第一篇:平稳操纵七必须、七不准要求
一、平稳操纵七必须、七不准要求
(一)、七必须:
1、列车起动时,必须小电流起动全列后再加速。
2、起伏坡道运行时,必须保持车钩处于伸张状态。
3、长大下坡道运行时,必须动力制动与空气制动配合使用。
4、缓解制动时,必须先缓解空气制动后解除动力制动。
5、爬坡运行时,必须根据牵引吨数点式撒砂。
6、重联牵引时降速,必须重联机车先断电。
7、特快及重点列车,必须实行带载下闸。
(二)、七不准:
1、列车有速度时,不准使用单阀制动。
2、自阀减压排风未止,不准追加减压(特殊情况除外)。
3、累计追加减压量不准超过初次减压量(特殊情况除外)。
4、坡道运行时,不准机车接近上坡道后才加载。
5、双机牵引时,不准重联转速高于本务机车。
6、列车速度低于100Km/h,初减不准超过100Kpa(特殊情况除外)。
7、带载下闸时,转速不准低于550转/分,做到停车后断电。
二、关于七必须、七不准解释
(一)、七必须:
1、列车起动时,必须小电流起动全列后再加速。
解释:在列车进行制动机试验后,将列车呈制动状态,单阀缓解机车制动,提手柄1位,将机车与车辆车钩拉伸后单阀制动,等待发车。发车时,将手柄提1位,缓解列车制动,使列车缓慢起动,根据牵引辆数确认全列车钩拉伸后在逐渐加速。侧向进出站时应尽量把速度控制在低于道岔限速10Km/h以下,待全列出站后立即加速,使列车速度尽快达到理想速度运行。
2、起伏坡道运行时,必须保持车钩处于伸张状态。
解释:线路坡道分为“凹形”和“凸形”两种,在“凹形”坡道运行时,列车进入变坡点时不断电,仍处于牵引状态,必要时牵引力还应适当加大,这样能够克服列车整列进入下坡道后,后部车辆受惯性和坡道的影响向前冲击,适当增加牵引力后,使列车始终处于牵引状态,这时乘务员要判明列车运行到坡底时能否超过线路限速,如需要调速时,要避开坡底,提早进行,当机车距坡底约300米左右,开始增加机车牵引力,因坡底是产生列车冲动最危险处所。在“凸形”坡道运行时,列车在接近坡顶时,应减小机车的牵引力,但不许断电,应保持车钩处于拉伸状态即可,根据列车的长度,当列车1/3越过坡顶时,增加机车的牵引力。
3、长大下坡道运行时,必须动力制动与空气制动配合使用。
解释:在列车进入长大下坡道时,因前部车列先进入下坡道,车速增加,使车列车钩处于伸张状态,若进入下坡道后再采取制动措施,前部车列先于后部车列制动,使车钩又重新压缩,产生列车冲动。因此,在列车进入长大下坡道前应先逐渐减小机车的牵引力然后断电,这时再使用电阻制动,将手柄提至1位,使列车车钩慢慢的由自由状态进行压缩,避免车列进入下坡道时车钩伸张。随着列车速度的增加,逐渐提高柴油机转速增大电阻制动电流(柴油机转速最高部超过800r/min,单电机制动电流不超过650A),当电阻制动不能控列列车速度时,在辅以空气制动调节列车速度。
4、缓解制动时,必须先缓解空气制动后解除动力制动。解释:制动调速时采用动力制动为主空气制动为辅的调速方法,此时全列车车钩均处于压缩状态,若先解除动力制动在解除空气制动会造成机车首先缓解相对向前移动,拉伸车钩造成列车冲动。当首先解除空气制动时,动力制动仍控制全列车车钩处于压缩状态,所以必须先解除空气制动。然后逐渐减小动力制动电流直至解除动力制动。
5、爬坡运行时,必须根据牵引吨数点式撒砂。
解释:因牵引大编组列车进入上坡道运行时,司机为保证列车有足够的运行速度,需要逐渐增加机车牵引力,使得牵引力逐渐接近轮轨间的粘着力,当牵引力与轮轨间粘着力趋于平衡或大于粘着力时,机车回产生空转,采取线式撒砂,会增加列车的运行阻力,而采取点式撒砂,即能加大机车的粘着力同时也不会对运行阻力有多大的影响。
6、重联牵引时降速,必须重联机车先断电。
解释:双机重联牵引运行时两台机车均处于牵引状态,若本务机车首先解除牵引力,受本务机车自重影响速度会下降,此时重联机车仍处于牵引状态,造成两台机车间车钩压缩产生冲动。因此,降速解除牵引力时应首先解除重联机车牵引力再解除本务机车牵引力,以避免列车冲动。
7、特快及重点列车,必须实行带载下闸。
解释:由于采用空气制动下闸调速时,制动力受列车管内空气压力由前向后逐渐下降影响,使得前部车列与后部车列制动不同步,造成列车冲动。而下闸制动调速前将机车带载550r/min以上再下闸,能克服前部车列先制动降速的问题,使全列车钩都处于伸张状态。因此,特快及重点列车,必须实行带载下闸。
(二)、七不准:
1、列车有速度时,不准使用单阀制动。
解释:当列车有速度时,采取单阀制动会造成机车速度急剧下降,压缩机车与车辆车钩,产生冲动。因此,列车有速度时,不准使用单阀制动。
2、自阀减压排风未止,不准追加减压(特殊情况除外)。
解释:自阀每一次减压排风,均产生一次制动波速,三通阀形成一次开启与关闭,若自阀未排完风就进行追加减压,从表面上看是一次制动,但实际是延长了制动距离,在一次制动中形成多次制动波速,造成列车速度在平稳下降时再次受追加制动力影响再次下降,产生列车冲动。此种情况是指正常使闸情况,若因其他原因,如制动距离不足时,不受此项控制。
3、累计追加减压量不准超过初次减压量(特殊情况除外)。
解释:制动初减压调速时,列车速度逐渐下降,当速度下降满足不了需要时就要追加减压,若累计追加减压量大于初次减压量,那么列车速度下降频率将遭到破坏,使列车速度迅速下降,旅客有向前拥的感觉,不利于平稳操纵。
4、坡道运行时,不准机车接近上坡道后才加载。
解释:坡道运行时,列车进入上坡道过程中,先进入上坡道的车列速度下降,压缩未进入坡道车列的车钩,产生冲动。如果列车进入上坡道后再加载,机车拉伸车辆车钩,又产生冲动。而在列车进入上坡道前加载,能使全列车车钩始终处于伸张状态,有利于列车平稳操纵。
5、双机牵引时,不准重联转速高于本务机车。解释:若重联机车转速高于本务机车时,重联机车牵引力大于本务机车,向前顶产生冲动。而当需要提高列车速度本务机车继续加载,本务机车牵引力逐渐增加大于重联机车牵引力时拉伸两机车间车钩,再次产生冲动。因此,双机牵引时,不准重联转速高于本务机车。
6、列车速度低于100Km/h,初减不准超过100Kpa(特殊情况除外)。解释:正常情况的时,列车速度与减压量的掌握为(速度+20),但由于现在列车制动机在逐步改造,由闸瓦改为闸盘,制动力也在相应增强。所以,为保证列车平稳,应适当延长制动距离,即实行早减、少减。列车速度低于100Km/h时,若初减超过100Kpa,产生的较大制动力使列车速度急剧下降,车内旅客及其他物品受惯力影响向前拥,不利于平稳操纵。按操纵经验掌握,比较平稳的制动方法为:(初减压量=列车速度-20)。此种方法绝不是死规定,只是一种操纵经验的介绍,重点是要求乘务员在操纵中根据列车制动力的强、中、弱去掌握减压量。
7、带载下闸时,转速不准低于550转/分,做到停车后断电。
解释:带载下闸时应掌握柴油机加载不准低于550r/min,若转速太低牵引力无法与制动力接近平衡,使列车前部先降速后部后降速压缩车钩产生冲动。因此适当掌握柴油机加载不准低于550r/min,使制动停车过程中全列车车钩始终处于伸张状态。若车未停稳就解除牵引力,由于机车自重较大,会造成停车瞬间机车受惯力影响克服制动力向前冲,而此时车列已经停稳车钩阻止机车前冲而产生全列冲动。(该牵引电流对15辆以上较为有效,15辆以下应适当降低转速)
第二篇:银监会七不准
银行业金融机构不规范经营“七不准”
公 示
1、不得以贷转存。银行信贷业务要坚持实贷实付和受托支付原则,将贷款资金足额直接支付给借款人的交易对手,不得强制设定条款或协商约定将部分贷款转为存款。
2、不得存贷挂钩。银行业金融机构贷款业务和存款业务应严格分离。
3、不得以贷收费。银行业金融机构不得借发放贷款或以其他方式提供融资之机,要求客户接受不合理中间业务或其他金融服务而收取费用。
4、不得浮利分费。银行业金融机构要遵循利费分离原则,严格区分收息和收费业务,不得将利息分解为费用收取,严禁变相提高利率。
5、不得借贷搭售。银行业金融机构不得在发放贷款或以其他方式提供融资时强制捆绑、搭售理财、保险、基金等金融产品。
6、不得一浮到顶。银行业金融机构的贷款定价应充分反映资金成本、风险成本和管理成本,不得笼统将贷款利率上浮至最高限额。
7、不得转嫁成本。银行业金融机构应依法承担贷款业务及其他服务中产生的尽职调查、押品评估等相关成本,不得将经营成本以费用形式转嫁给客户。
举报投诉电话:96369
第三篇:七不准
哈尔滨市“七不准”条例
不准随地吐痰;
不准随地便溺;
不准乱扔乱倒;
不准乱摆乱放;
不准乱贴乱画;
不准损坏公用设施;
不准乱穿马路、闯红灯
“八要八不要” 大家来对照
一、要保持环境卫生;不要随地乱扔乱倒垃圾、污水、废弃物和随地吐痰、便溺。
二、要爱护花草树木;不要折枝、掐花、乱穿草坪。
三、要爱护公共环境;不要在街路两侧和公共场地拴绳挂物、晾晒衣物、排放噪声。
四、要爱护公用设施;不要损坏公用电话亭、报刊亭、果皮箱、绿地栅栏等设施。
五、要按规定摆摊设点经营;不要随意店外占道经营和维修、清洗车辆。
六、要按规定停放车辆;不要随意在城市道路、广场、绿地内和其他公共场所乱停乱放车辆。
七、要按规定在公共揭示栏中张贴广告;不要在建(构)筑物、电杆、树木、公交站点等公 共场所或者市政设施上乱贴、乱画、乱刻、乱涂。
八、要保持车辆整洁;不要驾驶车容车貌不整的车辆在道路上行驶。
第四篇:旅客列车平稳操纵
旅 客 列 车平稳 操 纵
前言
随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。
长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。
结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。
一、平稳操纵
平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和列车运动方程式的角度进行说明。
由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。
1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动
列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车 本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微机限功功能,但在实际现场工作中,牵引力与车钩间隙变化的要求还是不匹配,结合实际工作经验,说明在以下两种情况下启动列车的方法,事实说明,这两种方法可有效的减少或消除不同线路上列车启动时的冲动。
(1)上坡道起动:上坡道起动时,列车缓解,机车制动,此时,受坡道附加阻力(与运行方向相反)的作用,全列车的车钩均处于伸张状态,对平稳起动有利,但必须注意的是起动时,必须先提手柄,使机车处于牵引状态方可缓解机车制动,以免先缓解机车制动而牵引力还未形成造成机车瞬间向后溜逸。
(2)平道,下坡道,或锅底型线路上的起动:列车缓解后,由于各车辆处于不同的线路纵断面,或受坡道附加阻力(与运行方向相同)的作用,各车钩状态不一致有的压缩有的伸张,比较复杂,这种情况对平稳起动是最为不利的,为解决这个问题,现在有两种观点,一是起动前抻钩,即缓解单阀,自阀制动,提一位手柄走车,目的是拉开车钩,但在实际试验中,结果是仅仅能拉开机车与第一辆车的车钩,使其处于伸张状态,后部车辆的车钩还是处于原来的状态,起动是后部车辆还是会产生冲动,这种方法不理想,还有一种就是起动时缓解单阀,待牵引力产生后再缓解自阀,以求在全列车车钩在缓解的瞬间加入牵引力,使车钩伸张,但在实际试验中,很难做到车钩在缓解时牵引力同时加入,也就是说,牵引力与车钩状态变化不能同步,所以,这种方法很难掌握,综合上述情况可知,在以上线路情况下起动时,车钩状态的变化是很难避免的,唯一的方法就是尽量减少机车的牵引力,使车钩状态的变化减慢,车钩间隙的变化减小,才能尽可能的减少冲动,结合实际,具体的做法就是,缓解后,单阀制动,使机车制动缸保持一定的压力,一般为30---50kpa,然后提手柄加载,提一位,使列车以尽量慢的速度起动,运行一段距离后(2---5米)再缓解机车制动,恢复正常运行。
2、起动后的加速阶段:在这个阶段,列车的牵引力迅速的增加,车辆的阻力由轴承轴颈的摩擦力逐渐转变为轮轨间的滚动或滑动阻力,以及振动形成的冲击力,此时,冲动产生的主要原因就是空转的发生,我们知道,牵引力大于轮轨间的粘着力时,就有可能产生空转,粘着条件被破坏的原因通常有两个,一是轮轨间摩擦力的突然减小,二是牵引力的突然加大。
(1)轮轨摩擦力的减小,常见的原因就是,轨面上有油,水,树叶或在降雾降雨的天气下,轨面上有大量较厚的铁锈时,通过道岔时,上述情况均会使车轮踏面与轨面的滚动摩擦变为滑动摩擦,造成粘着系数下降。
(2)牵引力突然加大,原因就是提手柄太快,使牵引力急剧上升。由上可知,再加速过程中,内燃机车提手柄或电力机车进级,均应逐位进行,不能太快,无级调速内燃机车,提手柄一般以每次20转/分钟为宜,无论无级调速还是有级调速,都必须待柴油机转速平稳后方可提下一次,在全列车越过道岔前,一般掌握牵引电流不超过,DF4型--3000A,DF4D型--4000A,DF11型--5000A。如轨面不清洁,有油,水,锈,或天气不良,以及通过侧向道岔,可提前撒砂(采用线式撒砂)或适当回手柄,防止空转的发生,减少列车的冲动。
3、牵引运行阶段:牵引运行时,列车所受的力主要为牵引力和轮轨间的滚动或滑动阻力,以及振动形成的冲击力,除高速列车外,一般不考虑空气阻力的问题,当列车在同样的线路纵断面上运行时,牵引力与运行阻力相对平衡,全列车的车钩处于伸张状态,一般不会产生冲动,但铁路的线路是由平道,上坡道,下坡道等不同的纵断面形成的,当列车由平道转入坡道,或坡道转入平道,或坡道转入另外一个坡道时,这种平衡关系将被破坏,就会产生冲动,(1)由平道转上坡道,或下坡道转平道、上坡道,由于机车的单位基本阻力大于车辆的单位基本阻力,或由于与列车运行方向相反的坡道附加阻力的原因,会造成机车运行阻力大于车辆运行阻力,使全列车的车钩由前向后逐渐压缩,形成较大的冲动,解决的方法就是,在进入上坡道时,特别是运行在锅底型的线路上,适当的提手柄,加大机车的牵引力,使全列车的车钩始终处于拉伸状态,就可有效的减少这种冲动。
(2)由平道转下坡道,或上坡道转下坡道(鱼背型线路)、平道,坡道附加阻力方向与运行方向一致,起的是牵引力的作用,列车车钩的相对静止状态也被破坏,也会形成刚性冲动,解决方法就是,在上述线路运行时,可适当减少机车牵引力,保持原来的平衡关系,也就避免了冲动的发生。
另外,如需要进行牵引力的变化,提回手柄应尽量缓慢进行,尤其是由牵引运行转惰力运行,不能将手柄直接回零,应先回至一位,待柴油机下降到最低转速且转速平稳后方可回零。
4、惰力运行阶段:此时,列车受的力主要为运行基本阻力或附加阻力,机车车辆的车钩随阻力的变化而变化,可能伸张也可能压缩,或有的伸张有的压缩,解决办法就是不要完全的解除机车的牵引力,应以较小的牵引力运行,当然,要考虑到此牵引力不能使列车速度超过线路限制速度或要求的运行速度。
5、调速:调速有两种方法,一是手柄调速,一是制动调速,(1)手柄调速,在运行速度与要求的速度相差不是很大且能满足列车运行时刻的前提下,应选择手柄调速,适当回手柄,根据具体情况减少或解除机车牵引力,使列车运行速度缓慢下降至低于要求的速度,尽量不采用制动调速,可有效的减少冲动。
(2)制动调速,根据实际情况,制动调速有两种方式,一是空气制动调速,一是电阻制动调速,在此主要讲电阻制动,在停车时再讲空气制动,电阻制动的原理是将列车运行的动能通过牵引电机转变为电能,再由电阻转变为热能,使列车惰力运行状况下的动能减少,达到维持或降低运行速度的目的,在这个制动过程中,只有机车能起制动作用,车辆是没有制动作用的,这就造成了机车在制动时,后部车辆在惯性作用下,由后向前压缩车钩,形成冲动,车辆越靠前,冲动越大,所以,非必要的时候,应尽量不要要使用电阻制动,如必须使用,应适当的掌握制动电流,使其由小向大缓慢的,逐渐的增加,以减缓车钩的压缩过程,减少冲动,经验数据如下:
DF4D型----一位,150A 二位,220A
500-550转/分钟,300A
DF11型----二位,230A 牵引16辆及其以内,在3%。的下坡道上,维持原有速度需制动电流150A 牵引16辆及其以内,在4-5%。下坡道上,维持原有速度需制动电流200A
牵引16辆至19辆,在3%。的下坡道上,维持原有速度需制动电流230A
牵引16辆至19辆,在4-5%的下坡道上,维持原有速度需制动电流320A
6、制动,停车:使用空气制动进行制动调速或停车,是最容易产生冲动的情况,也是平稳操纵要掌握的主要内容,在列车进行制动时,在制动的初期并不是全列车同时产生制动作用,而是由前向后逐辆的从开始制动到产生与减压量相对应的制动力尤其是机车,机车制动缸的压力空气来源于总风缸,上闸快,也就造成了全列车由前向后依此制动,全列车的车钩由前向后依此压缩,后部车辆,还未产生制动作用的或未产生足够制动作用的车辆向前压缩前部车辆的车钩,造成较大的冲动。
解决这种冲动,一是列车制动的一致性要求比较好,二是在制动时,尽量使全列车的车钩处于拉伸状态,三是要尽量小的制动力。
实施制动前20-30秒,先提手柄1-2位,以较小的牵引力,使全列车的车钩在拉伸状态,自阀减压前,先推单阀,使机车工作风缸压力下降到530-550KPA左右,以保证在自阀实行制动后机车不上闸,自阀减压50KPA,排风停止后,经过5秒左右再将主手柄回零位。
制动停车是产生冲动的最主要的环节,由运动中的列车到完全停止,在这个过程中,不仅因制动时机车与列车制动力不协调,或前部车辆制动与后部车辆制动不一致造成冲动,并且,如果减压量比较大,还会造成较大的减速度,在低速或接近停车时,车辆闸瓦摩擦系数急剧加大,尽管没有明显的冲动,但却由于减速度过大,不能做到平稳,解决办法就是,在制动停车前,要准确的掌握减压量和制动距离,避免因初减不足或制动距离太短,造成制动后期大量追加。
特别要指出的是,如果需要在短时间内进行两次或多次制动,例如站外制动调速,站内制动停车,一定要注意两次制动间隔的时间,既保证首次制动缓解后到第二次或到下次制动,必须留有充分的充风时间,通常,确定列车是否充满风有三种方法,一是看机车总风缸压力表是否下降,二是计算充风时间,三是计算在某个速度点下充满风列车所要运行的距离,在正常运行中,建议采用第三种方法来确定充风。
7、关于缓解停车:实践证明,如果缓解停车掌握得当,能非常有效的减少甚至消除因制动带来的冲动,但如果掌握不当,会造成比不缓解还要大的冲动,缓解停车的关键就是掌握缓解的时机,而这个时机与列车的制动力,减压量,线路纵断面,缓解时的速度,车辆制动机的类型有关系,没有理论数据说明上述因素与缓解时机的关系,在多年的实践中,只能凭积累的工作经验来确定缓解时机,在将来的工作中还需要继续深入的探索和研究。
二、制动调速停车
无论是制动调速还是停车,最关键最需要掌握的就是列车的制动力,准确的判断列车的制动力是按限速要求或距离要求进行制动调速或制动停车对标的基础。
影响列车制动力的因素有很多,减压量,车辆类型,车辆制动机类型,牵引辆数,制动效率,机械传动效率,制动倍率,闸瓦材质,闸瓦摩擦系数,制动缸鞲鞴行程等都有关系,在同等外部条件下,比如减压量,牵引辆数,车辆类型都相同的情况下,各列车的制动力不存在明显的很大的区别,但存在小的区别,判断列车的制动力是否属于正常制动力一般有三种方式。
(1)排风时间:现有的车辆制动机,主要有三种,104,104c,F-8,无论哪种类型,其在某减压量条件下的排风时间基本相同,一般,减压50KPA的情况下,一辆的排风时间为0.8秒,低于或高于这个时间,并不代表此列车制动就是强或弱或正常,还需结合其他方法.(2)减压50KPA排完风后的速度下降情况:在运行中的试闸时,可凭减压50KPA排完风后的速度下降情况进一步判断列车的制动力,一般速度下降5-7Km/h.(3)减压50KPA缓解后至列车管充至定压时速度下降情况:一般速度继续下降4Km/h.以上三种方法,仅凭其中任何一种,都不能确定制动力的大小,必须结合两种甚至三种,方可做为准确的判断.判断出列车的制动力以后,下一个要解决的问题就是掌握准确的减压量,对于旅客列车来说,就是50KPA,如何准确的减压50KPA,除自阀减压时的手感及排风音响以外,对初练者,应用观察风表的方法,需要注意的是,不能以监控器的显示来确定准确的减压量,受传感器精度的影响,有时它的显示存在较大误差,应看双针量程机械表,根据JZ-7制动机各阀的控制关系可知,自阀-均衡风缸-中继阀-列车管,所以,减压前看均衡风缸,排完风后看列车管,练习时可采取做记号的方式,既,在试闸的过 程中,找出准确的减压量以后,在自阀卡齿与调整阀盖板上做一相对应的标记,减压时凭此标记既可掌握准确的减压量.最后要解决的问题就是制动距离的计算,在计算制动距离时,要考虑的是列车的制动力,还有牵引辆数,车辆类型等,相同辆数类型速度的列车,其制动距离不会有很大的差别,如果需要对标停车,还要考虑站场设施,线路有效长,线路纵断面,停车标距出站信号的距离等因素,掌握了准确的减压量,判断好制动力,计算好制动距离减压后,认真观察速度下降情况,根据需要追加对标停车,注意,如需要追加,应本着少量多次的原则,以较少冲动,力求平稳.以下是在平道上不同速度减压50KPA的全制动距离,以18辆为例.10km/h--35m
50km/h--520m
90km/h--1650m
20km/h--110m
60km/h--750m
100km/h--2050m
30km/h--200m
70km/h--950m
110km/h--2400m
40km/h--340m
80km/h--1250m
120km/h--2700m
以下是在平道上减压50KPA后距停车位置的理想降速.2000m--101km/h
1500m--90km/h
1000m--74km/h
900m--70km/h
800m--66km/h
700m--62km/h
600m--58km/h
500m--53km/h
400m--48km/h
300m--42km/h
200m--35km/h
100m--26km/h
50m--19km/h
以上数据,仅作参考.三、正点
运行时分,一般以整分或半分为计算单位,在正常的运行中,应掌握无论是通过站还是停车站,起车站,其运行时分误差不超过5秒。
运行准确的时间的主要手段就是需要有相应的速度,运行速度的计算是:区间公里×60÷规定的运行时分,在正常运行中,应使列车的运行速度尽量的等于或接近这个速度,在停车站或起车站,则需要有比这个速度高的速度,这就需要在线路上设置观速点,观速点的设置应符合以下原则
1、在符合一个或多个观速点的要求后,整个区间的运行时分符合要求
2、观速点的设置必须对操纵有明显重要的指导意义,比如提回手柄,减压或缓解,加速或惰力运行等
3、观速点应设置为不易移动,不易改变,比较突出的物体,比如信号机,桥梁,建筑物或其他自然物体
确定了观速点后,既可根据所用的机车,牵引的列车编组等情况,选择合适的牵引力,进行加速、减速或维持某一速度来达到观速点的要求
应当注意的是,在选择牵引力的时候,不能以手柄位置或柴油机转速来确定牵引力,应以机车在某一工况的功率为准
以下是在平道上,保持某一速度所需的机车功率,以18辆为例
140km/h--2650kw
130km/h--1950kw 120km/h--1600kw
110km/h--1300kw
100km/h--1000kw
90km/h--750kw
70km/h--550kw
60km/h--450kw
以上数据,仅供参考
四、线路平面及纵断面分析
铁路线路是由不同的平面及纵断面组成的,平面分为直线和曲线,纵断面分为平道,上坡道和下坡道,在运行中,列车可能运行在单一的线路状态上,也可能运行在不同的多个线路状态上,这种不同的线路状态对列车运行有着重要的影响,所以,就有必要对线路的平面及纵断面进行分析研究,以确定它与列车运行的关系。
线路平面
列车在直线上运行时,来自线路的阻力主要是滚动摩擦以及振动冲击力,但当列车运行在曲线上时,受离心力的作用,以及外轨与内轨的高度的影响,就会产生明显的滑动摩擦,形成曲线阻力,这种曲线阻力的大小与曲线半径有直接的关系,一般来说,曲线半径在600米以外时,基本上不考虑它的影响,当曲线半径小于600米时,就应当计算曲线附加阻力,方法是,600÷曲线半径,把计算结果再折算为坡道附加阻力就可以用于牵引计算。
线路纵断面
线路的纵断面,尤其是坡道,对运行的影响是很明显的,在实际现场中,线路坡道的变化可能非常复杂,由于列车有一定的长度,就有可能运行在不同的坡道上,并且由于坡道的坡度不同,长度也不同,也就无法进行准确的计算,这就需要先对坡道进行化简,折算为加算坡度,化简的实质就是用一个假想的坡度千分数代替几个相邻的坡度接近的实际坡道千分数,化简后的坡道长度等于被化简的几个实际坡道的长度之和。
在进行坡度的化简时,应遵循以下的原则
1、被化简的几个坡度相差不能太大
2、用被化简的坡度与化简的坡度的差,乘以该坡道的长度,结果不能大于2000
只有在满足上两个条件的前提下,实际坡度才允许被化简,在列车进行加速,维持原速,动能闯坡,制动调速,缓解停车时,如果列车处于坡道上,则都要利用化简后的加算坡度来进行计算或指导,而不是用实际坡度。
第五篇:驾驶员十坚持、九不准、七必须守则
驾驶员“十坚持““九不准”、“七必须”守则
驾驶员必须牢固树立”安全第一“思想,严格遵守国家《道路交通管理条例》和公司安全行车规定,切实做到”十坚持“、”九不准“、”七必须"。
十坚持:
1、坚持中速行驶,不开英雄车;
2、坚持各行其道,不开霸王车;
3、坚持文明礼让,不开斗气车;
4、坚持安全第一,不开冒险车;
5、坚持预防为主,不开侥幸车;
6、坚持二严律己,不开违章车;
7、坚持三勤例保,不开带病车;
8、坚持四慢五掌握,不开盲目车;
9、坚持劳逸结合,不开疲劳车;
10、坚持顾客至上,不开缺德车。
九不准:
1、不准酒后驾车
2、不准驾驶带“病”车
3、不准未经同意私自出车
4、不准私自将车转借他驾驶
5、不准疲劳过度开车
6、不准超速行驶
7、不准无证和驾驶车证不符之车
8、不准驾驶时接听手机与他人闲谈
9、不准开英雄车,安全行车要文明
七必须:
1、必须严格遵守交通法规
2、必须刻苦钻研并不断提高驾驶技术
3、必须自觉参加和接受安全学习与安全教育
4、必须贯彻“日检查”、“周保养”制度
5、必须做到专车专人驾驶与保养
6、必须坚持凭派车单出车制度
7、必须做好车“病”即修的规定