第一篇:第三讲 抽屉原理(一)
华罗庚数学
第三讲
抽屉原理
(一)【专题导引】
如果给你5盒饼干,让你把它们放进4个抽屉,可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联系册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单的例子就是数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x+k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,找出元素。B、把元素放入(或取出)抽屉。C、说明理由,得出结论。
本周我们先来学习第(1)条原理及其应用。
【典型例题】
【例1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?
【试一试】
1、某校有370名1992年出生的学生,其中至少有两个学生的生日是同一天,为什么?
2、某校有30名学生是2月份出生的。能否至少有两个学生的生日是在同一天?
【例2】某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?
【试一试】
1、某班学生去买数学书、语文书、美术书、自然书。买书的情况是:有买一本、二本、三本或四本的。问至少去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?
皖西外语六年级奥数辅导 华罗庚数学
2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个学生才能保证一定有两人所借的图书属于同一种?
【例3】一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出多少只手套才能保证有3副同色的?
【试一试】
1、一只布袋中装有大小相同、颜色不同的手套。颜色有黑、红、蓝、黄四种。问:最少要摸出多少只手套才能保证有4副同色的?
2、布袋中有同样规格但颜色不同的袜子若干只。颜色有白、黑、蓝三种。问:最少要摸出多少只袜子,才能保证有3双同色的?
【例4】任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?
【试一试】
1、任意6个不相同的自然数,其中至少有两个数的差是5的倍数,这是为什么?
2、任意取几个不相同的自然数,才能保证至少有两个数的差是8的倍数?
皖西外语六年级奥数辅导 华罗庚数学
【﹡例5】能否在下图的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线上的各个数的和互不相同?
【﹡试一试】
1、能否在6行6列方格表的每个空格中分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线上的各个数的和互不相同?为什么?
2、证明在8×8的方格表的每个空格中,分别填上3,4,5这三个数中的任一个,在每行、每列及每条对角线上的各个数的和中至少有两个和是相同的。
课外作业
家长签名: 1、15个小朋友中,至少有几个小朋友在同一个月出生?
2、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,皖西外语六年级奥数辅导 华罗庚数学
问最少要取出多少个珠子才能保证有2个同色的?
3、一个布袋里有红、黄、蓝色的袜子各8只。每次从布袋中拿出一只袜子,最少要拿出多少只才能保证其中至少有2双颜色相同的袜子?
4、证明在任意的(n+1)个不相同的自然数中,必有两个数之差为n的倍数。
﹡
5、在3×9的方格图中(如下图所示),将每一个小方格涂上红色或者蓝色,不论如何涂色,其中至少有两列的涂色方式相同。这是为什么?
皖西外语六年级奥数辅导 华罗庚数学
第二篇:第2课时 抽屉原理
第2课时
抽屉原理
(二)教学目标
1、理解“抽屉原理”的一般形式;采用枚举法及假设法解决抽屉问题,通过分析、推理,理解解决这一类“抽屉问题”的一般规律。
2、经历“抽屉原理”的推理过程,体会比较的学习方法。
3、感受数学与生活的密切联系,激发学习兴趣,培养学生的探究精神。
自主学习
自学内容:课本第71页的例2,练习十二第2、4题。自学要求:边学边记,认真完成“合作探究”。
一、创设情境,引出问题
师:上节课我们学习了抽屉原理例1,我们利用什么方法得出了什么结论?谁能来举例子说明?
生:6个鸽子飞进5个鸽笼,总有一个鸽笼至少飞进2只鸽子为什么? 生:假设先每个鸽笼放一只,还剩下一只不管放进那个笼子里,总有一只鸽笼会飞进2只。6÷5=1(只)…1(只)师:我们得出了什么样的结论呢?
生:只要物体数比抽屉数多1,总有一个抽屉至少放2个物体。
师:同学们说的真好,看来我们的思维已经被激活,可以进入新课的学习了,今天我们继续学习抽屉原理的例2 出示第72页例2的主题图,你获得了哪些信息?
二、引导建构,探究新课
出示合作探究题。
1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
2、3、把7本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
3、把9本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?
4、你能用算式表示以上过程吗?你有什么发现?
1、学生思考、讨论、交流;做好汇报的准备;
2、学生汇报;其他学生倾听、补充、质疑、评价等;教师适时补充、点拨、板书等。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本 2个 2本…… 余1本(总有一个抽屉里至有3本书)
7本 2个 3本…… 余1本(总有一个抽屉里至有4本书)9本 2个 4本……
余1本(总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)7÷2=3本……1本(商加1)9÷2=4本……1本(商加1)师:观察板书你能发现什么?
生1:“总有一个抽屉里的至少有2本”只要用 “商+ 1”就可以得到。师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:
生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。
生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?
生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们同意吧?
如果有125本书放在2个抽屉里,总有一个抽屉至少有几本书?还能用枚举法吗?
生:用假设法最好
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 观察发现。
师:请同学们看黑板上,2本、3本、4本是怎么得到的呢?
师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
3、归纳整理:
把多于kn个物体任意放进n个空抽屉里,(k 是非0自然数),那么一定有一个抽屉中至少放进
()个物体。
解决“抽屉原理”的步骤是:找出“抽屉数”和“分放的物体数”;物体数÷抽屉数=商……余数;至少数=商+1。
这一原理在解决实际问题中有着广泛的应用。抽屉原理关键的必须知道什么是抽屉,什么是待分的物体。下面我们应用这一原理解决问题。练习反馈,评价反思
目标达成
独立完成后,说出思考过程。1、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里,为什么?
2、张叔叔参加射击比赛,5次的成绩是41环,那么张叔叔至少一次的成绩不低于9环,为什么?
3、师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?
生:2张/因为5÷4=1…1 师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为9÷4=2…1
巩固提升 1、17枝铅笔放进4个文具盒里,至少有一个文具盒放几枝?
2、六年级152人到常青农庄春游,安排捉鱼、攀爬、赶猪入笼三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人?
3、幼儿园有80个小朋友,各种玩具有330件。把这些玩具分给小朋友,是否有人会得到5件或5件以上的玩具?
四、全课小结
本节课你学到了什么?
板书: 抽屉原理
不管怎么放,总有一个文具盒至少有2枝铅笔
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)
4÷3=1……1
1+1=2
教学反思:学生听取汇报时,不同意见的同学发出了“原来这样,我理解错了,我心里笑了,只要把机会给学生们,学生们会在辨析质疑中找到解决问题的办法,理也会越辩越明。学生出现理解性的错误问题还是处在老师这里,没有对这个问题进行预见,但是我想想,这样让学生进行出现问题在进行辩论学生的印象更深一些,课下我曾经调查学生这节课你印象最深的地方是哪里,有20几个同学提到这里)
第三篇:抽屉原理
《抽屉原理》教学设计 芙蓉中心小学 简淑梅 【教学内容】:
人教版《义务教育课程标准实验教科书●数学》六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。【教材分析】:
这是一类与“存在性”有关的问题,教材通过几个直观例子,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,从而抽象出“抽屉原理”的一般规律。并利用这一规律对一些简单的实际问题加以“模型化”。即:只需要确定实际生活中某个物体(或某个人、或种现象)的存在就可以了。【学情分析】:
抽屉原理是学生从未接触过的新知识,很难理解抽屉原理的真正含义,尤其是对平均分就能保证“至少”的情况难以理解。
年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。【教学目标】:
1.知识与能力目标:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
2.过程与方法目标:
经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感、态度与价值观目标:
通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学准备】:
多媒体课件、扑克牌、盒子、铅笔、书、练习纸。【教学过程】:
一、课前游戏,激趣引新。
上课伊始,老师高举3张卡片。(高兴状)
(1)老师这有3张漂亮的卡片,我想把它们送给在坐的三位同学,想要吗?
(2)在送之前,我想请同学们猜一猜,这三张卡片会到男生手上还是会到女生手上?(学生思考后回答:可能送给了3名女生、可能送给了3名男生、也有可能送给了2名男生和1名女生、还有可能送给了2名女生和1名男生。)
(3)同学们列出的这四种情况是这个活动中可能存在的现象,你能从这四种可能存在的现象中找到一种确定现象吗?(学生思考后回答:得到卡片的三个同学当中,至少会有两个同学的性别相同。)
(4)老师背对着学生把卡片抛出验证学生的说法。
(5)如果老师再抛几次还会有这种现象出现吗?其实这里面蕴藏着一个非常有趣的数学原理,也就是我们今天这节课要研究的学习内容,想不想研究啊?
〖设计意图〗:在知识探究之前通过送卡片的游戏,从之前学过的“可能性”导入到今天的学习内容。一方面是使教师和学生进行自然的沟通交流;二是要激发学生的兴趣,引起探究的愿望;三是要让学生明白这种“确定现象”与“可能性”之间的联系,为接下来的探究埋下伏笔。
二、操作探究,发现规律。
1.动手摆摆,感性认识。
把4枝铅笔放进3个文具盒中。
(1)小组合作摆一摆、记一记、说一说,把可能出现的情况都列举出来。
(2)提问:不管怎么放,一定会出现哪种情况?讨论后引导学生得出:不管怎样放,总有一个文具盒里至少放了2只铅笔。
〖设计意图〗:抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中
至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。
2.提出问题,优化摆法。
(1)如果把 5支铅笔放进4个文具盒里呢?结果是否一样?怎样解释这一现象?(学生自由摆放,并解释些种现象存在的确定性。)
(2)老师指着一名摆得非常快的同学问:怎么你比别人摆得更快呢?你是否有最简洁、最快速的方法,快快说出来和同学一起分享好吗?
(3)学生汇报了自己的方法后,教师围绕假设法(平均分的方法),组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?
(4)在讨论的基础上,师生小结:假如每个杯子放入一根小棒,剩下的一根还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2根小棒。只有平均分才能将小棒尽可能地分散,保证“至少”的情况。
〖设计意图〗:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。
3.步步逼近,理性认识。
(1)师:把6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔吗?为什么?
把7支铅笔放进6个文具盒里呢?
把8枝笔放进7个盒子里呢?
把20枝笔放进19个盒子里呢?
……
(2)符合这种结果的情况你能一一说完吗?你会用一句归纳这些情况吗?
(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)
〖设计意图〗:通过这个连续的过程发展了学生的类推能力,形成比较抽象的数学思维,从而达到理性认识“抽屉原理”。
4.数量积累,发现方法。
7只鸽子要飞进5个鸽舍里,无论怎么飞,至少会有两子鸽子飞进同一个鸽舍。为什么?
(1)如果要用一个算式表示,你会吗?
(2)算式中告诉我们经过第一次平均分配后,还余下了2只鸽子,这两只鸽子会怎么飞呢?(有可能两只飞进了同一个鸽舍里,也有可能飞进了不同的鸽舍里。)
(3)不管怎么飞,一定会出现哪种情况?
(4)讨论:刚才是铅笔数比文具盒数多1枝的情况,现在鸽子数比鸽舍要多2只,为什么还是“至少有2只鸽子要飞进同一个鸽舍里”?
(4)如果是“8只鸽子要飞进取5个鸽舍里呢?”(余下3只鸽子。)
(5)“9只鸽子要飞进取5个鸽舍里呢?”(余下4只鸽子。)
根据学生的回答,用算式表示以上各题,并板书。
〖设计意图〗:从余数1到余数2、3、4……,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。并发现余下的鸽子数只要小于鸽舍数,就一定有“至少有两子鸽子飞进同一个鸽舍”的现象发生。
5.构建模型,解释原理。
(1)观察黑板上的算式,你有了什么新的发现?(只要鸽子数比盒鸽舍数多,且小于鸽舍数的两倍,至少有2只鸽子飞进了同一个鸽舍里。)
(2)刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉。
(3)课件出示:“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
(4)请你用“抽屉原理”解释我们的课前游戏,为什么不管老师怎么送,得到卡片的同学一定有两个同学的性别是一样的?其中什么相当于“物体”?什么相当于“抽屉”?
〖设计意图〗:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着,并让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。
三、循序渐进,总结规律。
(1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。为什么?
A、该如何解决这个问题呢?
B、如何用一个式子表示呢?
C、你又发现了什么?
教师根据学生的回答,继续板书算式。
(2)如果一共有7本书呢?9本书呢?
(3)思考、讨论:总有一个抽屉至少放进的本数是“商+1”还是“商+余数”呢?为什么?
教师师让学生充分讨论后得出正确的结论:总有一个抽屉至少放进的本数是“商+1”(教师板书。)
〖设计意图〗:对规律的认识是循序渐进的。在初次发现规律的基础上,引导学生抓住假设法最核心的思路---“有余数除法”,学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。从而得出“某个抽屉书的至少数”是除法算式中的商加“1”,而不是商加“余数”,从而使学生从本质上理解了“抽屉原理”。四.运用原理,解决问题。
1、基本类型,说说做做。
(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?
2、深化练习,拓展提升。
(1)有一副扑克牌,去掉了两张王牌,还剩52张,如果请五位同学每人任意抽1张,同种花色的至少有几张?为什么?
如果9个人每一个人抽一张呢?
(2)某街道办事处统计人口显示,本街道辖区内当年共有 370名婴儿出生。统计员断定:“至少有2名婴儿是在同一天出生的。”这是为什么? 至少有多少名婴儿是在同一个月出生的?为什么?
〖设计意图〗:让学生运用所学知识去分析、解决生活实际问题,不仅是学生掌握知识的继续拓展与延伸,还是他们成功解决问题后获取愉悦心情的重要途经;不同题型、不同难度的练习不仅能进一步调动学生学习的积极性,还能满足不同的孩子学到不同的数学,并体会抽屉原理的形式是多种多样的。
五、全课小结,课外延伸。
(1)说一说:今天这节课,我们又学习了什么新知识?你还有什么困惑?
(2)用今天学到的知识向你的家长解释下列现象:
从1、2、3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢?
〖设计意图〗:既让学生说数学知识的收获,也引导学生谈情感上的感受,同时培养他们的质疑能力,使三维目标落到实处;把课堂知识延伸到课外,与家长一起分析思考,主要是想拓展学生思维,达到“家校牵手,共话数学”的教学目的。
板书设计。
抽屉原理
物体数 抽屉数 至少数 =商+1
(铅笔数)(盒子数)
2
3
÷ 4 =1……1 2 =1+1 ÷ 5 =1……2 2 =1+1 ÷ 2 =2……1 3 =2+1 ÷ 2 =3……1 4 =3+1
〖设计意图〗:这样的板书设计是在教学过程中动态生成的,按讲思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。
第四篇:抽屉原理
《抽屉原理》教学反思
严田小学彭性良
《课程标准》指出:数学必须注意从学生的生活情景和感兴趣的事物出发,为他们提供参与的机会,使他们体会数学就在身边,对数学产生浓厚的兴趣和亲近感。也就是创设丰富的学习氛围,激发学生的学习兴趣。通过让学生放苹果的环节,激发学生的学习兴趣,引出本节课学习的内容。通过3个苹果放入2个抽屉的各种情况的猜测,进一步感知抽屉原理。认识抽屉原理不同的表述方式:①至少有一个抽屉的苹果有2个或2个以上;②至少有一个抽屉的苹果不止一个。
充分利用学生的生活经验,对可能出现的结果进行猜测,然后放手让学生自主思考,采用自己的方法进行“证明”,接着再进行交流,在交流中引导学生对“枚举法”、“假设法”等方法进行比较,教师进一步比较优化,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理。最后出示练习,让学生灵活应用所学知识,解决生活中的实际问题,使学生所学知识得到进一步的拓展。
这种“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,让学生经历建模的过程,促进学生对数学原理的理解,进一步培养学生良好的数学思维能力。
第五篇:抽屉原理
《抽屉原理》教学设计
教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问题;通过猜测、验证、观察、分析等数学活动,让孩子建立数学模型,发现规律;使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
学情分析:使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程
一、游戏引入
3个人坐两个座位,3人都要坐下,一定有一个座位上至少坐了2个人。
这其中蕴含了有趣的数学原理,这节课我们一起学习研究。
二、新知探究
1、把4枝铅笔放进3个文具盒里,不管怎么放,总有一个文具盒里至少放进()枝铅笔先猜一猜,再动手放一放,看看有哪些不同方法。用自己的方法记录(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么发现?
不管怎么放总有一个文具盒里至少放进2枝铅笔。总有是什么意思?至少是什么意思
2、思考
有没有一种方法不用摆放就可以知道至少数是多少呢?
1、3人坐2个位子,总有一个座位上至少坐了2个人2、4枝铅笔放进3个文具盒中,总有一个文具盒中至少放了2枝铅笔5枝铅笔放进4个文具盒中,6枝铅笔放进5个文具盒中。99支铅笔放进98个文具盒中。是否都有一个文具盒中
至少放进2枝铅笔呢? 这是为什么?可以用算式表达吗?
4、如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?把7枝笔放进2个文具盒里呢? 8枝笔放进2个文具盒呢? 9枝笔放进3个文具盒呢?至少数=上+余数吗?
三、小试牛刀 1、7只鸽子飞回5个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?
2、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有几张是同花色的?
四、数学小知识
数学小知识:抽屉原理的由来最先发现这些规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做
“抽屉原理”。
五、智慧城堡
1、把13只小兔子关在5个笼子里,至少有多少只兔子要关在同一个笼子里?
2、咱们班共59人,至少有几人是同一属相?
3、张叔叔参加飞镖比赛,投了5镖,镖镖都中,成绩是41环。张叔叔至少有一镖不低于9环。为什么?
4、六年级四个班的学生去春游,自由活时有6个同学在一起,可以肯定。为什么?
六、小结
这节课你有什么收获?
七、作业:课后练习