣1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。解决问题,抽屉原理是一个利器。我们在解题的过程中可以迅速代入,更多要思考怎样用抽屉原理让问题清晰化,简单化。通过学习,使我的逻辑思维能力得到了提高,扩展了我的知识面,掌握了“抽屉原理”的基本内容,懂得把所学知识运用到生活中去,运用“抽屉原理”解决生活中的许许多多以前不明白的现象。 参考文献: [1] 殷志平、张德勤著《数学解题转化策略举要》 《中学教学教与学》1996.1 第19页 [2] 宿晓阳著《用抽屉原理巧证一个三角不等式》 《中学数学月刊》2010.6 第45页 [3] 其他参考:http:// http://baike.baidu.com/view/8899.htm http://wenku.baidu.com/view/4527ed3710661ed9ad51f30e.html http://wenku.baidu.com/view/158dd2***92ef78c.html http:///free/20101221/84545509713564.html http://wenku.baidu.com/view/4272e8f9941ea76e58fa0489.html 8 1.把10个苹果发给3个同学,下面说法正确的是__________. A.一定有一个人刚好分到3个苹果.B.一定有一个人刚好分到4个苹果.C.一定有一个人至少分到4个苹果. 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:C 2.把30个金币发给7个人,下面说法正确的是__________. A.一定有一个人至少分到5个金币.B.一定有一个人至少分到6个金币.C.一定有一个人刚好分到6个金币. 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:A 3.把20块巧克力发给3个人,下面说法正确的是__________. A.一定有一个人刚好分到6块巧克力.B.一定有一个人至少分到7块巧克力.C.一定有一个人至少分到8块巧克力. 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:B 4.把6个苹果放进5个抽屉,一定有一个抽屉里至少有__________个苹果. A.2B.3C.4D.5 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:A 5.把9个苹果放进4个抽屉,一定有一个抽屉里至少有__________个苹果. A.4B.5C.6D.以上都不对 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:D 6.把13个苹果放进4个抽屉,一定有一个抽屉里至少有__________个苹果. A.4B.5C.6D.7 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:A 7.把20个苹果放进6个抽屉,一定有一个抽屉里至少有__________个苹果. A.5B.4C.6D.7 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:B 8.把30个苹果放进4个抽屉,一定有一个抽屉里至少有__________个苹果. A.8B.9C.10D.以上都不对 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:A 9.把27个苹果放进4个抽屉,一定有一个抽屉里至少有__________个苹果. A.8B.9C.10D.以上都不对 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:D 10.任意25个人中,至少有__________个人属于同一个生肖. A.3B.4C.5D.以上都不对 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:A 首页上一页1234下一页尾页 11.任意30个人中,至少有__________个人的生日在同一个月份里. A.9B.8C.3D.以上都不对 来源:2015·乐乐课堂·练习难度:中等 类型:选择题 答案:C 12.一个星期吃掉30个鸡蛋,至少有__________个鸡蛋是在同一天吃掉的. A.8B.7C.6D.以上都不对 来源:2015·乐乐课堂·练习难度:简单 类型:选择题 答案:D 13.袋子里有红色的球3个,黄色的球5个,蓝色的球6个,绿色的球8个,那么一次至少拿_______个球,才能保证一定有黄色的球. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:18 14.袋子里有红色的球3个,黄色的球5个,蓝色的球6个,绿色的球8个,那么一次至少拿_______个球,才能保证一定有蓝色的球. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:17 15.袋子里有红色的球3个,黄色的球5个,蓝色的球6个,绿色的球8个,那么一次至少拿_______个球,才能保证一定有绿色的球. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:15 16.盘子里有一些饺子,韭菜味的5个,牛肉味的8个,辣椒味的6个.那么至少吃________个饺子,才能保证一定能吃到2个口味一样的饺子. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:4 17.盘子里有一些饺子,韭菜味的5个,牛肉味的8个,辣椒味的6个.那么至少吃________个饺子,才能保证一定能吃到3个口味一样的饺子. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:7 18.盘子里有一些饺子,韭菜味的5个,牛肉味的8个,辣椒味的6个.那么至少吃________个饺子,才能保证一定能吃到4个口味一样的饺子. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:10 19.袋子里有4种硬币:金币、银币、铜币、乐币,每种硬币都有很多,那么一次至少拿_________枚,才能保证其中一定有3枚相同类型的硬币. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:9 20.袋子里有4种硬币:金币、银币、铜币、乐币,每种硬币都有很多,那么一次至少拿_______枚,才能保证其中一定有2枚是同一种类型的硬币. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:5 首页上一页1234下一页尾页 21.袋子里有4种硬币:金币、银币、铜币、乐币,每种硬币都有很多,那么一次至少拿_______枚,才能保证其中一定有5枚是同一种类型的硬币. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:17 22.一个袋子里有1只红袜子、3只黑袜子、5只白袜子和8只绿袜子.那么一次至少摸出_______只袜子,才能保证一定有颜色一样的3只袜子. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:8 23.一个袋子里有2只红袜子、4只黑袜子、7只白袜子和9只绿袜子.那么一次至少摸出_______只袜子,才能保证一定有颜色一样的4只袜子. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:12 24.一个袋子里有4颗巧克力糖、5颗奶糖、10颗水果糖和20颗棉花糖.那么一次至少拿出_______颗糖,才能保证一定有6颗糖口味相同. 来源:2015·乐乐课堂·练习难度:中等 类型:填空题 答案:20 25.袋子里有红色的球6个,黑色的球7个,黄色的球10个,绿色的球8个,那么一次至少拿_______个球,才能保证取出的球至少有两种颜色. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:11 26.袋子里有红色的球6个,黑色的球7个,黄色的球10个,绿色的球8个,那么一次至少拿_______个球,才能保证取出的球至少有三种颜色. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:19 27.袋子里有红色的球12个,黑色的球8个,黄色的球7个,绿色的球5个,那么一次至少拿_______个球,才能保证取出的球至少有两种颜色. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:13 28.盒子里有白色、红色、黄色、绿色的粉笔各10根,一次性至少取出_______根粉笔,才能保证取出的粉笔中一定会有白色和红色的粉笔. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:31 29.盒子里有白色、红色、黄色、绿色的粉笔各8根,一次性至少取出_______根粉笔,才能保证取出的粉笔中一定会有白色和红色的粉笔. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:25 30.盒子里有白色、红色、黄色、绿色的粉笔各20根,一次性至少取出_______根粉笔,才能保证取出的粉笔中一定会有白色和红色的粉笔. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:61 首页上一页1234下一页尾页 31.笼子里有一些包子,其中鸡肉馅的5个,鱼肉馅的8个,牛肉馅的10个,白菜馅的15个,那么至少吃_______个包子,才能保证一定能吃到牛肉馅和白菜馅的. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:29 32.笼子里有一些包子,其中鸡肉馅的5个,鱼肉馅的8个,牛肉馅的10个,白菜馅的15个,那么至少吃_______个包子,才能保证一定能吃到鸡肉馅和鱼肉馅的. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:34 33.笼子里有一些包子,其中鸡肉馅的5个,鱼肉馅的8个,牛肉馅的10个,白菜馅的15个,那么至少吃_______个包子,才能保证一定能吃到鱼肉馅和牛肉馅的. 来源:2015·乐乐课堂·练习难度:简单 类型:填空题 答案:31 34.一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.那么至少抽出_______张牌,才能保证取出的牌中至少包含3种花色,并且这3种花色的牌至少都有2张. 来源:2015·乐乐课堂·练习难度:困难 类型:填空题 答案:31 35.一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.那么至少抽出_______张牌,才能保证取出的牌中至少包含2种花色,并且这2种花色的牌至少都有3张. 来源:2015·乐乐课堂·练习难度:困难 类型:填空题 答案:22 36.一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.那么至少抽出_______张牌,才能保证取出的牌中至少包含3种花色,并且这3种花色的牌至少都有4张. 来源:2015·乐乐课堂·练习难度:困难 类型:填空题 答案:35 首页上一页1234下一页尾页 《抽屉原理》教学设计 芙蓉中心小学 简淑梅 【教学内容】: 人教版《义务教育课程标准实验教科书●数学》六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。【教材分析】: 这是一类与“存在性”有关的问题,教材通过几个直观例子,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,从而抽象出“抽屉原理”的一般规律。并利用这一规律对一些简单的实际问题加以“模型化”。即:只需要确定实际生活中某个物体(或某个人、或种现象)的存在就可以了。【学情分析】: 抽屉原理是学生从未接触过的新知识,很难理解抽屉原理的真正含义,尤其是对平均分就能保证“至少”的情况难以理解。 年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。 思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。【教学目标】: 1.知识与能力目标: 经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 2.过程与方法目标: 经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 3.情感、态度与价值观目标: 通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】: 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学准备】: 多媒体课件、扑克牌、盒子、铅笔、书、练习纸。【教学过程】: 一、课前游戏,激趣引新。 上课伊始,老师高举3张卡片。(高兴状) (1)老师这有3张漂亮的卡片,我想把它们送给在坐的三位同学,想要吗? (2)在送之前,我想请同学们猜一猜,这三张卡片会到男生手上还是会到女生手上?(学生思考后回答:可能送给了3名女生、可能送给了3名男生、也有可能送给了2名男生和1名女生、还有可能送给了2名女生和1名男生。) (3)同学们列出的这四种情况是这个活动中可能存在的现象,你能从这四种可能存在的现象中找到一种确定现象吗?(学生思考后回答:得到卡片的三个同学当中,至少会有两个同学的性别相同。) (4)老师背对着学生把卡片抛出验证学生的说法。 (5)如果老师再抛几次还会有这种现象出现吗?其实这里面蕴藏着一个非常有趣的数学原理,也就是我们今天这节课要研究的学习内容,想不想研究啊? 〖设计意图〗:在知识探究之前通过送卡片的游戏,从之前学过的“可能性”导入到今天的学习内容。一方面是使教师和学生进行自然的沟通交流;二是要激发学生的兴趣,引起探究的愿望;三是要让学生明白这种“确定现象”与“可能性”之间的联系,为接下来的探究埋下伏笔。 二、操作探究,发现规律。 1.动手摆摆,感性认识。 把4枝铅笔放进3个文具盒中。 (1)小组合作摆一摆、记一记、说一说,把可能出现的情况都列举出来。 (2)提问:不管怎么放,一定会出现哪种情况?讨论后引导学生得出:不管怎样放,总有一个文具盒里至少放了2只铅笔。 〖设计意图〗:抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中 至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。 2.提出问题,优化摆法。 (1)如果把 5支铅笔放进4个文具盒里呢?结果是否一样?怎样解释这一现象?(学生自由摆放,并解释些种现象存在的确定性。) (2)老师指着一名摆得非常快的同学问:怎么你比别人摆得更快呢?你是否有最简洁、最快速的方法,快快说出来和同学一起分享好吗? (3)学生汇报了自己的方法后,教师围绕假设法(平均分的方法),组织学生展开讨论:为什么每个杯子里都要放1根小棒呢? (4)在讨论的基础上,师生小结:假如每个杯子放入一根小棒,剩下的一根还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2根小棒。只有平均分才能将小棒尽可能地分散,保证“至少”的情况。 〖设计意图〗:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。 3.步步逼近,理性认识。 (1)师:把6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔吗?为什么? 把7支铅笔放进6个文具盒里呢? 把8枝笔放进7个盒子里呢? 把20枝笔放进19个盒子里呢? …… (2)符合这种结果的情况你能一一说完吗?你会用一句归纳这些情况吗? (笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。) 〖设计意图〗:通过这个连续的过程发展了学生的类推能力,形成比较抽象的数学思维,从而达到理性认识“抽屉原理”。 4.数量积累,发现方法。 7只鸽子要飞进5个鸽舍里,无论怎么飞,至少会有两子鸽子飞进同一个鸽舍。为什么? (1)如果要用一个算式表示,你会吗? (2)算式中告诉我们经过第一次平均分配后,还余下了2只鸽子,这两只鸽子会怎么飞呢?(有可能两只飞进了同一个鸽舍里,也有可能飞进了不同的鸽舍里。) (3)不管怎么飞,一定会出现哪种情况? (4)讨论:刚才是铅笔数比文具盒数多1枝的情况,现在鸽子数比鸽舍要多2只,为什么还是“至少有2只鸽子要飞进同一个鸽舍里”? (4)如果是“8只鸽子要飞进取5个鸽舍里呢?”(余下3只鸽子。) (5)“9只鸽子要飞进取5个鸽舍里呢?”(余下4只鸽子。) 根据学生的回答,用算式表示以上各题,并板书。 〖设计意图〗:从余数1到余数2、3、4……,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。并发现余下的鸽子数只要小于鸽舍数,就一定有“至少有两子鸽子飞进同一个鸽舍”的现象发生。 5.构建模型,解释原理。 (1)观察黑板上的算式,你有了什么新的发现?(只要鸽子数比盒鸽舍数多,且小于鸽舍数的两倍,至少有2只鸽子飞进了同一个鸽舍里。) (2)刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉。 (3)课件出示:“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。 (4)请你用“抽屉原理”解释我们的课前游戏,为什么不管老师怎么送,得到卡片的同学一定有两个同学的性别是一样的?其中什么相当于“物体”?什么相当于“抽屉”? 〖设计意图〗:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着,并让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。 三、循序渐进,总结规律。 (1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。为什么? A、该如何解决这个问题呢? B、如何用一个式子表示呢? C、你又发现了什么? 教师根据学生的回答,继续板书算式。 (2)如果一共有7本书呢?9本书呢? (3)思考、讨论:总有一个抽屉至少放进的本数是“商+1”还是“商+余数”呢?为什么? 教师师让学生充分讨论后得出正确的结论:总有一个抽屉至少放进的本数是“商+1”(教师板书。) 〖设计意图〗:对规律的认识是循序渐进的。在初次发现规律的基础上,引导学生抓住假设法最核心的思路---“有余数除法”,学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。从而得出“某个抽屉书的至少数”是除法算式中的商加“1”,而不是商加“余数”,从而使学生从本质上理解了“抽屉原理”。四.运用原理,解决问题。 1、基本类型,说说做做。 (1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么? (2)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么? 2、深化练习,拓展提升。 (1)有一副扑克牌,去掉了两张王牌,还剩52张,如果请五位同学每人任意抽1张,同种花色的至少有几张?为什么? 如果9个人每一个人抽一张呢? (2)某街道办事处统计人口显示,本街道辖区内当年共有 370名婴儿出生。统计员断定:“至少有2名婴儿是在同一天出生的。”这是为什么? 至少有多少名婴儿是在同一个月出生的?为什么? 〖设计意图〗:让学生运用所学知识去分析、解决生活实际问题,不仅是学生掌握知识的继续拓展与延伸,还是他们成功解决问题后获取愉悦心情的重要途经;不同题型、不同难度的练习不仅能进一步调动学生学习的积极性,还能满足不同的孩子学到不同的数学,并体会抽屉原理的形式是多种多样的。 五、全课小结,课外延伸。 (1)说一说:今天这节课,我们又学习了什么新知识?你还有什么困惑? (2)用今天学到的知识向你的家长解释下列现象: 从1、2、3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢? 〖设计意图〗:既让学生说数学知识的收获,也引导学生谈情感上的感受,同时培养他们的质疑能力,使三维目标落到实处;把课堂知识延伸到课外,与家长一起分析思考,主要是想拓展学生思维,达到“家校牵手,共话数学”的教学目的。 板书设计。 抽屉原理 物体数 抽屉数 至少数 =商+1 (铅笔数)(盒子数) 2 3 ÷ 4 =1……1 2 =1+1 ÷ 5 =1……2 2 =1+1 ÷ 2 =2……1 3 =2+1 ÷ 2 =3……1 4 =3+1 〖设计意图〗:这样的板书设计是在教学过程中动态生成的,按讲思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。第二篇:简单的抽屉原理
第三篇:抽屉原理及其应用
第四篇:小学奥数-简单抽屉原理
第五篇:抽屉原理