抽屉原理(精选)

时间:2019-05-15 09:20:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《抽屉原理(精选)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《抽屉原理(精选)》。

第一篇:抽屉原理(精选)

高中数学竞赛系列讲座

第五讲 抽屉原理

北京十二中 刘文武

在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。

“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。

(一)抽屉原理的基本形式

定理

1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。

在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。

同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。

例1. 已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于(1978年广东省数学竞赛题)

分析:5个点的分布是任意的。如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于。

以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。

如图2,设BC是△ABC的最大边,P,M是△ABC内(包括边界)任意两点,连接PM,过P分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么

∠PQN=∠C,∠QNP=∠A

因为BC≥AB,所以∠A≥∠C,则∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相邻的内角),所以 PQ≥PM。显然BC≥PQ,故BC≥PM。

由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。

说明:

(1)这里是用等分三角形的方法来构造“抽屉”。类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。例如“任取n+1个正数ai,满足0<ai≤1(i=1,2,„,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。

(2)例1中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于“,请读者试证之,并比较证明的差别。

(3)用同样的方法可证明以下结论:

i)在边长为1的等边三角形中有n+1个点,这n+1个点中一定有距离不大于的两点。

2ii)在边长为1的等边三角形内有n+1个点,这n+1个点中一定有距离小于的两点。

(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的换成,命 题仍然成立。

(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长 为1的正三角形内(包括边界)有两点其距离不超过”。

例2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若m∈N+,K∈N+,n∈N,则m=(2k-1)·2,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,„„ n

证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):

(1){1,1×2,1×2,1×2,1×2,1×2,1×2};

(2){3,3×2,3×2,3×2,3×2,3×2};

(3){5,5×2,5×2,5×2,5×2};

(4){7,7×2,7×2,7×2};

(5){9,9×2,9×2,9×2};

(6){11,11×2,11×2,11×2};

„„

(25){49,49×2};

(26){51};

„„

(50){99}。

这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。

说明:

(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3,„,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”

(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么?

452

56①从2,3,4,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?

②从1,2,3,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?

你能举出反例,证明上述两个问题的结论都是否定的吗?

(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗?

例3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。

证明:把前25个自然数分成下面6组:

1;

2,3;

4,5,6;

7,8,9,10;

11,12,13,14,15,16;

17,18,19,20,21,22,23,⑥

因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。

说明:

(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。

显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。这样,我们可以用如上一种特殊的分类法:递推分类法:

从1开始,显然1只能单独作为1个集合{1};否则不满足限制条件。

能与2同属于一个集合的数只有3,于是{2,3}为一集合。

如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。

(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为

{26,27,28,29,30,31,32,33,34,35,36,37,38,39};

第8个抽屉为:{40,41,42,„,60};

第9个抽屉为:{61,62,63,„,90,91};

„„

那么我们可以将例3改造为如下一系列题目:

(1)从前16个自然数中任取6个自然数;

(2)从前39个自然数中任取8个自然数;

(3)从前60个自然数中任取9个自然数;

(4)从前91个自然数中任取10个自然数;„

都可以得到同一个结论:其中存在2个数,它们相互的比值在]内。

上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。如果我们改变区间[>q)端点的值,则又可以构造出一系列的新题目来。

](p

例4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。(第14届1M0试题)

分析与解答:一个有着10个元素的集合,它共有多少个可能的子集呢?由于在组成一个子集的时候,每一个元素都有被取过来或者不被取过来两种可能,因此,10个元素的集合就有2=1024个不同的构造子集的方法,也就是,它一共有1024个不同的子集,包括空集和全集在内。空集与全集显然不是考虑的对象,所以剩下1024-2=1022个非空真子集。

再来看各个真子集中一切数字之和。用N来记这个和数,很明显:

10≤N≤91+92+93+94+95+96+97+98+99=855

这表明N至多只有855-9=846种不同的情况。由于非空真子集的个数是1022,1022>846,所以一定存在两个子集A与B,使得A中各数之和=B中各数之和。

若A∩B=φ,则命题得证,若A∩B=C≠φ,即A与B有公共元素,这时只要剔除A与B中的一切公有元素,得出两个不相交的子集A1与B1,很显然

A1中各元素之和=B1中各元素之和,因此A1与B1就是符合题目要求的子集。

说明:本例能否推广为如下命题:

已给一个由m个互不相等的n位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。10

请读者自己来研究这个问题。

例5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。

分析与解答:由中点坐标公式知,坐标平面两点(x1,y1)、(x2,y2)的中点坐标是欲使

。都是整数,必须而且只须x1与x2,y1与y2的奇偶性相同。坐标平面上的任意整点按照横纵两个坐标的奇偶性考虑有且只有如下四种:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数)以此构造四个“抽屉”,则在坐标平面上任取五个整点,那么至少有两个整点,属于同一个“抽屉”因此它们连线的中点就必是整点。

说明:我们可以把整点的概念推广:如果(x1,x2,„xn)是n维(元)有序数组,且x1,x2,„xn中的每一个数都是整数,则称(x1,x2,„xn)是一个n维整点(整点又称格点)。如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此共可分为2×2ׄ×2=2个类。这是对n维整点的一种分类方法。当n=3时,2=8,此时可以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。这就是1971年的美国普特南数学竞赛题。在n=2的情形,也可以构造如下的命题:“平面上任意给定5个整点”,对“它们连线段中点为整点”的4个命题中,为真命题的是:

(A)最少可为0个,最多只能是5个(B)最少可为0个,最多可取10个

(C)最少为1个,最多为5个(D)最少为1个,最多为10个

(正确答案(D))

例6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。

分析:本题也似乎是茫无头绪,无从下手,其关键何在?仔细审题,它们的“和”能“被100整除”应是做文章的地方。如果把这100个数排成一个数列,用Sm记其前m项的和,则其可构造S1,S2,„S100共100个”和"数。讨论这些“和数”被100除所得的余数。注意到S1,S2,„S100共有100个数,一个数被100除所得的余数有0,1,2,„99共100种可能性。“苹果”数与“抽屉”数一样多,如何排除“故障”?

证明:设已知的整数为a1,a2,„a100考察数列a1,a2,„a100的前n项和构成的数列S1,S2,„S100。

如果S1,S2,„S100中有某个数可被100整除,则命题得证。否则,即S1,S2,„S100均不能被100整除,这样,它们被100除后余数必是{1,2,„,99}中的元素。由抽屉原理I知,S1,S2,„S100中必有两个数,它们被100除后具有相同的余数。不妨设这两个数为Si,Sj(i<j),则100∣(Sj-Si),即100∣

。命题得证。n

3说明:有时候直接对所给对象作某种划分,是很难构造出恰当的抽屉的。这时候,我们需要对所给对象先作一些变换,然后对变换得到的对象进行分类,就可以构造出恰当的抽屉。本题直接对{an}进行分类是很难奏效的。但由{an}构造出{Sn}后,再对{Sn}进行分类就容易得多。

另外,对{Sn}按模100的剩余类划分时,只能分成100个集合,而{Sn}只有100项,似乎不能应用抽屉原则。但注意到余数为0的类恰使结论成立,于是通过分别情况讨论后,就可去掉余数为0的类,从而转化为100个数分配在剩下的99个类中。这种处理问题的方法应当学会,它会助你从“山穷水尽疑无路”时,走入“柳暗花明又一村”中。

最后,本例的结论及证明可以推广到一般情形(而且有加强的环节):

在任意给定的n个整数中,都可以找出若干个数来(可以是一个数),它们的和可被n整除,而且,在任意给定的排定顺序的n个整数中,都可以找出若干个连续的项(可以是一项),它们的和可被n整除。

将以上一般结论中的n赋以相应的年份的值如1999,2000,2001„,就可以编出相应年份的试题来。如果再赋以特殊背景,则可以编出非常有趣的数学智力题来,如下题:

有100只猴子在吃花生,每只猴子至少吃了1粒花生,多者不限。请你证明:一定有若干只猴子(可以是一只),它们所吃的花生的粒数总和恰好是100的倍数。

(二)于无声处听惊雷--单色三角形问题

前面数例我们看到,抽屉原理的应用多么奇妙,其关键在于恰当地制造抽屉,分割图形,利用自然数分类的不同方法如按剩余类制造抽屉或按奇数乘以2的方幂制造抽屉,利用奇偶性等等,都是制造“抽屉”的方法。大家看到,抽屉原理的道理极其简单,但“于无声处听惊雷”,恰当地精心地应用它,不仅可以解决国内数学竞赛中的问题,而且可以解决国际中学生数学竞赛,例如IM0中的难题。本节我们就来看几个这样的例子。

例7.(第6届国际中学生数学奥林匹克试题)17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

证明:视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线。三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形。

考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,„,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色。

考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4。这时若B2,B3,B4之间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2,B3,B4,必为蓝色三角形,命题仍然成立。

说明:(1)本题源于一个古典问题--世界上任意6个人中必有3人互相认识,或互相不认识。(美国普特南数学竞赛题)。

(2)将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色。求证:存在三点,它们所成的三角形三边同色。

(3)问题(2)可以往两个方向推广:其一是颜色的种数,其二是点数。

本例便是方向一的进展,其证明已知上述。如果继续沿此方向前进,可有下题:

在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目。证明至少有三个科学家,他们互相之间讨论同一个题目。

(4)回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题。反过来,我们可以继续推广。从以上(3,1)→(6,2)→(17,3)的过程,易发现

6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958„记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,„

我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4„这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形。

(三)抽屉原理的其他形式。

在例7的证明过程中,我们实际上用到了抽屉原理的其他形式,我们把它作为定理2。

定理2:把m个元素分成n个集合(m>n)

(1)当n能整除m时,至少有一个集合含有个元素;

]+1个元素,([

]表示不超过 的(2)当n不能整除 m时,则至少有一个集合含有至少[最大整数)

定理2有时候也可叙述成:把m×n+1个元素放进n个集合,则必有一个集合中至少放有m+1个元素。

例8.在边长为1的正方形内任意放入九个点,求证:存在三个点,以这三个点为顶点的三角形的面积不超过(1963年北京市数学竞赛题)。

分析与解答:如图3,四等分正方形,得到A1,A2,A3,A4四个矩形。在正方形内任意放入九个点,则至少有一个矩形Ai内存在[]+1=3个或3个以上的点,设三点为A、B、C,具体考察Ai(如图4),过A、B、C三点分别作矩形长边的平行线,过A点的平行线交BC于A'点,A点到矩形长边的距离为h=(0≤h≤),则△ABC的面积

S△ABC=S△AA'C+S△AA'B

≤×1×h+×1×(-h)

=×=

说明:把正方形分成四个区域,可以得出“至少有一个区域内有3个点”的结论,这就为确定三角形面积的取值范围打下了基础。本题构造“抽屉”的办法不是唯一的,还可以将正方形等分成边长为的四个小正方形等。但是如将正方形等分成四个全等的小三角形却是不可行的(想一想为什么?)。所以适当地构造“抽屉”,正是应用抽屉原则解决问题的关键所在。

图5

以下两个题目可以看作是本例的平凡拓广:

(1)在边长为2的正方形内,随意放置9个点,证明:必有3个点,以它们为顶点的三角形的面积不超过。

(2)在边长为1的正方形内任意给出13个点。求证:必有4个点,以它们为顶点的四边形的面积不超过1/4。

例9.9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9条直线中至少有3条通过同一个点。

证明:设正方形为ABCD,E、F分别是AB,CD的中点。

设直线L把正方形ABCD分成两个梯形ABGH和CDHG,并且与EF相交于P(如图6)

梯形ABGH的面积:梯形CDHG的面积=2∶3

EP是梯形ABGH的中位线,PF是梯形CDHG的中位线,由于

梯形的面积=中位线×梯形的高,并且两个梯形的高相等(AB=CD),所以

梯形ABGH的面积∶梯形CDHG的面积

=EP∶PF,也就是EP∶PF=2∶3

这说明,直线L通过EF上一个固定的点P,这个点把EF分成长度为2∶3的两部分。这样的点在EF上还有一个,如图上的Q点(FQ∶QE=2∶3)。

同样地,如果直线L与AB、CD相交,并且把正方形分成两个梯形面积之比是2∶3,那么这条直线必定通过AD、BC中点连线上的两个类似的点(三等分点)。

这样,在正方形内就有4个固定的点,凡是把正方形面积分成两个面积为2∶3的梯形的直线,一定通过这4点中的某一个。我们把这4个点看作4个抽屉,9条直线看作9个苹果,由定理2可知,9=4×2+1,所以,必有一个抽屉内至少放有3个苹果,也就是,必有三条直线要通过一个点。

说明:本例中的抽屉比较隐蔽,正方形两双对边中点连线上的4个三等分点的发现是关键,而它的发现源于对梯形面积公式S梯形=中位线×梯形的高的充分感悟。

例10.910瓶红、蓝墨水,排成130行,每行7瓶。证明:不论怎样排列,红、蓝墨水瓶的颜色次序必定出现下述两种情况之一种:

1.至少三行完全相同;

2.至少有两组(四行),每组的两行完全相同。(北京市高中一年级数学竞赛1990年复赛试题)

证明:910瓶红、蓝墨水,排成130行,每行7瓶。每行中的7个位置中的每个位置都有红、蓝两种可能,因而总计共有27=128种不同的行式(当且仅当两行墨水瓶颜色及次序完全相同时称为“行式”相同)

任取130行中的129行,依抽屉原理可知,必有两行(记为A,B)“行式”相同。

在除A、B外的其余128行中若有一行P与A(B)“行式”相同,则P,A,B满足“至少有三行完全相同”;在其余(除A,B外)的128行中若没有与A(B)行式相同者,则128行至多有127种不同的行式,依抽屉原则,必有两行(不妨记为C、D)行式相同,这样便找到了(A,B)、(C,D)两组(四行),每组两行完全相同。

说明:本例构造抽屉时用到了乘法原理,2×2×2×2×2×2×2=2=128个“行式”是制造和应用抽屉原理的关键。

(四)抽屉原理的无限形式

定理3.如果把无穷多个元素分成n个集合,那么不管怎么分,都至少存在一个集合,其中有无穷多个元素。

例11.在坐标平面上给出无限多个矩形,它们的顶点的直角坐标都具有如下形式:

(0,0),(0,m),(n,0),(n,m)

其中m,n是正整数,并且m>3,n<6,求证:在这些矩形中一定存在无限多个矩形,其中任意两个矩形必有一个被包含在另一个之中。

证明:由n<6知,n=1,2,3,4,5,只有5种情形,由定理3知,将所给的无穷多个矩形按n的取值分成5类,当作5个抽屉,其中必有一个抽屉(一类)里包含有无穷多个矩形。不妨设这一类矩形的n的取值为n。对于这一类矩形中的任意两个矩形而言,由于n的取值相同,因此m取值较小的一个矩形必然被包含在m取值较大的一个矩形之中。

(五)抽屉原理的多次使用。

在例7的解答中,我们已经看到了多次使用抽屉原理的方法,下面再看两例。

例12.有苹果、梨、桔子若干个,任意分成9堆,求证一定可以找到两堆,其苹果数、梨数、桔子数分别求和都是偶数。

证明:因为每一堆里的每一种水果数或为奇数或为偶数(两个抽屉),而9=2×4+1,故对于苹果,9堆中必有5堆的奇偶性相同;这5堆对于梨数来说,由于5=2×2+1,故必有3堆的奇偶性相同;这3堆对于桔子数也必有2堆的奇偶性相同。于是,就找到这样的两堆,它们的苹果数、梨数,桔子数的奇偶性都分别相同,从而其和数分别都是偶数。

说明:为了得出和是偶数,需要两加数的奇偶性相同。对3类水果逐一找用了3次抽屉原理,若将过程合并简化可将苹果数、梨数、桔子数作为3锥坐标(X,Y,Z),按其坐标的奇偶性构造8个抽屉:

(奇,奇,奇),(奇,奇,偶),(奇,偶,奇),(偶,奇,奇),(奇,偶,偶),(偶,奇,偶),(偶,偶,奇),(偶,偶,偶),9堆当中必有2堆属于同一抽屉,其坐标的奇偶性完全相同。(参考例5说明)

7例13.(1995年全国高中数学联赛试题)将平面上每个点以红蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色。

证明:如图7,作两个半径分别为1和1995的同心圆,在内圆上任取9个点,必有5点同色,记为A1,A2,A3,A4,A5。连半径0Ai交大圆于Bi(i=1,2,3,4,5),对B1,B2,B3,B4,B5,必有3点同色,记为Bi,Bj,Bk,则△BiBjBk与△AiAjAk为三项点同色的位似三角形,位似比等于1995,满足题设条件。

说明:这里连续用了两次抽屉原理(以染色作抽屉)。也可以一开始就取位似比为1995的9个位似点组(Ai,Bi()i=1,2,3,„,9),对4个抽屉(红,红),(红,蓝),(蓝,红),(蓝,蓝)应用抽屉原理,得出必有3个位似点属于同一抽屉,从题目的证明过程中可以看出,位似比1995可以改换成另外一个任意的正整数、正实数。当然,不用同心圆也可证得,如在平面上取任三点都不共线的9点,由抽屉原理必有5点同色,设为A、B、C、D、E;以A为位似中心,以1995为位似比作ABCDE的位似形A'B'C'D'E',则5点A,B',C',D',E'中必有3点同色,设为B'D'E',则即为所求。

更一般地可以证明,在这个二染色的平面上存在无数个内角为30°,60°,90°的直角三角形三顶点同色:任取a∈R,以a为边作等边三角形,则必有两点同色,记为A,B同红色,以AB为直径作一圆,再作圆内接正六边形AC1C2BC3C4(如图9),当Ci中有红点时△ACiB即为所求;当Ci中无红点即Ci全为蓝色时,Rt△C1C2C3即为所求。再由a的任意性知,这样的三角形有无数个。

更进一步还可得到:对任何a∈R,可得到两个相似比为a的顶点同色的相似三角形。对于多染色的情形,还可以得出多个相似三角形的结论:用红、黄、蓝三种颜色对平面上的点染色,对任意的a,b∈R,必存在三个三角形,它们彼此相似,相似比为1∶a∶b,且每个三角形的三顶点同色。请读者试证。

练习五

1.从集合A={1,2,„,2n}中任取n+1个数,证明:其中必有2个数互质。

2.任意给定7个整数,求证:其中必有两个数,其和或差可被10整除。+

+

+

3.任给7个实数,求证:其中必有至少两个数(记为x,y)满足0≤≤

4.给定n+1正整数所组成的集合,其中每个数都不超过2n,证明:这个集合中至少有一个元素能整除另一个元素。

5.设a1,a2,„,an是n个自然数,证明:从这n个数中总可以选出若干个数,使它们的和是n的倍数。

6.求证:平面上任意13个整点中,必有某4个点的重心为整点。

7.任给5个整数,证明:必然从其中选出3个,使得它们的和被3整除。

第二篇:抽屉原理

《抽屉原理》教学设计 芙蓉中心小学 简淑梅 【教学内容】:

人教版《义务教育课程标准实验教科书●数学》六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。【教材分析】:

这是一类与“存在性”有关的问题,教材通过几个直观例子,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,从而抽象出“抽屉原理”的一般规律。并利用这一规律对一些简单的实际问题加以“模型化”。即:只需要确定实际生活中某个物体(或某个人、或种现象)的存在就可以了。【学情分析】:

抽屉原理是学生从未接触过的新知识,很难理解抽屉原理的真正含义,尤其是对平均分就能保证“至少”的情况难以理解。

年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。【教学目标】:

1.知识与能力目标:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

2.过程与方法目标:

经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.情感、态度与价值观目标:

通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】:

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学准备】:

多媒体课件、扑克牌、盒子、铅笔、书、练习纸。【教学过程】:

一、课前游戏,激趣引新。

上课伊始,老师高举3张卡片。(高兴状)

(1)老师这有3张漂亮的卡片,我想把它们送给在坐的三位同学,想要吗?

(2)在送之前,我想请同学们猜一猜,这三张卡片会到男生手上还是会到女生手上?(学生思考后回答:可能送给了3名女生、可能送给了3名男生、也有可能送给了2名男生和1名女生、还有可能送给了2名女生和1名男生。)

(3)同学们列出的这四种情况是这个活动中可能存在的现象,你能从这四种可能存在的现象中找到一种确定现象吗?(学生思考后回答:得到卡片的三个同学当中,至少会有两个同学的性别相同。)

(4)老师背对着学生把卡片抛出验证学生的说法。

(5)如果老师再抛几次还会有这种现象出现吗?其实这里面蕴藏着一个非常有趣的数学原理,也就是我们今天这节课要研究的学习内容,想不想研究啊?

〖设计意图〗:在知识探究之前通过送卡片的游戏,从之前学过的“可能性”导入到今天的学习内容。一方面是使教师和学生进行自然的沟通交流;二是要激发学生的兴趣,引起探究的愿望;三是要让学生明白这种“确定现象”与“可能性”之间的联系,为接下来的探究埋下伏笔。

二、操作探究,发现规律。

1.动手摆摆,感性认识。

把4枝铅笔放进3个文具盒中。

(1)小组合作摆一摆、记一记、说一说,把可能出现的情况都列举出来。

(2)提问:不管怎么放,一定会出现哪种情况?讨论后引导学生得出:不管怎样放,总有一个文具盒里至少放了2只铅笔。

〖设计意图〗:抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中

至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。

2.提出问题,优化摆法。

(1)如果把 5支铅笔放进4个文具盒里呢?结果是否一样?怎样解释这一现象?(学生自由摆放,并解释些种现象存在的确定性。)

(2)老师指着一名摆得非常快的同学问:怎么你比别人摆得更快呢?你是否有最简洁、最快速的方法,快快说出来和同学一起分享好吗?

(3)学生汇报了自己的方法后,教师围绕假设法(平均分的方法),组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?

(4)在讨论的基础上,师生小结:假如每个杯子放入一根小棒,剩下的一根还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2根小棒。只有平均分才能将小棒尽可能地分散,保证“至少”的情况。

〖设计意图〗:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。

3.步步逼近,理性认识。

(1)师:把6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔吗?为什么?

把7支铅笔放进6个文具盒里呢?

把8枝笔放进7个盒子里呢?

把20枝笔放进19个盒子里呢?

……

(2)符合这种结果的情况你能一一说完吗?你会用一句归纳这些情况吗?

(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

〖设计意图〗:通过这个连续的过程发展了学生的类推能力,形成比较抽象的数学思维,从而达到理性认识“抽屉原理”。

4.数量积累,发现方法。

7只鸽子要飞进5个鸽舍里,无论怎么飞,至少会有两子鸽子飞进同一个鸽舍。为什么?

(1)如果要用一个算式表示,你会吗?

(2)算式中告诉我们经过第一次平均分配后,还余下了2只鸽子,这两只鸽子会怎么飞呢?(有可能两只飞进了同一个鸽舍里,也有可能飞进了不同的鸽舍里。)

(3)不管怎么飞,一定会出现哪种情况?

(4)讨论:刚才是铅笔数比文具盒数多1枝的情况,现在鸽子数比鸽舍要多2只,为什么还是“至少有2只鸽子要飞进同一个鸽舍里”?

(4)如果是“8只鸽子要飞进取5个鸽舍里呢?”(余下3只鸽子。)

(5)“9只鸽子要飞进取5个鸽舍里呢?”(余下4只鸽子。)

根据学生的回答,用算式表示以上各题,并板书。

〖设计意图〗:从余数1到余数2、3、4……,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。并发现余下的鸽子数只要小于鸽舍数,就一定有“至少有两子鸽子飞进同一个鸽舍”的现象发生。

5.构建模型,解释原理。

(1)观察黑板上的算式,你有了什么新的发现?(只要鸽子数比盒鸽舍数多,且小于鸽舍数的两倍,至少有2只鸽子飞进了同一个鸽舍里。)

(2)刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉。

(3)课件出示:“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

(4)请你用“抽屉原理”解释我们的课前游戏,为什么不管老师怎么送,得到卡片的同学一定有两个同学的性别是一样的?其中什么相当于“物体”?什么相当于“抽屉”?

〖设计意图〗:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着,并让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。

三、循序渐进,总结规律。

(1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。为什么?

A、该如何解决这个问题呢?

B、如何用一个式子表示呢?

C、你又发现了什么?

教师根据学生的回答,继续板书算式。

(2)如果一共有7本书呢?9本书呢?

(3)思考、讨论:总有一个抽屉至少放进的本数是“商+1”还是“商+余数”呢?为什么?

教师师让学生充分讨论后得出正确的结论:总有一个抽屉至少放进的本数是“商+1”(教师板书。)

〖设计意图〗:对规律的认识是循序渐进的。在初次发现规律的基础上,引导学生抓住假设法最核心的思路---“有余数除法”,学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。从而得出“某个抽屉书的至少数”是除法算式中的商加“1”,而不是商加“余数”,从而使学生从本质上理解了“抽屉原理”。四.运用原理,解决问题。

1、基本类型,说说做做。

(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

2、深化练习,拓展提升。

(1)有一副扑克牌,去掉了两张王牌,还剩52张,如果请五位同学每人任意抽1张,同种花色的至少有几张?为什么?

如果9个人每一个人抽一张呢?

(2)某街道办事处统计人口显示,本街道辖区内当年共有 370名婴儿出生。统计员断定:“至少有2名婴儿是在同一天出生的。”这是为什么? 至少有多少名婴儿是在同一个月出生的?为什么?

〖设计意图〗:让学生运用所学知识去分析、解决生活实际问题,不仅是学生掌握知识的继续拓展与延伸,还是他们成功解决问题后获取愉悦心情的重要途经;不同题型、不同难度的练习不仅能进一步调动学生学习的积极性,还能满足不同的孩子学到不同的数学,并体会抽屉原理的形式是多种多样的。

五、全课小结,课外延伸。

(1)说一说:今天这节课,我们又学习了什么新知识?你还有什么困惑?

(2)用今天学到的知识向你的家长解释下列现象:

从1、2、3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢?

〖设计意图〗:既让学生说数学知识的收获,也引导学生谈情感上的感受,同时培养他们的质疑能力,使三维目标落到实处;把课堂知识延伸到课外,与家长一起分析思考,主要是想拓展学生思维,达到“家校牵手,共话数学”的教学目的。

板书设计。

抽屉原理

物体数 抽屉数 至少数 =商+1

(铅笔数)(盒子数)

2

3

÷ 4 =1……1 2 =1+1 ÷ 5 =1……2 2 =1+1 ÷ 2 =2……1 3 =2+1 ÷ 2 =3……1 4 =3+1

〖设计意图〗:这样的板书设计是在教学过程中动态生成的,按讲思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。

第三篇:抽屉原理

《抽屉原理》教学反思

严田小学彭性良

《课程标准》指出:数学必须注意从学生的生活情景和感兴趣的事物出发,为他们提供参与的机会,使他们体会数学就在身边,对数学产生浓厚的兴趣和亲近感。也就是创设丰富的学习氛围,激发学生的学习兴趣。通过让学生放苹果的环节,激发学生的学习兴趣,引出本节课学习的内容。通过3个苹果放入2个抽屉的各种情况的猜测,进一步感知抽屉原理。认识抽屉原理不同的表述方式:①至少有一个抽屉的苹果有2个或2个以上;②至少有一个抽屉的苹果不止一个。

充分利用学生的生活经验,对可能出现的结果进行猜测,然后放手让学生自主思考,采用自己的方法进行“证明”,接着再进行交流,在交流中引导学生对“枚举法”、“假设法”等方法进行比较,教师进一步比较优化,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理。最后出示练习,让学生灵活应用所学知识,解决生活中的实际问题,使学生所学知识得到进一步的拓展。

这种“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,让学生经历建模的过程,促进学生对数学原理的理解,进一步培养学生良好的数学思维能力。

第四篇:抽屉原理

《抽屉原理》教学设计

教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问题;通过猜测、验证、观察、分析等数学活动,让孩子建立数学模型,发现规律;使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

学情分析:使孩子经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力;通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程

一、游戏引入

3个人坐两个座位,3人都要坐下,一定有一个座位上至少坐了2个人。

这其中蕴含了有趣的数学原理,这节课我们一起学习研究。

二、新知探究

1、把4枝铅笔放进3个文具盒里,不管怎么放,总有一个文具盒里至少放进()枝铅笔先猜一猜,再动手放一放,看看有哪些不同方法。用自己的方法记录(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么发现?

不管怎么放总有一个文具盒里至少放进2枝铅笔。总有是什么意思?至少是什么意思

2、思考

有没有一种方法不用摆放就可以知道至少数是多少呢?

1、3人坐2个位子,总有一个座位上至少坐了2个人2、4枝铅笔放进3个文具盒中,总有一个文具盒中至少放了2枝铅笔5枝铅笔放进4个文具盒中,6枝铅笔放进5个文具盒中。99支铅笔放进98个文具盒中。是否都有一个文具盒中

至少放进2枝铅笔呢? 这是为什么?可以用算式表达吗?

4、如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?把7枝笔放进2个文具盒里呢? 8枝笔放进2个文具盒呢? 9枝笔放进3个文具盒呢?至少数=上+余数吗?

三、小试牛刀 1、7只鸽子飞回5个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?

2、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有几张是同花色的?

四、数学小知识

数学小知识:抽屉原理的由来最先发现这些规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做

“抽屉原理”。

五、智慧城堡

1、把13只小兔子关在5个笼子里,至少有多少只兔子要关在同一个笼子里?

2、咱们班共59人,至少有几人是同一属相?

3、张叔叔参加飞镖比赛,投了5镖,镖镖都中,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

4、六年级四个班的学生去春游,自由活时有6个同学在一起,可以肯定。为什么?

六、小结

这节课你有什么收获?

七、作业:课后练习

第五篇:抽屉原理

4分割图形构造“抽屉”与“苹果”

在一个几何图形内, 有一些已知点, 可以根据问题的要求, 将几何图形进行分割, 用这些分割成的图形作抽屉, 从而对已知点进行分类, 再集中对某个抽屉或某几个抽屉进行讨论, 使问题得到解决.命题4在正方体的8个顶点处分别放上8个不同的正整数, 如果它们的和等于55, 那么, 一定能找到某个侧面正方形, 其相对顶点所放的数都是奇数.证明

首先, 由8个正整数的和为奇数知, 当中必有奇数个奇数;其次,为奇数的至少有3个, 否则, 假设最多有一个奇数, 便有551246810121457,矛盾!

现以正方体的侧面对角线为棱组成两个三棱锥, D – A1 BC , B1 – ACD1如图1, 3个奇数归入2个三棱锥, 必有2 个奇数属于同一个三棱锥。这两个归入奇数的顶点必是某一侧面正方形的相对顶点。

此命题中的抽屉原理的应用属于“苹果”(元素)、“抽屉”都未直接给出的类型, 需要从几何上去构造两个“抽屉”。并运用奇偶分析法找出3 个“苹果”。

在不超过60的正整数中任取9个数,证明:这9个数中一定有两个数(a和b)的比值满足2a3 3b

2例3 任意给定12 个不同的自然数,证明其中必有两个数的和或差是20 的倍数.证明 将自然数按照除以20 所得的余数分类,得0、l、2、„„、19,共20 类.任意给定的12 个不同的自然数,若有两个数在同一类(即两个数除以20的余数相同),那么它们的差是20 的倍数,结论成立。任意给定的12 个不同的自然数中,每两个数都不在同一类,也就是按上面分的20 类中每一类只多有一个已知数(也可以没有).此时,我们把自然数按被20 除的余数。0、l、2、3、„„、19 分成11类: {I,19},{2,18},{3,17},„,{9,11},{10},{0} 每一类当做1 个抽屉,己知的12 个自然数必有两个在同一个抽屉中,它们的和是20 的倍数

一般地任取2个不同的自然数,必有两个数的和或差是n的倍数.2证明 设所给的自然数为am(m=1、2、……、2),有am=ngm+rm,2nnnrm0、1、2、......、 2则2个自然数的余数,分属1种情况,看做1个抽屉,必有两个数222ai,aj属于同一个抽屉,即rirj。nnn.(1)当rirj时,ai-aj是n的倍数;(2)当ri-rj时, aiaj是n的倍数·

综合(l)、(2)可知,该命题成立

例7 试证:从1,2,3,„,10 这10 个自然数中,任取6个数,则必能找到两个数,其中一个数是另一个数的倍数.分析

6个数,需设计5 个抽屉,把前10个自然数放在5 个抽屉里,且能使每个抽屉中的数具有倍数关系,因此得出如下分类方法:{1,7},}2,6 },{3,9},{4,8},}5,10 }.解 将前10 个自然数分成以下5 组:}l,7},}2,6},{3,9},}4,8},{5,10}.把这5 组看做5 个抽屉.任取6 个数则必有两个数出自同一抽屉里,其中大数是小数的倍数.若题目变为从1,2,3,„,20,这20 个自然数中,任取1 个数,则必能找到两个数,其中一个数是另一个数的倍数.则应这样设计抽屉:{l,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},}{3},{15},{17},{19}.把这10 组看做10抽屉.任取11个数,则必有两个数出自同一抽屉里,只能是前5 个抽屉,其中大数是小数的倍数.一般地,设1a1a2...an12n,则有1ijn1,故aiaj。

证明 设ai2ibi,ai0,2不能整除b(因为1,2,3,…,2nii=1,2,3,„,n+1,其中bi<2n,中恰有n个不同的奇数,故在b1,….,bn+1中至少有两个相同,设bi=bj,1ijn1,故aiaj。

.这是数论中的一个定理,1935 年由爱尔特希(erdos)提出,莱梅证明的例6 给定九个不同的实数a1,a2,...,a9,证明: 至少存在两个实数ai,ajai , aj(ij), 满足: 0naiaj1aiaj21。

ytan,k=1,2,…,9,由在k,单调递增, 22223,分成8个小区间:,,8222证明

设ak= tank-当aiaj时,ij。将33,…,根据抽屉原理, 在,,,至少存在两个角i,j使得8482220ij8,则有: 0tanijtan8,0tanitanj1tanitanj21, 即有0aiaj1aiaj

21

D

C A

B D1 A1 B1

D

C A

B D1 C1 A1

B1

下载抽屉原理(精选)word格式文档
下载抽屉原理(精选).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    抽屉原理

    抽屉原理专项练习1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由. 2.某校有201人参加数学竞赛,按百分制计分且得......

    抽屉原理

    抽屉原理 1、某校六年级有367人,一定有至少有两个学生的生日是同一天,为什么?2、某校有30名同学是2月份出生的,能否有两个学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友......

    抽屉原理

    大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这一......

    抽屉原理

    数学广角——《抽屉原理》练习 1、你所在的班中,至少多少人中,一定有2个人的生日在同一个月?2、你所在的班中,至少有多少人的生日在同一个月? 3、32只鸽子飞回7个鸽舍,至少有几只......

    抽屉原理

    抽屉原理 把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至......

    抽屉原理

    抽屉原理 一、 起源 抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称"迪里赫莱原理",也有称"鸽巢原理"的.这个原理可以简单地叙述为......

    抽屉原理

    抽屉原理(1) 抽屉原则(1) 如果把n+k (k 大于等于1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。 学习例题 例1.某次联欢会有100人参加,每人在这个联欢会上至少有......

    抽屉原理

    B15六年级专题讲座(十五)简单的抽屉原理 赵民强 抽屉原理一 把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果. 在解答实际问题时,关键在于找准什么是“抽屉”和......