《方程的意义》教案

2024-05-28下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《《方程的意义》教案》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《方程的意义》教案》。

《方程的意义》教案1

教学内容:教材P62~63及练习十四第1、2、3题。

教学目标:

知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。

过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

教学重点:理解和掌握方程的意义。

教学难点:弄清方程和等式的异同。

教学方法:观察、分析、分类、抽象、概括和交流

教学准备:多媒体,天平。

教学过程

一、知识铺垫

认识天平。谈谈你对天平有哪些了解。(天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。)

二、自主探究

1.探究活动一:利用天平探索认识等式和不等式

(1)天平左边放一个空杯子,右边放一个100克的砝码,此时天平,说明天平左右两边的重量 ,这个杯子的重量是 。

(2)如果天平的左边加上一个50克的砝码,要想使天平平衡,天平右边的杯子里需加上 克的水,用式子表示天平两边的质量关系为: 。

(3)如果天平左边的杯子里加满了水,此时天平会 ,表示天平左右两边的重量 ,用式子表示天平两边的质量关系为: 。

温馨提示:

(4)如果继续向天平的右边加上100克的`砝码,此时天平,说明 边重,天平左右两边的质量关系表示为: 。

(5)如果继续向天平的右边加上100克的砝码,此时天平,说明 边重,天平左右两边的质量关系表示为: 。

(6)如果把天平右边一个100克的砝码换成50克的,此时天平,说明左右两边的质量 ,它们的关系用式子表示为: 。

2. 探究活动二:认识方程

(1)把上面的算式进行分类,并说说分类的想法和依据。

(2)小结:表示左右两边相等的式子,我们称其为 ,表示左右两边不相等的式子,我们称其为 。像100+x=250这样的含有未知数的等式,称为 。

3.讨论:等式和方程之间有什么样的关系?

让学生比较50+50=100与100+x =250两个等式,有什么不同?

学生自主思考,并交流得出:第一个等式没有未知数x ,第二个等式含有未知数x 。

教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)

4.引导学生思考:是不是所有的等式都是方程?(不是。)

那么,方程有哪些特点?

归纳小结:方程的特点:是一个等式,且含有未知数。

三、课堂达标

1.下面的式子哪些是方程?(在方程后面的括号里打√)

X+3.6=12( ) a×12.8<24( ) 10-2.5=7.5( ) χ+8=9×2( )

X÷2.4=16( ) 3÷b ( ) 5y=15 ( ) χ-2.9=0( )

32÷4>7( ) 3χ-2=4.4( ) 1.2+3.5-4=0.7( ) 4.5χ-2.6( )

2. 判断

(1)含有未知数的式子叫方程。( )

(2)等式都是方程,但方程不一定是等式。( )

3.用方程表示下面的数量关系。

【学习评价】

四、巩固拓展

1.让学生仿照课本情境图,自己试着写一些方程。注意指导学生:方程一定是等式,并含有未知数。

2.完成教材第63页“做一做”第1题。

先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

3.完成教材第63页“做一做”第2题。先说一说图意,再写方程表示数量关系。

如:第一幅图天平的左边有两个重量是x g的球,右边是一个重50g的砝码,也就是两个x g的球的重量是50g,列方法表示为2x =50。第二幅图是一条线段分成了两部分,一部分是x ,一部分是73,这两部分总数是166,即x +73=166。

4教材第66页练习十四第1、2、3题。生独立完成,集体反馈。

五、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:1.像100+x =250这样含有未知数的等式叫做方程。

2.方程有两个重要条件:一个是等式,一个是含有未知数。

3.方程一定是等式,等式不一定全都是方程。

布置作业:

板书设计:

方程的意义

不平衡平衡

100+x >200 100+x =250

100+x<300

像100+x =250这样的含有未知数的等式叫做方程。

《方程的意义》教案2

教学内容:

教科书第1-2页例1、例2。

教学目标:

1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

教学准备:

天平、砝码。

教学重点及难点:

理解方程的意义,方程与等式的关系。

教学过程:

一、借助天平体会等式的含义。

(1)你会用等式表示天平两边物体的质量关系吗?(50+50=100 50×2=100)

(2)你还能写出这样的等式吗?根据学生举例写下2~3个。

(3)你感觉什么样的式子是等式呢?

用等于号连接的数学表达式;左右两边相等的式子;左边算起来来等于右边的;

二、感知不等式,教学方程的意义。

1、出示实物天平:

(1)左边放克,右边放克,可以用什么式子来表示?

板书:

(2)现在老师要在左边再放一个物体,左边的质量怎样来表示呢?(+x)

(3)这时候,你觉得天平会发生什么变化呢?你能把这些可能写下来吗?

交流并板书+x< +x= +x>

(4)这些式子与等式相比有什么不同?(有字母,有的不是等式。用大于号或者小于号连接,我们把这些叫不等式。)。

2、例二的内容

(1)学生在作业纸上完成例二的内容。集体交流汇报。板书

x+5>100 x+50=150 x+50<200 2×x=200

(2)概括概念

A、观察黑板上的算式,你能把他们分分类吗?

B、你分类的依据是什么?

第一次分类:按照等式、不等式分

(老师把黑板上不是等式的式子擦掉)剩下的式子是什么?(都是等式)

还能再分下去吗?

第二次分类:按既含有字母且是等式分

(此处也可能先按有字母和没有字母来分,然后再按等式和不等式来分)

C、像x+50=150、2x=200这样含有未知数的等式叫做方程。(板书:方程)

像50+50=100、x+50>100和x+50<200为什么这些不是方程呢?把板书补充完整。

D、完成试一试

三、突出方程概念的内涵与外延

1、讨论判断

(1):哪些是等式,哪些是方程?

6+x=14 36-7=2960+23>708+x y-28=35

x+4〈14 m+n=100

(2)在判断之后,你对等式和方程有什么新的认识呢?

可能有:未知数可以用x、y等多个字母表示;

一个等式中可以含有多个未知数;

等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。(如果学生说不到或者不明白就出现以下的比较辨析。)

(3)讨论比较,辨析概念。

讨论下面的`说法正确吗?

所有的方程都是等式。

所有的等式都是方程。

(4)刚才我们是用语言描述的方式表示出了方程和等式的关系,你还有什么更清楚简明的办法来表示它们之间的关系吗?

(5)你能自己创造一到两个和现实生活有联系的方程的例子吗?能够将自己创造出来的方程与邻座的同学分享讨论,集体分享。(不会,老师先举个例子。)

(6)引导质疑你还有什么疑问?

四、用方程表示直观情境里的相等关系

(1)看图列方程

(2)用方程表示下面的数量关系。

(3)列式:妈妈买米用了50元,买油用了15元,妈妈一共用了多少钱?

(说明:并不是任何时候都要列方程的。)

五、总结提升,介绍方程的数学史

板书设计:方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式是方程。

教学后记:

《方程的意义》教案3

一、教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

二、教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

三、教学重点:

理解并掌握方程的意义。

四、教学难点:

会列方程表示数量关系。

五、教学过程:

1、出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

引导

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

2、出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3、讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

4、完成练一练

(1)下面的式子哪些是等式?哪些是方程?

(2)将每个算式中用图形表示的`未知数改写成字母。

5、巩固练习

(1)完成练习一第1题

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

(2)完成练习一第2题

6、小结

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

7、作业

完成补充习题

六、板书设计:

方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式叫做方程

《方程的意义》教案4

教学目标:

知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

教学方法:合作探索,小组交流、观察、分析、概括等方法

教学过程:

(一)创设情境,激发兴趣。

师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

(二)观察现象,抽象概括

1.平衡现象数量关系的抽象概括。

师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?

师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)

师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?

2.不平衡到平衡现象数量关系的抽象概括

师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?

师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻

这边加150克砝码,观察天平平衡了吗?

师:左边盘中物体质量的`可以怎样表示?(生:X+150)

师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)

师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?

师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)

3.不确定现象数量关系的抽象概括

师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?

师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)

师:这瓶矿泉水被喝掉了多少克?(生:不知道)

师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)

师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]

师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)

(三)观察分类,抽象概念

1.观察分类。

师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)

2.展示分类。

①交流分类情况,说明分类理由。

②揭示“等式”与“不等式”的概念

师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)

3.抽象概念

师:请同学们仔细观察这些等式,它们有什么不同?

师:这些等式中的字母表示“未知数”,像这些“X+100=

含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)

师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)

(四)应用新知,加深理解

1.判断下列式子是不是方程。

2.创作方程。

3.问题质疑,揭示方程与等式的关系。

①含有未知数的式子是方程?

②“方程一定是等式,等也一定是方程?

(五),巩固练习。

师:说说你这节课有什么收获,你还想学习有关方程的什么内容。

师:我们一起来应用今天所学的知识吧!

《方程的意义》教案5

教学内容:教科书第1~2页的内容及练习一的1~3题。

教学目标:

1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

教学重点与难点:通过学习,使学生理解方程的含义。

教学流程:

一、教学例1

出示例1,提出要求:你能用等式表示天平两边物体的质量关系吗?

学生在本子上写。

指名回答,板书:50+50=100

含有等号的式子叫等式,它表示等号两边的`结果是相等的。

二、教学例2

学生自学

1、学生在书上独立填写,用式子表示天平两边的质量关系。

2、小组同学交流四道算式,最后达成统一认识:

X+50>100X+50=100

X+50<100X+X=100

3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

学生可能会这样分:

第一种:X+50>100X+50=100

X+50<100X+X=100

第二种:X+50>100X+X=100

X+50<100X+50=100

引导学生理解第一种分法:

你为什么这样分,说说你的想法。

小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

那X+50>100、X+50<100为什么不是方程呢?

提问:那等式和方程有什么关系呢,在小组里交流。

方程一定是等式,但等式不一定是方程。

三、完成“试一试”、“练一练”

学生独立完成。

集体订正时围绕“含有未知数的等式”进一步理解方程的含义

四、课堂作业:练习一的1、2、3。

板书:X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式是方程。

《方程的意义》教案6

一、教学目标

1.知识与技能目标:使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2.过程与方法目标:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

3.情感态度价值观目标:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

二、教学重难点

重点:理解方程的意义。

难点:理解方程与等式的异同。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是方程的意义,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

导入:同学们,你们都喜欢玩跷跷板吗?看熊二和光头强也在玩跷跷板,我们一起来看一看,可以他们的体重悬殊太大了,光头强高高的被挂了起来。看吉吉和图图也来了。光头强和吉吉涂涂坐在一边,熊二坐在另一边,怎么样?对呀,跷跷板正好平衡了,那你们用一个算式来表示就是,对,熊二的体重等于光头强+{吉吉+图图的体重,其实在跷跷板中也蕴含着丰富的数学知识,这节课就让我们一起走进数学王国,去探究方程的意义。

【新授】

活动一:

根据翘翘板的这种现象呀,科学家就设计出了天平。看老师面前就有一个天平,天平已经是我们的老朋友了,之前我们认识克的时候就认识了她,那谁来向大家介绍一下这位老朋友呢?请你来介绍,你介绍的可真全面,请坐,天平有两个托盘,中间有一个刻度盘,天平中间有一个指针,天平左右两边物体重量相等的时候,天平就平衡,我们一般是左物右码。

那我们一起来操作一下天平,同学们仔细看,老师先将右盘上放上100克砝码,再在左盘上放上两个50克的砝码,你们发现了什么?对呀,天平平衡了。谁来用一个式子的来表示呢?请你来说,说的非常准确,请坐,50+50=100。

活动二:

那我们一起观察这个算是它有什么特点呢?请你来说目光非常敏锐等号左边和右边相等,这样的式子就是一个等式。接下来再来认真观察,老师将左边两个50克的砝码拿下来,在重新在天平的左边放上一个杯子,你们发现了什么?对呀,天平平衡了,也就是说杯子的重量是100克,同学们是这样的吗?那老师带往杯子里倒一些水,又出现了什么情况呀?对呀,天平朝向杯子这边倾斜了,也就是说杯子的重量加水的重量大于100克。那我们再向天平右边放个100克的砝码,看一看有什么变化?天平还是朝杯子这边倾斜,那你们能用将这个过程用一个式子来表示一下嘛,请你来说。说的真不错,请坐。杯子加水的重量大于200克,谁还有更好的方法,来做的最端正的同学,请你来说你的小脑袋可真灵活,请坐。对呀,上节课我们已经学过了用字母表示数。我们可以用字母x来表示水的重量,刚刚我们已经称出了杯子的重量是100克,所以用式子来表示就是x+100大于200。同学们,你们都想到这个方法了吗?你们可真棒,那我们继续操作,我们再向右边托盘放100克的砝码,看一看有什么变化呀?来请你来说,说的非常棒,请坐。天平朝向右边托盘倾斜了。那这个过程我没有该用哪个式子来表示呢?对呀,x+100小于300,看来我们刚刚放100克的砝码放过大了,那我们再放一个小一点的试一试。

我们将这100克的砝码换成50克的砝码来试一试。同学们仔细观察,对呀,我们的天平竟然平衡了,那也就是说我没杯子加水的重量等于250克,那我们用算式来表示该如何表示呢?来躲着最端正的同学,请你来说,说的非常棒,请坐x+100=250。同学们可真是太棒了,

活动三:

通过我们的共同探索,和一起操作写出了这么多的方式,我们带来仔细观察这些算式,这些算式之间有哪些共同点和不同点呢?

先独立思考,再小组合作讨论,完成以端正的坐姿来示意老师,看哪个小组的发现又快又好开始。老师看同学们都已经坐端正了,谁来说一说你的发现,请你来说观察的非常敏锐,请坐。有的'算式是等式,洋浦的是不等式,那我们再来看一看这等式的两个算式之间他们有什么不同呢?请你来说,这可真是一个了不起的发现,请坐。第二个算式有一个未知数x,而第一个没有,其实像这种含有未知数x的等式就是我们今天所学习的方程。

那是不是所有的等式都是方程呢?对呀,不是。只有含有未知数的等式才是方程,也就是说要判断一个式子是不是方程,我们需要注意哪几点呢?来请你来说,说的非常棒,我们需要有两个条件,一个是含有未知数,二是等式。

同学们,你们都是这样想的吗?那老师这样说你们看对不对?方程是等式,对这样说是正确的,那等式是方程呢?对呀,这样说不正确,因为还需要一个条件,也就是说这个等式里必须含有未知数。

观察一下黑板上这些内容,以上就是本节课所要学习的方程的意义。

【巩固练习】

那我们看一看这道题,老师买了三本练习本,一共花了2.4元,我都没本练习本价格用x来表示,那又该如何列算式?请你来说好,请多3xx等于2.4,我们上节课已经学习了,用字母表示数的时候数字与字母相乘,其中的称号我们可以省略,数字放在前面,所以是3x等于2.4。是方程吗/对呀,是我们一起来看一看符合不符合这两个条件是不是等是,对是等式,而且还有未知数。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课认识了什么是方程,什么是等式。看来啊本节课上特听讲非常认真,请坐!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去搜集一下我国古代如何解决类似的问题呢?下节课一起来交流讨论一下。

本节课就先上到这,下课,同学们再见!

尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

《方程的意义》教案7

第5单元 简易方程

第7课时 方程的意义

【学习目标】

1.知识与技能:使学生初步理解“等式”、“不等式”和“方程”的意义,并能进行辨析。

2.过程与方法:利用天平的原理,理解不等式和方程。

3.情感、态度与价值观:渗透认识来源于实践的辨证唯物主义思想。

【学习重、难点】

重 点:会用方程的意义去判断一个式子是否是方程。

难 点:会按要求用方程表示出数量关系。

【学习准备】天平、空水杯、水(可根据实际变换为其它实物)

【学习过程】

一、创设情景,引入新课

今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在托盘两端的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、自主探究

学生自学并完成相关练习。

三、例题精讲

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克。

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300。

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

四、练习设计

1、写方程,加深对方程的'认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它们不是方程的原因。

看书第63页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有未知数(即字母),这也是判断一个式子是不是方程的依据。

2、反馈练习,教材P63做一做第1题。

完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

3、完成P66练习十四第2题,先让学生说出图意,再根据图意再列出相应的方程。

4、独立完成P66练习十四第3题,评讲时,介绍什么叫数量关系,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,所以方程形式也可能不同。

五、作业:P66练习十四第1题。

《方程的意义》教案8

教学目标:

1、使学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

2、会判断什么是方程,会解一步计算的方程,并会检验方程的解。

3、使学生养成良好的检查、验算习惯。

教学重点:

理解方程的意义。

教学难点:

理解等式与方程的关系。

教学过程:

一、创设情境

我们学过了用字母表示数,下面用含有字母的式子表示下面各题的数量关系。(口答)

(1)x与6的和 (2)x与4的和

(3)20减x的5倍的差 (4)x的2倍加1. 8

在上幼儿园的时候你都喜欢玩哪些游戏呢?

看看这两位小朋友在做什么游戏?你想不想玩?

那接下来我们也一起来玩一玩。

老师有65千克(板书:65)你呢?(指名学生)

请大家闭上眼睛想一想,当我与他坐上翘翘板两端的时候,会出现怎样的情况呢?

那怎样就能使翘翘板平衡了呢?

你能用一个式子把它表示吗?(板书:30+35=65,左右两边相等)

同学们,你们在生活中见过与翘翘板相类似的物体吗?(天平)

今天我这里有一架天平,谁能介绍一下天平的使用方法吗?(那什么时候天平就平衡了呢?当两重量相等的时候或者指针指向中间的时候。)

你了解得的可真多!

二、探究新知

1、理解方程的意义

师:这里也有两架天平也保持着平衡,你能用一个算式表示出来吗?

(1)20+30=50 (2)20+x=100

师:那么x是多少?(80克)这个x是固定的值。能不能随便的说?(不能)前面我们学的用字母表示数时可以表示任意的数,但这里是一个固定的值,不能表示任意的数,只能是使等式左右两边相等的值。

师:那么这两个算式有什么不同?(含有未知数)

同学们,真厉害!

前几天,学校又新买了3只篮球,(出示篮球图)共用去186元,同学们,你们能用一个等式来表示吗?(板书:3x=186)

大家观察一下这几个等式,你能不能把它们分分类?

30+35=65 20+x=100

20+30=50 3x=186

揭示方程概念:含有未知数的等式叫方程。(板书)

2、比较等式和方程

下面我们观察一下,它们有什么相同?什么不同?(小组讨论)

得出相同点:都是等式,不同点:方程含有未知数

强调:方程必备两个条件:一、含有未知数。二、等式

谁能用这个图来表示等式和方程的关系?(小组讨论)

谁能说说等式和方程的关系 等式

方程

那你能说几个方程吗?

练习:下面哪些是方程?哪些不是方程?

35-x=12 84÷12=7 4x-32

49÷x=7 450x=900 69+x

3、自学什么是解方程、方程的解

(1)学生自学课本99页,回答下列问题:

a:什么是方程的解?

b:什么是解方程?

c:方程的解和解方程一样吗?

d:和以前学的求知数有什么关系?

4、解方程

下面我们一起来解方程

例1 x-18=30 根据被减数=差+减数

解: x=30+18

x=48

检验 把x=48代入原方程。

左边=48-18=30,右边=30

左边=右边

所以x=48是原方程的解。

进一步明确:方程的解和解方程

解方程和求知数又有什么不同呢?

三、巩固练习

1、试一试:4x=6.4(要求写出检验过程)

2、判断:

(1)、含有未知数的式子叫做方程。 ( )

(2)、方程是等式,所以等式也是方程。( )

(3)、检验方程的解是否正确,应当把求得的.解代入原方程。( )

(4)、x=36是方程x÷3=12的解。 ( )

(5)x=1是方程。( )

3、选择

(1)x-12=20的解是( )

a、x=18 b、x=32

(2)4x=6的解是( )

a、x=1.5 b、x=2

(3)3x-7=21这个式子是( )

a、方程 b、不等式 c、既是等式又是方程

(4)x=5是方程( )的解

a、15x=3 b、3x+2=17

4、解方程(机动)

28+x=92 x÷16=5(要求写出检验过程)

四、小结

通过学习你有什么收获?

你觉得哪些地方值得注意?

板书:

30+35=65

20+30=50

20+x=100 含有未知数的等式叫方程。

3x=186 使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

《方程的意义》教案9

教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

教学要求:

1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

教 具:

教学天平、小黑板。

学 具:

自制的简易天平、定量方块。

教学步骤:

一、复习

1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

(1)一个加数=( )○( )

(2)被减数=( )○( )

(3)减数=( )○( )

(4)一个因数=( )○( )

(5)被除数=( )○( )

(6)除数=( )○( )

2.求未知数X(并说说求下面各题X的依据)。

(1)20十X=100 (2)3X=69

(3)17—X=0.6 (4)x÷5=1.5

二、新授

1.理解和掌握“方程的意义”。

(1)出示天平,介绍使用方法(演示)后,设问:

在天平两边放物体,在什么情况下才能使天平保持平衡?

(两边的物体同样重时,天平才能保持平衡。)

(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

板书:20十30=50

指出:表示左右两边相等的式子叫等式。

(并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

(3)教学例2(课本105页)。

①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的.重量相等。怎样用等式表示出来呢?

板书:20+?=100

②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成 (板书)20十X=100

③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。

④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

(4)教学例3(课本106页)。

出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)

②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

(板书)3X=234

③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

(5)方程的意义:

综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

20+30=50……一般的等式

20+X=200 含有未知数的等式

3X=234 称之为方程

(板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。

①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

(6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

2.学习“解简易方程”。

(i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

(板书)使方程左右两边相等的未知数的值,叫做方程的解。

例如:X=80是方程20+X=100的解;

X=78是方程3X=234的解。

(板书)求方程的解的过程叫做解方程。

②方程的解和解方程有什么联系和区别?

方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

(2)教学例1:

解方程X一8=16

①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

(板书)解方程X一8=16

解::根据被减数等于减数加差;

X=16十8(与原来学过的求X的思路相同)

X=24

检验:把X=24代人原方程

左边=24一8=16,右边=16

左边=右边

所以X=24是原方程的解。

总结有关的格式要求:

①做题时要先写上“解”字。

②各行的等号要对齐,并且不能连等。

③方框里的运算根据可以不写。

④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

指导学生看教材第105一107页。

三、巩固

1.教材107页“做一做”。

2,教材第108页练习二十六第1、2题。

四、练习

教材第108页,练习二十六第3~5题。

作业辅导

1.判断题。

(1)含有未知数的式子叫方程。 ( )

(2)方程是等式,所以等式也叫方程。 ( )

(3)检验方程的解,应当把求得的解代人原方程。()

(4)36是方程X÷3=12的解。 ( )

2.把下面的各关系式写完整。

(1)一个加数=( )○( )

(2)被减数=( )○( )

(3)减数=( )○( )

(4)一个因数=( )○( )

(5)除数=( )○( )

(6)被除数=( )○( )

3.解下列方程。(第一行两小题要写出检验过程)

10—X=0.42 4.5X=27 X十5.8=16.4

X÷28=76 2÷X=0.5 X—8.75=4.65

板书设计:

解简易方程

例1 解方程X-8=16

《方程的意义》教案10

教学内容:人教版小学数学五年级上册第53~54页内容,方程的意义教学设计。

教学目标:

1、理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

2、培养学生认真的观察、思考分析问题的能力。

3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

教学重点:理解和掌握方程的意义

教学难点:弄清方程和等式的异同。

教学过程:

一、 创设情境,生成问题

(1)出示ppt 显示曹冲称象的画面 引导同学们自己思考怎么把大象的重量称出来

小组之间讨论并得出结论 全班集体订正。继而引出相等,平衡的概念。

(2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的平衡这一特点。

师;怎样才能使天平左右两边相等?

出示一架天平的左边是有物体20克和30克,右边是50克

师:用算式怎么表示?

生:20+30=50

引导总结得出这个一个等式。

二、探索交流,解决问题再出示天平左边是20克的物体和?克的物体,右边是100克的.物体,教案《方程的意义教学设计》。

师:“?”表示什么?我们可以用什么表示?

生:用字母表示。

生1:20+x=100

生2:100-x=20

生3:100-20=x

师:你认为用哪个式子更能表示天平的作用两边是平衡的?

引导得出:20+x=100 表示天平左右两边是平衡的.

出示6架天平,根据天平的平衡状态写算式。

把这8个算式标号,得练习:

①20+30=50 ⑤ 80<2χ

②20+χ=100 ⑥ 3χ=180

③50×2=100 ⑦100+20<100+50

④50+2χ> 180 ⑧100+2χ=3×50

思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

同桌合作交流汇报

等式 不等式

①20+30=50 ④50+2χ> 180

②20+χ=100 ⑤ 80<2χ

③50×2=100 ⑦100+20<100+50

⑥ 3χ=180

⑧100+2χ=3×50

含有未知数的式子 不含未知数的式子

②20+χ=100 ①20+30=50

④50+2χ> 180 ③50×2=100

⑤ 80<2χ ⑦100+20<100+50

⑥ 3χ=180

⑧100+2χ=3×50

师:既是等式,又含有未知数的的式子有哪几个?

生:②20+χ=100

⑥ 3χ=180

⑧100+2χ=3×50

像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

三、巩固应用,内化提高

练习:下面哪些是方程?哪些不是方程?

① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )

② Y+24 ( ) ⑦ 35+65=100 ( )

③ 5 χ+32=47 ( ) ⑧χ-14> 72 ( )

④ 28< 16+14( ) ⑨9b-3=60 ( )

⑤ 6(a+2)=42 ( ) ⑩ χ +y=70 ( )

张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

(1) 6X + ( =78

(2) 36 + ( ) =42

四、回顾整理,反思提升 通过这一节课的学习,你有哪些收获?

《方程的意义》教案11

教材简析

这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。

本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。

教学目标

1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。

3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程

一、创设情境 激趣导入

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)

我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。

【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。

二、合作探究 获取新知

1、找出白鳍豚这组资料的等量关系,用字母表示。

(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?

白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。

(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。

(3)先自己写一写,再与小组内的同学交流。

20xx年只数 + 300只=1980年只数

1980年只数 - 20xx年只数=300只

1980年只数-300只=20xx年只数

(4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。

学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。

(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。

【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。

2、借助天平理解等式的.意义。

根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)

像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平研究一下。(出示天平)

(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)

(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。

提问:你发现了什么?你能想办法让天平平衡吗?

右盘加上50克的砝码,天平平衡了。

(3)天平左盘放入10克砝码,右盘放入20克砝码。

提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)

提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?

10+10=20(板书)

(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。

谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。

20+x=50(板书)

(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。

要求:用等式表示出天平左右两边的关系。

50+50=100 4x=200(板书)

(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。

【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。

3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看大熊猫的资料,你获得了哪些信息?

20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。

(2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?

师生总结:

您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数

10x=1600

如果用x表示人工养殖大熊猫的只数,那么x10=1600

(3)学生打开教科书57页,结合图示进一步理解以上等量关系。

【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。

4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看东北虎的资料,你获得了哪些信息?

预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。

(2)提问:根据以上信息你能提出什么问题?

引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。

(3)先自己写一写,再与小组同学交流。

学生汇报:

20xx年的只数3+100=20xx年的只数

列式为: 3X+100=1000 (板书)

画图为:天平的左盘是3个X和一个100,右盘是1000。

提问:这里的X表示什么?(x表示20xx年的只数。)

【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。

5、揭示方程的意义。

(1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?

引导学生分成两类:含有字母的是一类,不含字母的是一类。

我们把含有未知数的这类等式叫做方程。(板书)

(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。

(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?

方程必须含有未知数,还必须是等式。

【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。

三、巩固练习加强应用

1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。

2、出示自主练习2,看图列方程。

学生独立完成,说说自己是怎样想的。

3、出示自主练习3,填一填。

学生独立完成。

【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。

四、回顾反思 总结提升

谈谈这节课你有哪些收获?

总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。

总设计意图:

本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。

《方程的意义》教案12

教学目标:

知识与技能:

(1)初步理解方程的意义,会判断一个式子是否是方程

(2)会按要求用方程表示出数量关系

过程与方法:

经历方程的认识过程,体验观察、比较的学习方法。

情感态度与价值观:

在学习活动中,激发学生的学习兴趣,培养学生动手动脑的能力,养成仔细认真的良好学习习惯。

教学重难点

教学重点:

理解方程的含义,会用方程表示简单的情境中的等量关系。

教学难点:

正确分析题目中的数量关系

教学工具

多媒体设备

教学过程

教学过程设计

1创设情景,揭示课题。

(一)出示实物天平。

师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)

(二)演示:出示三个质量分别20克、30克、50克砝码,(将未标有重量的一边朝向学生)

师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?

(演示)学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)

提出要求:你能用等式表示天平两边物体的质量关系吗?(学生在本子上写,指名回答。)

板书:方程的意义

2新知探究

(一)出示课本例题(见PPT课件)

说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

(板书:含有等号的式子叫等式)

[设计意图]:让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。

(二)引导分类,概括方程概念。

1、学生自学(见PPT课件)

要求:

(1)学生在书上独立填写,用式子表示天平两边的质量关系。

(2)小组同学交流八道算式,最后达成统一认识:

20+30=50 20+X=100 50+X=100 50+2X>100 80<2x 20=“” 3x=“150”>100+50 100+2X>50×3 (根据学生的回答,教师板书这8道算式。)

(3)把这8道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。 A、想一想你分类的标准是什么? B、把自己分类的情况,写在纸上?

学生可能会这样分:

第一种:相等的分一类,不相等的分一类

( 20+30=50 20+X=100 50+X=100 3X=150) (50+2X>100 80<2x 20=“”>100+50 100+2X>50×3)

第二种:含有未知数的,不含未知数的

(20+X=100 50+X=100 50+2X>100 80<2x 3x=“150” 2x=“”>50×3) ( 20+30=50 100+20>100+50)

2、比较辨析,概括概念

过渡:看来同学们都能按自己的标准对式子进行分类。引导学生理解第一种分法:你为什么这样分,说说你的想法。

A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+100=250、这样xxxx的等式方程)

B、你能说说什么叫方程吗?

C、学生发言,概括出:“像20+x=100,3×=180……这样,含有未知数的等式叫做方程”

师(板书)

师提问:你觉得这句话里哪两个词比较重要?

生:“含有未知数”“等式”

师:那X+100>100、X+50<100为什么不是方程呢?

生:因为它们不是等式,

师提问:那等式和方程有什么关系呢?生小组里交流。

方程一定是等式,但等式不一定是方程。

师:ⅹ=0,ⅹ=a,ⅹ=a2是方程吗?

生:是,因为它们既含有未知数,又是等式。

3、举例方程、理解概念你能例举出方程吗?谁能举的与刚才不一样吗?(用字母Y表示、有难度的方程)

生列举:ⅹ+5=18 6(ⅹ-2)=24 6(ⅹ-2)=24 5ⅹ=30 ⅹ÷4=6 ⅹ+ⅹ+ⅹ+ⅹ=35

(ⅹ+4)÷2=3 ⅹ+y=5等。

师:同学们现在知道方程和等式有什么关系?

生:方程一定是等式,但等式不一定是方程。

师:你能用自己的方式来表示等式和方程的关系吗?

生思考汇报。

3、巩固提升

1、“试一试”

(1)观察左边的天平图,说说图中的是数量关系,列出方程。

(2)观察右边的图,弄清题意,列出方程。

2、练一练

判断下面的说法是否正确

(1)方程都是等式,但等式不一定是方程。( √ )

(2)含有未知数的式子叫做方程。 ( × )

(3)方程的解和解方程是一回事。 ( × )

(4)X2不可能等于2X。 ( × )

(5)10=4X-8不是方程。 ( × )

(6)等式都是方程。 ( × )

3、练习一

1、像100+x=250这样的(含有未知数)的(等式)称为方程

2、讨论判断:下面的式子哪些是方程,哪些不是方程?

8x=0 6x+2 4+2>10

2y÷5=10 n-5m = 15 17-8 = 9

10<3m 6x +3 = 11+2x 4+3z =10

是方程的是:8x=0 2y÷5=10 n-5m = 15 6x +3 = 11+2x 4+3z =10

不是方程的`是:6x+2 4+2>10 17-8 = 9 10<3m

4、练习二

1、关系:含有未知数的等式叫方程,那么方程和等式有什么关系?你能用自己的方式来表示等式和方程的关系吗?

2、用方程表示以下实际问题中的数量关系。

(1)小红家买来一袋大米共重50千克,吃了3x千克,还剩30千克。 (3x+30=50)

(2)赵华家距离学校240米,她从家到学校走了3x分钟,每分钟行60米。 (60 x 3x=240)

(3)小明今年x岁,爸爸40岁,它们俩相差28岁。 (28+x=40)

(4)小芳每天跑skm,她一星期跑了28km. (7s=28)

(5)一罐糖有a颗,平均分给25个小朋友,每人得3颗,正好分完。 (a÷25=3)

课后小结

本节课,我学到了什么是方程:含有未知数的等式叫做方程。我还学到了等式和方程的关系:方程一定是等式,但等式不一定是方程。

板书

方程的意义

等式的概念:含有等号的式子叫等式

方程的概念:“含有未知数的等式叫做方程”

判断一个式子是不是方程必须满足的条件:

(1)“含有未知数”

(2)“等式”

注意:

方程一定是等式,但等式不一定是方程。

《方程的意义》教案13

导入:同学们,大家以前听说过方程吗?(生:听说过,每次我遇到复杂的数学问题时,向妈妈请教,她都说我先用方程试试,很快就会有结果了),是吗?(生:方程真的那么神奇?)

师:其实用方程解决问题是数学中的又一个途径,很多复杂的问题用方程来解决就简单多了,大家想不想掌握这种方法呢?这节课我们就一起先来学习方程的意义。

新课:首先让我们从天平入手,对于天平,你们都知道些什么?(天平是用来称物体的、当天平平衡时,左右两边物体的重量是相等的。)不错,看来大家对天平还是非常熟悉的,一起来看天平在称什么呢?

谁能用一个式子表示出天平现在的这种平衡状态呢?(20+30=50)左边有y一个20克和30克的物体,右边有一个100克的物体,它们是相等的,像这样含有等于号的式子我们称为“等式”。

再继续看:从图中你又知道了哪些信息?(一个杯子重100克)眼睛真亮,现在我们往杯子中倒入一些水,注意观察,天平倾斜了,还能用一个式子来表示天平的这种状态吗?(无声)你们遇到了什么问题?(这些水不知道是多少克?)现在水的重量就是一个未知数,那么,想一想我们可以用什么来表示这个未知数呢?(x)水重x克,杯子和水共重-----,会表示了吗?(100+x>100)这是等式,那么它我们又应该称为----。接下来请大家仔细观察并用式子表示出每次天平的.平衡状态。

师:出示:这是一盒我们的课间奶225克,把它放在这架天平上,谁来表示出现在这种状态?(225>200),如果现在喝掉些,把剩下的奶放回天平上,可能会出现什么情况?(生:可能平衡,用225-x=200,也可能比200克重用225-x>200,也可能-----)

师:刚才我们用这么多的式子表示出了天平的平衡状态,你能按照天平的平衡状态给它们分分类吗?

(学生分类):我们组是按照是否有字母来分的。

我们组是把平衡的分为一类,大于的分为一类,小于的分为一类。

(生:刚才老师的要求是让我们按照天平的平衡状态来分一分,所以----)

师:分类方法虽然很多,但是只有这组同学注意了分类的要求,你们学的是最用心的。

师:一起来看,(出示:分类)对于这些等式我们还可以在继续分一分吗?

(生:含有字母,不含有字母)

师:大家知道吗?像这些含有未知数的等式就是方程。终于目睹方程的真面目了,结合刚才的天平操作和分类,来说说你对方程的理解?

(生:当天平平衡时,可以用方程来表示。

方程就是表示左右两边的相等关系。

方程中必须有未知数。

方程原来就是一个等式)

《方程的意义》教案14

一、教学内容:

人教版五年级上册第62~63页“方程的意义”。

二、教学目标:

1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

三、教学重、难点:

1.教学重点:理解并掌握方程的意义。

2.教学难点:建立“方程”的概念,并会应用。

四、教学过程:

(一)情境引入

今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

(二)探究新知

1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

请同学们仔细观察,在这副图里你获得了哪些信息?

师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100

4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300

师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。

5.观察比较:

50+50=100

100+x>100

100+x>200

100+x<300

100+x=250

总结:像这样两边相等的.(用等号连接的)算式我们把它叫做等式。

像100+x=250这样,含有未知数的等式就是方程。

揭题:今天这节课我们学的就是“方程的意义”。(板书课题)

6.提问:这一个等式是方程吗?为什么?

追问:这两个式子里都含有未知数,它们是方程吗?

思考:你认为一个方程应该符合哪些条件?

(强调:方程既要是等式,又要含有未知数。)

(三)巩固练习

1.判断下面哪些式子是方程,并同桌说一说理由。

35+65=100 8-x=2 y+24

2.4=a×2 x-14>72 15÷b=3

5x+32=47 28<16+14 6(y+2)=42

2.下面哪些天平不能用方程表示?(出示6幅天平图)

用方程表示出剩下天平的数量关系。

(说一说天平两边的数量关系,列方程)

3.用方程表示下面的数量关系。(说数量关系,列方程)

先独立列出方程,再与同桌说一说方程表示的数量关系。

4.猜方程

让学生初步感知:方程一定是等式,等式不一定是方程。

5.写方程,编故事。

6.方程“史话”。

(四)课堂小结

今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?

《方程的意义》教案15

教学内容

教科书第96~98页的内容,完成练习二十四的第1~5题.

教学目的

使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤.

教具准备

简易天平、砝码、标有“20”、“30”和“?”的方木块,画有教科书第12页上图的挂图,小黑板或投影片.

教学过程

一、新课

1.方程的意义.

(1)教学第1个例子.

教师将简易天平、砝码摆在讲台上,然后,提出问题指名让学生回答.

教师:讲台上摆着的是什么仪器?(天平.)

它是用来做什么的?(用来称物品的重量的.)

怎样用它来称物品的`重量呢?(在天平的左面盘内放置所称的物品,右面盘内放置砝码.当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等.砝码上所标的重量就是所称物品的重量.)

教师一边提问,一边根据学生的回答演示如何用天平称物品.(称出的物品同教科书第11页上图.)

教师:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等.)

教师:对!天平两边放上重量相等的物品时,天平就平衡,反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等.那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!

先让学生自由地说一说,根据学生的发言,教师写出算式:20+30=50

教师:20+30=50是一个什么式子?(等式.)对!这是一个等式.

(2)教学第2个例子.

教师改变天平上所放的物品和砝码,使之同教科书第11页下图.

教师:现在天平也保持着平衡,这说明了什么?(说明天平左、右两边的重量相等.)那么,怎么用式子来表示这种平衡的情况呢?再试试看!

指名让学生试着写等式,如果学生写出20+?=100,可以提示学生:“?”是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?

教师和学生共同把等式20+?=100改写成20+x=100.

教师:20+x=100是一个什么式子?

学生:这也是一个等式.

教师:对!这也是一个等式.但是,这一个等式与20+30=50有什么不同?

学生:这是一个含有未知数的等式.

教师:左盘中的这个标有“?”的方木块应该是多少克,才能使天平保持平衡呢?也就是这个等式中的x是多少才能使等号左右两边正好相等呢?可以是一个随便的重量吗?

让学生自由地说一说,教师总结.

教师:对!这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左右两边正好相等.同学们观察一下天平,想一想x应该代表什么数呢?

让同桌的学生讨论一下,然后指名说一说.启发学生说出,因为左盘中未知的方木块重80克才能使天平平衡,所以只有x等于80的时候,才能使等式中的等号左右两边正好相等.

教师在20+x=100的右边板书:x=80

(3)教学第3个例子.

教师出示挂图(教科书第12页上图.)

教师:我们再来看这个例子.大家先认真观察,想一想,这幅图的图意是什么.同桌的两个同学说一说.

指名让学生说图意.

学生:这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是186元.

教师:每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?

学生:每个篮球的价钱是x元,3个篮球的总价还可以表示为3x元.

教师:谁能根据图意写出一个等式来?

学生:3x=186

教师:想一想,这个等式有什么特点?

学生:这也是一个含有未知数的等式.

教师:当x等于多少时,这个等式中的等号左右两边正好相等?

方程的意义

执教者:吴霜 教学内容:人教版五年级上册 教学目标

1.知识目标:在自主探索的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系,使学生初步理解等式的基本性质。

2.能力目标:培养学生认真观察、思考分析问题的能力。发展学生思维的灵活性。

3.情感态度与价值观:加强数学知识与现实世界的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。教学重点:理解与掌握方程的意义。教学难点:方程和等式两个概念的关系。

一、兴趣引入

师:你们玩过跷跷板吗?下面老师给你们讲一个跷跷板的故事。两只小青蛙在玩翘翘板很开心,一只小熊也要玩,同学们,你们说会怎么样?(没法玩)为什么?有什么办法也让小熊也能玩的开心呢?(让学生思考讨论)学生回答后师总结出要让跷跷板两边平衡。

同学们,你们知道吗在数学里也有这样的跷跷板,今天我们就来研究我们数学里的跷跷板。

二、探究新知

(一)创设情境,建立表象

1、认识天平,出事左边放30克的物体,右边放50克的砝码,这时天平出现上面情况,用一个数学式子来表示。

2、在左盘里添一个30克的物体,又出现了上面情况,用式子表示出来。

3、要想天平处于平衡状态,又将怎样放物体。讲解上面叫灯饰。

4、看一组天平,快速的用数学算式来表示。观察这几个式子有上面相同的地方。

5、学校买来3个足球,花了168元,如果足球的单价是X元,用算式表示出他们的关系。

6、根据本班男、女生的人数列出数学算式。

(二)交流分类,揭示概念

1、把算式按照一定的标准进行分类。①30+20=50 ② 2x+50>100

③80<2x ④3x=180

⑤x÷11=5

⑥100+2x=50×3

⑦x-18=24

⑧ 60÷20=3

⑨100+20<100+50

观察分类后的算式有什么相同的地方,板书课题。

讲解什么叫方程。

2、学生练习写方程。

3、指导学生看书,还有上面需要和大家一起交流的。

4、学习方程与等式之间的关系。用图形象的表示出来。

三、巩固练习,深入理解

1、判断,下面的式子那些事方程?那些不是方程?

? 6+x=14

? 3+x

? 50÷2=25

? 6+x>23

? 51÷a=17

? x+y=18

2、了解方程的发展历史

四、小结

同学们,今天你们有知道了什么知识呢?

五、板书设计

方程的意义

不平衡平衡

100+x>200

100+x<300 100+x=250

像100+x=250这样的含有未知数的等式,称为方程。

【总评】

在小学数学教学中,从算术思维到代数思维的过渡,对学生来说是思维方式上的一个飞跃。学生能否通过学习实现思维方式的转变,直接关系到学生未来的学习和发展。吴老师首先在学生已有天平称物经验的基础上引导学生通过猜测、比画、记录和展示生成了等式和不等式的教学资源,然后比较、辨析逐次分类,在学生分类的基础上通过围圈呈现方程,接着步步抽象逼近直至学生完整准确表达出方程的意义,最后通过交流对话、数形结合初步体验、讲故事等方式一步步将学生的认识引向深入,充分体现了在学生原有生活经验和认知基础上进行学习的建构主义教学理念。具体来说,本课的教学具有以下特点。

一、教学目标的精准定位

能顺利辨认方程的样子就是认识方程了吗?能流利地说出方程的定义就是理解方程思想了吗?方程是个建模的过程,怎样帮学生建立好这个数学模型,深刻理解方程的意义?方程是为寻求未知量,而寻找到未知量和已知量之间的联系,且在这个过程中把未知量先等同于已知量,和已有的已知量进行相关运算,形成等量关系,从而求出未知量的一种思想方法。列方程的过程就是数学建模的过程。教师没有止步于方程意义的抽象,而是通过直观教具体验、数形结合半抽象化、回归生活编故事等情境使学生充分体验方程建模的过程,加深了学生对方程意义的理解,孕育了学生的方程思想,实现了从算术思维到代数思维的顺利过渡。

二、育人功能充分体现

教育是什么?爱因斯坦曾说:忘掉学校所学的一切知识,剩下的才是教育。由此可知,数学课堂最终应该留给学生什么呢?那应该就是数学思想方法,这正是教师追寻的数学课堂教学的根。综观吴老师的课堂,开课时的问题开放提出,天平称物时的数学表达,式子的逐次分类,方程意义的抽象归纳,常见等量关系的方程表示,方程故事的创编等,无不体现了教师对方程思想这一暗线的深刻解读。没有贴标签,没有专业术语,教师靠着自己高超的教学艺术和独具匠心的设计,大雪无痕地将问题意识、符号意识、分类思想、合情推理、应用意识、创新

意识等渗透到一个个具体的教学情境之中,真可谓润物细无声啊!

三、情境创设匠心独运,学生的主体地位充分保证天平称物、式子分类、辨析对话、水壶倒水、盘秤称月饼、故事编创等,无不是学生熟悉和感兴趣且有利于学生学习的情境,激发学生的学习兴趣和认知需要,为学生在新课学习中主动参与数学学习活动提供了保证。学生自始至终置身于教师为其创设的发现和交流的情境之中,积极主动地参与操作、观察、发现、质疑、交流、整合、创造等教学活动,在操作、思考、交流、倾听、归纳中学习数学知识,逐步实现对数学知识的理解和深化,实现对数学思想的感悟,实现了学生对数学知识产生、发展和形成过程的经历和再创造,充分体现了我的课堂我做主的教学理念,充分发挥了学生的主体作用。

四、交往互动,情知合一

在吴老师的课堂中,常常可以看见师与生、生与生之间真诚的交流与互动,这种知识信息的沟通、情感的交流和思维的碰撞不时使课堂掀起高潮,这与教师满腔的教学热忱、高超的教学艺术和发自内心对生命的尊重与爱是分不开的。热情的鼓励、耐心的等待、巧妙的疏导、暖心的评价无不让教师感受到情感与知识的融合,感受到课堂的民主与和谐。学生正是在这样温馨的课堂氛围中学会了思考,学会了学习,学会了合作,获得了情感、态度、价值观和能力的提升。吴老师用她的情、用她的真、用她的爱黏住了学生们的心,黏住了每一位观课的教师。

这样的教学,这样的课堂,无法不叫人喜欢。

下载《方程的意义》教案word格式文档
下载《方程的意义》教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    方程的意义教案

    《方程的意义》教学设计 主讲:盛春桃 教学目标: 1. 初步了解方程的含义,并能进行辨析; 2. 通过动手操作,观察分析,能用方程表示简单情境中的等量关系。 教学重点、难点:理解方程的......

    方程的意义教案

    五年级数学 方程的意义教案 学校:庞岐小学班级:五年四班教师:张 敏 娟 教学内容:方程的意义 教学目标:1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析; 2、......

    《方程的意义》教案

    《方程的意义》教案 《方程的意义》教案1 第5单元 简易方程第7课时 方程的意义【学习目标】1.知识与技能:使学生初步理解“等式”、“不等式”和“方程”的意义,并能进行辨析。......

    方程意义的教学教案

    课题::方程的意义 学习目标: (1)知识与能力:结合具体情境理解方程的意义,会用方程表示简单的等量关系。 (2)过程与方法:借助天平让学生亲自参与操作和实验,在经历天平由平衡→不平衡→......

    方程的意义 教学设计 教案

    教学准备 1. 教学目标 知识与技能: (1)初步理解方程的意义,会判断一个式子是否是方程 (2)会按要求用方程表示出数量关系 过程与方法: 经历方程的认识过程,体验观察、比较的学......

    方程的意义教案及评析

    “方程的意义”教学设计及反思 鸡公岭小学 郭峰 教学内容:数学书P53-54及“做一做”,练习十一1-3题。 教学目标: 1、初步理解方程的意义,会判断一个式子是否是方程。 2、会按要......

    《方程的意义》教案(精选五篇)

    《方程的意义》 一、情境导入 1、 猜谜语:同学们,在上课前我们来猜个谜语,怎么样? (课件出示大象) 2、 故事引入:大象这么重,怎样才能称出它的重量呢?在古代,有个年仅七岁的小男孩想到......

    方程的意义教案[本站推荐]

    《方程的意义》教学设计 西屯小学赵琳琳 教学内容 人教版《数学》五年级(上册)第62—63页 教学目标 1、使学生在具体的情境中,理解方程的含义,初步体会等式与方程的关系; 2、使......