尾矿库实时在线安全监测预警系统方案及说明

时间:2019-05-12 01:52:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《尾矿库实时在线安全监测预警系统方案及说明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《尾矿库实时在线安全监测预警系统方案及说明》。

第一篇:尾矿库实时在线安全监测预警系统方案及说明

尾矿库安全监测概述

1.1安全监测指标选择

尾矿库内存有大量尾矿浆沉淀水,水位相对比较稳定;同时,从尾矿坝坝顶排放尾矿时,矿浆向库内流淌的过程中,矿浆水不断向下渗透;此外,汛期大量降雨。这些因素在尾矿坝体内形成一个庞大渗流场。再者,尾矿沉积体属非均值体,排矿部位又需要经常调换;坝体又在不断增高;况且在尾矿库整个服务期间内,矿源及选矿流程有可能改变,尾矿性能自然也会变化。这就是尾矿坝渗流场异常复杂的原因。浸润线即渗流流网的自由水面线,是尾矿坝安全的生命线,浸润线的高度直接关系到坝体稳定及安全性状,因此,对于浸润线位置的监测是尾矿库安全监测的重要内容之一。

尾矿库内存有大量尾矿浆沉淀水,库水位监测的目的是根据其水位的高低可判断该库防洪能力是否满足安全要求。具体地说:一个完善的设计在设计文本中会给出防洪所需的调洪水深,并要求在设计洪水位(即最高洪水位)时,要同时满足设计规定的最小安全超高和最小安全干滩长度的要求。因此,对于库水位位置的把握可以直接防止尾矿库在汛期避免洪水漫顶溃坝事故的发生,有利于安全监管部门和企业在汛期来临之前,直观地了解和掌握库水位是否达到了设计要求的汛前限制水位。由此可见,库水位的连续动态监测也是尾矿库安全监测的重要内容之一。

尾矿库发生溃坝灾害,坝体位移是灾害演化过程的直观反应指标,因此对于坝体下游坡变形的掌握,可以及时发现尾矿坝变形率和发展速度,有利于安全监管部门和企业进行科学的应急决策,并及时采取应急对策措施,从而避免灾害的发生或者减少灾害发生造成的危害。

在定量评价尾矿库的防洪能力时,需要测定滩顶标高和设计最高洪水位下允许达到的干滩标高,当前的检测方法较难准确并快速测定这两个指标,问题在于水边线的界线很不明显,该处又无法进人,通常只能目测。据此推算出来的总干滩长度和调洪干滩长度自然也是极不可信的。因此,在尾矿库安全自动化监测系统中,应增加快速并简捷的标高测定方法。因此,滩顶标高和设计最高洪水位下允许达到的干滩标高,是尾矿库安全监测需要测定的指标。

此外,在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。综上所述,金属非金属矿山尾矿库安全监测系统监测指标包括:浸润线;库水位;滩面标高;坝体位移;视频图像。

尾矿库安全监测

安全监测系统概述

系统显著特点:

准稳、低功耗、防雷、安装快捷、数据无线传输、太阳能供电

1.1.1 浸润线监测

一般选择尾矿库坝上最大断面或者一旦发生事故将对下游造成重大危害的断面为监测剖面。大型尾矿库在一些薄坝段也应设有监测剖面。每个监测剖面应至少设置5个监测点,并应根据设计资料中坝体下游坡处的孔隙水压力变化梯度灵活选择监测点。尾矿坝坝坡浸润线监测仪器分两类。一类埋设测压管,人工现场实测;另一类是埋设特制传感器,进行半自动或自动观测。

浸润线监测仪器埋设位置的选择,应根据《尾矿库安全技术规程》(AQ2006-2005)中规定的计算工况所得到的坝体浸润线位置来埋设。在作坝体抗滑稳定分析时,设计规范规定浸润线须按正常运行和洪水运行两种工况分别给出。设计时所给出的浸润线位置应是监测仪器埋设深度的最重要的依据。

1.1.2 库水位监测

一般在库内排水构筑物上设置自动监测仪,将所测信号传给室内接收机处理得到库水位。既准确,又适时。需要指出的是,库内排水构筑物一般位于尾矿库内,排水构筑物周边为尾矿澄清水,因此需要在监测系统布置前,针对特定尾矿库的实际情况,灵活选择施工方案。

1.1.3 干滩标高监测

干滩标高的测量不同于其它点标高的测量,这是由尾矿坝自身的运行特点决定的,随着尾矿坝的不断填筑加高,滩顶标高和设计最高洪水位下允许达到的干滩标高是两个动态变化的指标,因此,不能在某一位置架设坚固的不能移动的标高监测设备。

1.1.4 坝体位移监测

正是由于过去对尾矿坝坝体位移监测认识不足,尾矿坝位移监测手段不多。坝体变形计算至今尚未纳入设计规范。对于较大的尾矿坝,设计仅在坝体表面设置位移观测桩。具体监测手段主要有人工用经纬仪监测和GPS自动监测两种。根据坝的长短至少选择2~3个监测剖面。一般在最大坝高处、地基地形地质变化较大处均应布置监测剖面。

每个剖面上根据坝的高矮,在坝坡表面从上到下均匀设置4~6个监测点。最下面一个点应设置在坝脚外5~10m范围内的地面上,以用于监测尾矿坝发生整体滑动的可能性。

1.1.5 视频监测

在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。

我公司自主研发尾矿库在线监测系统,是国内唯一通过国家权威专家认证的成熟产品,诚招全国合作伙伴 *** http://zhonghaida.co.bokee.net

联系人:徐女士,电话***本公司专业从事滑坡地质灾害监测预警系统、矿山边坡变形监测预警系统、尾矿坝安全在线监测预警系统、矿山采空区沉陷监测预警系统、水库大坝安全监测预警系统、堤防渠道变形监测预警系统、深基坑及周边影响区变形监测预警系统、大型桥梁健康监测预警系统、高层建筑及大型场馆健康监测预警系统等设备的生产安装调试。

第二篇:尾矿库在线自动监测系统解决方案

尾矿库在线自动监测系统解决方案

一.需求分析:.......................................................2

二、方案设计........................................................4

(一)监测指标选择.............................................................................................4

(二)监测系统设计.............................................................................................6 1.浸润线监测................................................................................................6 2.库水位监测................................................................................................7 4.坝体位移监测............................................................................................7

5、视频监测....................................................................................................7

(三)某尾矿库安全监测系统设计方案.............................................................8

三、运营/管理......................................................10

(一)设备安装...................................................................................................10

(二)运营管理...................................................................................................11

四、产品映射.......................................................13

五、标准支持.......................................................14

六、标准化程度.....................................................16

七、效果分析.......................................................16

一.需求分析:

安全生产事关广大人民群众的根本利益,事关改革发展和稳定的大局。我国在确立了“安全第一,预防为主,综合治理”的安全生产基本方针和“安全发展”的指导原则后,从安全法制、安全责任、安全投入、安全科技和安全文化等方面入手,强化安全监管工作。但受我国现阶段生产力发展水平较低、企业安全生产基础薄弱、从业人员安全意识不强、安全法制不健全等因素的影响,我国安全生产形势依然严峻,工矿商贸领域安全生产重特大事故时有发生,特别是近年来尾矿库事故多发,已引起了国家的高度重视。

金属与非金属矿山是工业生产的高危行业,其事故发生起数和死亡人数在全国工业安全生产领域占较大的比重。尾矿库是金属与非金属矿山安全生产的重要环节,也是该领域的重大危险源之一,作为具有高势能的人造泥石流危险源,其一旦发生事故,将会给下游人民生命财产安全造成巨大损失,给当地环境造成严重污染,给当地的经济发展和社会稳定也带来严重的负面影响。

经过50多年发展,我国已成为世界矿业大国,目前全国有金属非金属矿山92071座,其中金属矿山8239座,非金属矿山83832座,冶金、有色、化工、核工业、建材和轻工业等行业的矿山都有尾矿设施。经初步统计,全国有尾矿库7610座,总库容约5×109m3,堆存尾矿约5.5×109t。其中正常运行的约有4800座,占63%,危库、险库和危险性较大的病库约有2810座,占37%。

我国作为发展中国家,经济比较落后,从安全上看,尾矿库还存在以下不利因素:一是筑坝尾矿粒度细。由于筑坝的尾矿粒度细,细尾矿的力学强度低、透水性差、不易固结,造成坝体稳定性较差;二是上游法筑坝多。我国目前85%的尾矿库采用上游法筑坝,较下游法和中线法筑坝的坝体稳定性差;三是尾矿库安全设计标准较低。我国作为发展中国家,尾矿库防洪、抗震及坝体稳定等建设标准与发达国家相比相对偏低;四是小型库多。我国矿山规模小,四等库及四等库以下的小型尾矿库占90%以上;五是受地震威胁大。我国是多地震国家,尾矿库防震抗震是重要问题;六是失事后果严重。我国人口众多,尾矿库难以避开居民区和重要工业、交通设施,一旦失事,损失巨大。

美国克拉克大学公害评定小组的研究表明,尾矿库事故的危害,在世界93种 事故、公害的隐患中,名列第18位。它仅次于核武器爆炸、DDT、神经毒气、核辐射以及其它13种灾害,而比航空失事、火灾等其它60种灾害严重,直接造成百人以上死亡的尾矿库事故已不鲜见。如1972年2月26日,美国布法罗尼河矿尾矿坝溃坝,造成125人死亡,4000人无家可归;1985年7月中旬,意大利东北部的普瑞皮尔尾矿库溃坝,造成250人死亡。

我国尾矿库历史上曾发生过多起重特大事故,给人民生命财产安全造成了重大损失。如:1962年9月25日,云锡公司火古都尾矿库溃坝,造成171人死亡、92人受伤,受灾人口13970人;1994年7月13日,湖北大冶有色金属公司龙角山尾矿库溃坝,造成30死亡;2000年10月18日,广西南丹宏图选厂尾矿库垮塌,造成28人死亡、56人受伤。

近年来,尾矿库垮坝造成人员伤亡和有毒污染物下泄的事故屡有发生,给人民群众生命财产安全造成重大损失,对环境安全构成重要威胁。据初步统计,自2005年以来,全国发生尾矿库溃坝等重特大事故17起、死亡41人,重伤1人,轻伤28人,给人民群众生命财产和环境安全带来严重损失。其中:2006年4月30日陕西镇安尾矿库溃坝,造成17人死亡、5人受伤。

尾矿库的安全监测对于加强尾矿库的安全监管,把握尾矿库的安全现状,减少尾矿库的事故发生等具有重要意义。当前,我国尾矿库安全运行的主要技术参数如坝体形变位移、库水位、浸润线埋深等,均由人工定期用传统仪器到现场进行测量,安全监测工作量大、受天气、人工、现场条件等许多因素的影响,存在一定的系统误差和人工误差。同时,人工监测还存在不能及时监测尾矿库的各项技术参数,难以及时掌握尾矿库各项安全技术指标等缺点,这些都将影响尾矿库的安全生产和安全管理水平。我国安全生产市场急需尾矿库溃坝灾害的实时、连续监测的技术和产品。

尾矿库自动化安全监测系统的实施,便于企业和安全监管部门快速掌握与尾矿库安全密切相关的技术指标的最新动态,有利于及时掌握尾矿库的运行状况和安全现状,可以提高尾矿库的安全性,保障库区下游企业正常运转及库区人民群众的生命财产安全,避免因尾矿库事故而造成的环境污染,保护生态环境。

水利工程和高边坡工程的监测技术发展较快。从20世纪50年代开始,在我国大坝、高边坡变形监测领域开始研究和使用人工变形监测系统,其中应用经纬仪、3 水准仪等监测仪器监测坝体变形的监测方法有视准线法、引张线法、前方交会法、坝面水准测量法以及连通管法等。20世纪70年代末,以传感器为基础的大坝自动化变形监测系统开始应用于葛洲坝水利枢纽、新丰江水利工程等坝体位移的监测中。20世纪90年代开始了大坝及高边坡的GPS自动化变形监测系统的研究,GPS技术已经应用于三峡工程、黄河小浪底水利枢纽工程、浙江天荒坪抽水蓄能电站、湖北清江隔河岩水利工程、龙羊峡水库近岸等大坝或高边坡的变形监测。目前,多传感器数据融合的大坝变形自动监测技术、监测系统的自动化、网络化和信息化技术是大坝和高边坡工程监测领域的研究发展趋势。

当前尾矿库较为落后的安全监测技术和监测手段,不能满足包括企业自身在内的全社会对于提高尾矿库管理水平和安全状况的迫切需要。目前,我国尾矿库的监测技术还处于起步阶段。尾矿库的管涌流土、地震液化等坝体内部致灾因素引起坝坡失稳的预警技术基本属于空白,其监测、预警技术的研究成果较少。特别指出的是,我国尾矿库数量多、分布广,因此尾矿库自动化安全监测系统的设施实施是面向我国尾矿库安全的重大需求,具有良好的应用前景。

二、方案设计

(一)监测指标选择

尾矿库内存有大量尾矿浆沉淀水,水位相对比较稳定;同时,从尾矿坝坝顶排放尾矿时,矿浆向库内流淌的过程中,矿浆水不断向下渗透;此外,汛期大量降雨。这些因素在尾矿坝体内形成一个庞大渗流场。再者,尾矿沉积体属非均值体,排矿部位又需要经常调换;坝体又在不断增高;况且在尾矿库整个服务期间内,矿源及选矿流程有可能改变,尾矿性能自然也会变化。这就是尾矿坝渗流场异常复杂的原因。浸润线即渗流流网的自由水面线,是尾矿坝安全的生命线,浸润线的高度直接关系到坝体稳定及安全性状,因此,对于浸润线位置的监测是尾矿库安全监测的重要内容之一。如图1所示,图中孔隙水压力为0的线即为尾矿坝的浸润线。

图1 某尾矿坝孔隙水压力分布图(单位:kPa)

尾矿库内存有大量尾矿浆沉淀水,库水位监测的目的是根据其水位的高低可判断该库防洪能力是否满足安全要求。具体地说:一个完善的设计在设计文本中会给出防洪所需的调洪水深,并要求在设计洪水位(即最高洪水位)时,要同时满足设计规定的最小安全超高和最小安全干滩长度的要求。因此,对于库水位位置的把握可以直接防止尾矿库在汛期避免洪水漫顶溃坝事故的发生,有利于安全监管部门和企业在汛期来临之前,直观地了解和掌握库水位是否达到了设计要求的汛前限制水位。由此可见,库水位的连续动态监测也是尾矿库安全监测的重要内容之一。图2给出了安全滩长监测法的示意图。

图2 安全滩长检测法

如图2所示,设现状库水位为Hs,先在沉积滩上用皮尺量出[Lg],并插上标杆a,用仪器测出a点地面标高Ha,当Ht = Ha – Hs≥ [Ht] 时,即认为安全滩长满足设计要求。否则,不满足。同理,也有安全超高检测法。

尾矿库发生溃坝灾害,坝体位移是灾害演化过程的直观反应指标,因此对于坝体下游坡变形的掌握,可以及时发现尾矿坝变形率和发展速度,有利于安全监管部门和企业进行科学的应急决策,并及时采取应急对策措施,从而避免灾害的发生或者减少灾害发生造成的危害。图3给出了尾矿库尾矿坝的典型变形矢量图,从图中可知坝体下游坡发生向下和偏向下游的变形。

图3 尾矿坝典型变形矢量图

在定量评价尾矿库的防洪能力时,需要测定滩顶标高和设计最高洪水位下允许达到的干滩标高,当前的检测方法较难准确并快速测定这两个指标,问题在于水边线的界线很不明显,该处又无法进人,通常只能目测。据此推算出来的总干滩长度和调洪干滩长度自然也是极不可信的。因此,在尾矿库安全自动化监测系统中,应增加快速并简捷的标高测定方法。因此,滩顶标高和设计最高洪水位下允许达到的干滩标高,是尾矿库安全监测需要测定的指标。

此外,在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。综上所述,金属非金属矿山尾矿库安全监测系统监测指标包括:浸润线;库水位;滩面标高;坝体位移;视频图像。

(二)监测系统设计 1.浸润线监测

一般选择尾矿库坝上最大断面或者一旦发生事故将对下游造成重大危害的断面为监测剖面。大型尾矿库在一些薄坝段也应设有监测剖面。每个监测剖面应至少设置5个监测点,并应根据设计资料中坝体下游坡处的孔隙水压力变化梯度灵活选择监测点。尾矿坝坝坡浸润线监测仪器分两类。一类埋设测压管,人工现场实测;另一类是埋设特制传感器,进行半自动或自动观测。

浸润线监测仪器埋设位置的选择,应根据《尾矿库安全技术规程》(AQ2006-2005)中规定的计算工况所得到的坝体浸润线位置来埋设。在作坝体抗滑稳定分析时,设计规范规定浸润线须按正常运行和洪水运行两种工况分别给出。设计 6 时所给出的浸润线位置应是监测仪器埋设深度的最重要的依据。

2.库水位监测

一般在库内排水构筑物上设置自动监测仪,将所测信号传给室内接收机处理得到库水位。既准确,又适时。需要指出的是,库内排水构筑物一般位于尾矿库内,排水构筑物周边为尾矿澄清水,因此需要在监测系统布置前,针对特定尾矿库的实际情况,灵活选择施工方案。

3.干滩标高监测

干滩标高的测量不同于其它点标高的测量,这是由尾矿坝自身的运行特点决定的,随着尾矿坝的不断填筑加高,滩顶标高和设计最高洪水位下允许达到的干滩标高是两个动态变化的指标,因此,不能在某一位置架设坚固的不能移动的标高监测设备。采用移动GPS,定期监测尾矿坝滩顶标高和设计最高洪水位下允许达到的干滩标高。该方法灵活简便、具有较高精度、利于位置变化。

4.坝体位移监测

正是由于过去对尾矿坝坝体位移监测认识不足,尾矿坝位移监测手段不多。坝体变形计算至今尚未纳入设计规范。对于较大的尾矿坝,设计仅在坝体表面设置位移观测桩。具体监测手段主要有人工用经纬仪监测和GPS自动监测两种。根据坝的长短至少选择2~3个监测剖面。一般在最大坝高处、地基地形地质变化较大处均应布置监测剖面。

每个剖面上根据坝的高矮,在坝坡表面从上到下均匀设置4~6个监测点。最下面一个点应设置在坝脚外5~10m范围内的地面上,以用于监测尾矿坝发生整体滑动的可能性。

5、视频监测

在尾矿库安全监测系统中,为了实时掌握尾矿库库区的情况和运行状况,通 7 常在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,以满足准确清晰把握尾矿库运行状况的需要。

(三)某尾矿库安全监测系统设计方案

某尾矿库初期坝坝顶标高为163.5m(东坝坝高为20m,西坝坝高为24.2m)。后期坝坝顶标高为220m。后期坝采用上游式尾矿筑坝。最终总库容为1350万m3。2008年1月子坝坝顶标高为201m,沉积滩顶标高约为198m。目前总坝高为58.7m,总库容不到1000万m3,暂属四等尾矿库。当沉积滩顶标高达到199.3m时,就升为三等尾矿库。该尾矿库安全监测系统监测设计方案为:

1、库水位监测

1)监测部位:尾矿库溢水塔上。

2)监测仪器:电子水位传感器(无线传输)。3)仪器数量:1个。

2、滩顶和滩面标高监测

1)监测部位:在东坝和西坝的沉积滩面上各选三条垂直于子坝的直线,直线间距为100 m。在每条线的滩顶和距滩顶70 m处各设一个滩面标高两个点均为监测点。

2)监测仪器:小旗和移动GPS,定期检查小旗标高,并输入软件。3)仪器数量:移动GPS一台,小旗12杆。

3、浸润线监测

1)监测部位:选择了(位于钻孔ZK13以东3~5m处)、Q2(位于钻孔ZK01以东3~5m处)、Q3(位于钻孔ZK23以东3~5m处)、Q4(位于钻孔ZK31以东3~5m处)。

在Q1、Q3剖面的第一、三、五期子坝顶各布设两个浸润线观测点(两点间距0.5m),每个点埋设1个传感器。第一期子坝顶两个传感器的埋深分别为6m和10m(自孔口地面算起);第三期子坝顶两个传感器的埋深分别为8m和13m;第五期子坝顶两个传感器的埋深分别为8m和15m。

在Q2、Q4剖面的第三、五期子坝顶各布设1个浸润线观测点,每个点埋设1个传感器。第三期子坝顶两个传感器的埋深分别为13m;第五期子坝顶两个传感 器的埋深分别为15m。

2)监测仪器:振弦式孔压传感器、光纤渗压传感器。

3)仪器数量:振弦式孔压传感器(10个),光纤渗压传感器(6个)。

4、位移GPS监测

1)监测部位:在东坝最大坝高剖面G1和西坝最大坝高剖面G2的坝坡上各布设4个监测点。4个监测点的位置分别设在坝脚、第一、三、五期子坝顶上。

2)监测仪器:GPS 3)仪器数量:一个基站、八个测点。

5、坝内位移监测

1)监测部位:ZK53、ZK15、ZK24、ZK32以东3~5m,每个断面3个位移监测点。

2)监测仪器:测斜仪+测斜管。

3)仪器数量:SINCO测斜仪一台,测斜管若干长度。

7、可视化监测

在溢水塔、滩顶放矿处、坝体下游坡等重要部位设置视频监测设置,通过现场摄像头实时拍摄并快速传输至控制室的显示屏幕上,能够直观地显现尾矿库生产放矿及筑坝运行等情况。

图4 某尾矿库安全监测系统结构图

图5 某尾矿库安全监测系统安装图

三、运营/管理

(一)设备安装

在尾矿库安全监测系统安装时,应注意以下问题:

1.安装的仪器设备的安全问题。尾矿库一般处在高山峡谷等人员稀少的场地,且尾矿库占地面积较大,因此,仪器设备的防盗问题是面临的安全问题之一。因此,传感器、摄像头及GPS等设备应安装稳固,均应在安全过程中考虑防盗问题,GPS接收机应放置在水泥墩内,避免因为设备主机被盗,导致系统无法正常工作。

2.购买的GPS等设备应该有避雷装置。GPS设备靠接收星历信号来准确测定坝体变形状况,GPS天线应尽量选择轭流圈天线,尽可能保证雷雨天气的设备安全。

3.安装位置应考虑尾矿坝填筑过程高程变化。尾矿库的运行期为尾矿坝不断升高、储存尾砂库容不断增大的过程,与水利工程不同,其坝顶高程随着生产运行期的发展不断变化。此外,对于上游式尾矿坝来说,其坝轴线还要不断向库内前移(如图6所示)。因此,GPS、孔压传感器等设备的埋设位置应能够满足尾矿库整个运行期安全监测和安全管理的需要,应针对整个运行期综合考虑。

图6 上游式尾矿坝筑坝方式图

4.应注意浸润线监测仪器埋设位置。尾矿坝总在不断加高,尾矿坝浸润线还受降雨和放矿水的影响,其深度在一定范围内经常变动。现有的观测设施只能测出进水孔处的水头或孔隙压力。从流网图可知:只有当某个深度的水头与该深度的高程相等时,或者说当某个深度的孔隙压力接近于零时,该深度才是浸润线的位置。监测仪器埋深了,测得的浸润线比实际浸润线低;仪器埋浅了,测不到浸润线。浸润线的位置应根据设计资料综合考虑。

(二)运营管理

基于金属非金属矿山尾矿库安全监测系统,在尾矿库的运行过程中,除了应及时掌握各种监测技术指标的最新数据外,还要有尾矿库安全与否的预警技术和响应方法。本系统认为,应结合尾矿库定量安全评价方法,通过对尾矿库运行期的安全评价和监测指标数据安全度分析后,可以建立尾矿库运营管理的预警技术和响应方法。

1.浸润线指标的预警方法

通过尾矿坝现状的勘察和资料分析,掌握特定尾矿坝的沉积规律、材料分区及概化方法、堆坝材料的物理力学特性指标,通过渗流验算及分析,掌握汛期设计资料允许的最高浸润线高程。该指标即时浸润线监测指标的预警及响应标准。

其中,渗流验算的计算方法如下所示: 渗流分析的基本方程为:

式中,[K]为透水系数矩阵;{H}为总水头向量;[M]为单元储水量矩阵;{Q}为流量向量;t为时间。

对于等别不高的尾矿库,还可以依据国家标准《构筑物抗震设计规范》中有关尾矿坝浸润线高度的预警指标进行预警。

2.防洪能力的预警方法

防洪能力的预警是避免汛期发生尾矿库漫顶溃坝事故的最有效方法。通过调洪验算得到当前库水位下,设计最高洪水位下尾矿库需要的调洪水深,即可以掌握当前干滩长度是否满足调洪水深的要求。

3.坝体位移的预警方法

通过尾矿坝当前运行现状的有限元强度折减法坝坡稳定性分析,可以近似得到发生极限滑动情况时,坝体一定深度及表面的变形情况,并结合尾矿坝位移监测趋势及变形率的定性判断,可以准确把握尾矿库因受力情况发生位移趋势及变化速率,从而及时预警并采取响应措施,疏散下游群众,并采取积极措施加固坝坡,避免因坝坡失稳发生溃坝的严重危害。

其中,强度折减法计算坝体位移量的计算方法如下所示:

图7 坝坡有限元网格示意图

图7为一坝坡的有限元网格示意图,假定A点为某一单元的一个高斯点,以下关于点的应力分析均以A点为例。设尾矿的抗剪强度指标为c和?,则土的抗剪强度为:

假设尾矿的抗剪强度以某一折减系数F按下式进行折减:

当折减系数较小时,尾矿的抗剪强度较高,整个坝坡基本处于弹性状态。然后逐渐增加折减系数,则尾矿的抗剪强度逐渐降低,坝坡中处于弹性的范围会相应减少。如对于A点,当折减系数增加到某一较大的值时,会不再处于弹性状态,其摩尔-库仑强度包线会下移至与应力摩尔圆相交。

当折减系数继续增加,尾矿的抗剪强度进一步减小,坝坡的塑性区会进一步增大;当折减系数增加到某一数值时,塑性区形成连通的区域,尾矿沿该剪切面发生不收敛的塑性剪切变形。此时认为坝坡发生破坏,强度折减系数即认为是坝坡的整体安全系数;滑裂面的位置可根据位移增量等值线或最大剪应变增量等值线的疏密来确定,也可根据破坏区域的范围来判断。

基于刚体极限平衡理论的坝坡稳定分析方法已相当成熟且广泛应用于尾矿坝在内的边坡稳定分析中。然而,该法在处理荷载条件和边界条件复杂的边坡时常遇到困难。基于强度折减的有限元法,能够处理复杂荷载和边界条件,算法先进,可以更为准确地分析尾矿坝的坝坡稳定性,为尾矿库安全监测位移指标的预警提供依据。

4.注重与日常巡检工作结合

尾矿库安全监测系统的实施,可以使管理者在主控制室内能够及时把握尾矿库的最新动态和监测指标信息,但是,尾矿库安全监测系统不能完全代替尾矿库日常巡检工作,应与日常巡检结合,通过监测指标和日常巡检结合的比对,能够更为科学的掌握尾矿库的安全状况和运行特点。

四、产品映射

1.孔压传感器的技术要求

1)准确度高,灵敏度高,稳定性好,体积小,重量轻,直接频率输出,激励电路封装在水密壳体内。2)测量范围:0.1、0.2、0.3、0.6、1.0、3.0、6.0、10.0、MPa(对应于10-1000m水深)。

3)准确度:±0.5%FS。

4)可直接用于江河、湖泊、海水的深度和液体压力的测量,也可用作剖面系统的深度传感器。

2.GPS设备的技术要求

1)GPS接收机及其配套设备,要求包括从数据采集、集中传输、解算处理、显示和记录及避雷和防盗等安全保护设施的全部设备。

2)精度要求,水平:3mm+0.5ppm ,垂直:5mm+0.5ppm;上述精度指标要求有国家光电检测中心等权威机构的检测结果,并具有权威机构颁发的证书。

3)解算软件上有各个GPS接收机的独立监控模块,通过解算软件,可以在计算机中实时显示具有上述精度的各个GPS接收机的坐标和位移量,并能够实时记录在文本文件中。

4)GPS接收机天线为轭流圈天线。5)具有避雷设施及其它安全保护措施。

五、标准支持

在尾矿库安全领域,技术标准主要参照《尾矿库安全技术规程》(AQ2006-2005)。该标准有关尾矿库安全监测系统的规定包括以下内容:

1.4级以上尾矿坝应设置坝体位移和坝体浸润线观测设施。必要时还宜设置孔隙水压力、渗透水量及其浑浊度的观测设施。

2.做好日常巡检和定期观测,并进行及时、全面的记录。发现安全隐患时,应及时处理并向企业主管领导报告。

3.尾矿库运行期间应加强浸润线观测,注意坝体浸润线埋深及其出逸点的变化情况和分布状态,严格按设计要求控制。

4.尾矿库滩顶高程的检测,应沿坝(摊)顶方向布置测点进行实测,其测量误差应小于20mm。当滩顶一端高一端低时,应在低标高段选较低处检测1~3个点;当滩顶高低相同时,应选较低处不少于3个点;其他情况,每100m坝长选 较低处检测1~2点,但总数不少于3个点。

5.根据尾矿库防洪能力和尾矿坝坝体稳定性确定,分为危库、险库、病库、正常库四个等级。除正常库外,前三类从文字上看,只是程度有所不同。尾矿库安全度定义紧紧依靠尾矿库安全监测系统中设定的监测指标来评判。

例如,危库是指安全没有保障,随时可能发生垮坝事故的尾矿库,危库必须停止生产并采取应急措施,危库定义见图8。

图8 尾矿库安全度中危库的定义 尾矿库安全度中同时满足图9四个工况的尾矿库为正常库。

图9 尾矿库安全度中正常库的定义

综上所述,尾矿库安全监测系统能够紧扣我国现行尾矿库安全技术标准,具有较大的实用意义和价值。

六、标准化程度

尾矿库安全监测系统监测的浸润线、库水位、滩面标高、坝体位移、视频图像,均能够为尾矿库日常安全管理及尾矿库安全运行服务。我国尾矿库中85%以上为上游式尾矿坝筑坝,该系统对于上游式筑坝的尾矿库具有良好的应用前景,今后监测系统若能与不同等别尾矿库相结合,上升到安全技术标准,可以全面提高我国尾矿库安全管理水平,减少我国尾矿库事故发生的数量,保障尾矿库库区人民生命财产、环境安全及社会稳定,为构建和谐社会服务。

七、效果分析

当前,我国安全生产形势依然严峻,工矿商贸领域安全生产重特大事故时有发生,特别是近年来尾矿库事故多发,已引起全社会的高度重视。在《国务院关 于实施国家突发公共事件总体应急预案的决定》(国发〔2005〕11号)中明确要求 “科技部、教育部、中科院、社科院、工程院、中国科协等有关部门和科研教学单位,要积极开展公共安全领域的科学研究;加大公共安全检测、预测、预警、预防和应急处置技术研发的投入,不断改进技术装备,建立健全应急平台,提高我国公共安全科技水平”。在《国家中长期科学和技术发展规划纲要(2006-2020)》中把“公共安全”问题列入了国家科技发展的“重点领域”,要重点研究开发地震、台风、暴雨、洪水、地质灾害等监测、预警和应急处置关键技术,森林火灾、溃坝、决堤险情等重大灾害的监测预警技术以及重大自然灾害综合风险分析评估技术。同时,2007年国家安全生产监督管理总局、国家发展改革委、国土资源部、国家环保总局联合组织了全国范围的尾矿库专项整治行动,使得尾矿库的安全运行和管理已引起全社会的广泛关注。

近年来,我国国民经济快速发展,每年以10%左右的速度递增,在经济高速发展的带动下,钢铁、有色金属和水泥等主要原材料工业扩张迅速,随着金属非金属矿山采选业的迅速发展,尾矿库的安全生产和环境安全等问题日益显现,特别需要指出的是,我国尾矿库下游大都为人口密集区、城镇或大型工厂企业,因此,尾矿库的安全备受关注。如何针对我国尾矿库分布特点和现状,提高尾矿库安全管理水平,是摆在全社会的一个重要问题。金属非金属矿山尾矿库安全监测系统的逐步实施和推广,可以大幅度提高我国对于尾矿库溃坝灾害机理的认识水平,全面提升尾矿库安全监管和日常管理水平,增强企业、社会、政府对于尾矿库灾害的预警响应能力,建立更便于尾矿库运行期安全管理和风险控制的溃坝风险综合评判方法。特别需要指出的是,我国尾矿库数量多、分布广,金属非金属矿山尾矿库安全监测系统将具有广泛的市场前景和重要的应用价值。

第三篇:山洪灾害监测预警系统项目方案

山洪灾害监测预警系统

项目方案

目录

第一章 项目概述..................................................................................................3 1.1 项目背景......................................................................................................................3 1.2 建设目标......................................................................................................................4 1.3 建设原则......................................................................................................................5

第二章 需求描述及分析......................................................................................6 2.1 概述..............................................................................................................................6 2.2 需求描述......................................................................................................................6 2.2.1.业务需求.............................................................................................................6 接口需求.........................................................................................................................12 性能需求.........................................................................................................................13 安全需求.........................................................................................................................13 2.3 需求分析....................................................................................................................13 2.4 系统涉众分析............................................................................................................13 2.5 功能需求分析............................................................................................................15 2.6 水雨情监测系统........................................................................................................15 第三章 总体设计................................................................................................28 3.1 总体设计目标............................................................................................................28 3.2 总体设计原则............................................................................................................29 3.3 总体逻辑架构设计....................................................................................................29 3.4 网络系统设计............................................................................................................31 3.5平台选择....................................................................................................................32 3.6 标准规范设计............................................................................................................33 第四章 详细设计................................................................................................34 4.1 技术架构设计............................................................................................................34 4.1.1设计思路..............................................................................................................34 4.1.2设计原则..............................................................................................................36 4.2 设计安全....................................................................................................................38 4.3 用户界面设计............................................................................................................38 第五章 技术支持和服务....................................................................................40 5.1 技术支持....................................................................................................................40 5.2 售后服务....................................................................................................................41

第一章 项目概述

1.1 项目背景

山洪灾害是山丘区在一定强度或持续的降雨下,因特殊的地形地质条件而发生的自然灾害,它具有突发、破坏性大、防治困难的鲜明特点,山洪及其诱发的泥石流和滑坡,往往对局部地区造成毁灭性灾害。山洪灾害具有突发性强、点多面广、破坏力大等特点,往往导致人员伤亡,房屋、田地、道路、桥梁等被毁,甚至导致水库、塘坝、堤防溃决,给国民经济和人民生命财产造成严重危害。

我国是一个多山的国家,山丘区面积约占国土面积的三分之二。据调查,全国2100多个县级行政区中,有1500多个在山区,聚集了全国56%的人口。由于山丘区居住的人口数量多、密度大、分布广,以及典型的季风气候导致的降雨时空分布不均和复杂的地形地质因素等,每年汛期,居住在山丘区的广大群众的生命财产安全都面临山洪、泥石流和滑坡的严重威胁,其中7400万人直接受到影响。

山洪灾害的防御策略是“以防为主,防重于抢”,防御防治的方法是既要采取工程措施,提高工程防洪标准,也要采取非工程措施,建立综合防洪减灾体系,提高防灾抗风险能力。

综上所述,建立山洪灾害监测预警系统,是防治山洪灾害的一项重要的非工程性措施。

1.2 建设目标

山洪灾害监测预警系统主要包括水雨情监测系统和预警系统(系统结构见图1.2-1)。为更好地发挥系统的防灾减灾作用,还需建立群测群防的组织体系,加强宣传培训。

水雨情监测系统主要包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。乡(镇)、村自身预警的监测设施,一般以简易的为主;县级以上可根据经济状况和山洪灾害特点,布置有一定技术含量、实用、先进、自动化程度较高的设施。汇入山洪灾害防治信息汇集及预警平台的水雨情监测信息以县级以上的自动遥测信息为主,群测群防水雨情监测信息以乡(镇)、村简易观测信息为主。根据我国山洪灾害范围广、成因复杂的特点,要加密现有水文气象部门的监测站网,以控制水雨情,及时发布预警信息。

预警系统包括基于平台的山洪灾害防御预警系统和群测群防预警系统。基于平台的山洪灾害防御预警系统主要由信息汇集子系统、信息查询子系统、预报决策子系统和预警子系统组成,在县级以上防汛指挥部门建立,山洪灾害严重的区域应建立该系统,以获取实时水雨情信息,及时制作、发布山洪灾害预报警报;系统一般要求具有水雨情报汛、气象及水雨情信息查询、预报决策、预警、政务文档制作和发布、综合材料生成、值班管理等功能,并预留泥石流、滑坡灾害防治信息接口。群测群防预警系统包括预警发布及程序、预警方式、警报传输和信息反馈通信网、警报器设置等;预警信息、预警方式、预警信号等应根据各地的具体条件,因地制宜地确定,预警方式、预警信号应简便,且易于被老百姓接受。

图 1.2-1 山洪灾害监测预警系统结构图

1.3 建设原则

(1)坚持以人为本,以保障人民群众生命安全为首要目标。山丘区暴雨的发生常具突发性,因山高坡陡,洪水汇流快,流速大,加之人口和财产分布在有限的低平地上,往往在洪水过境的短时间内即可造成人员伤亡和财产损失。建设山洪灾害监测预警系统,及时发布预报、警报,保障人民群众生命安全,减少灾害损失。

(2)坚持因地制宜、突出重点的原则。各省(自治区、直辖市)自然条件、经济社会状况不同,山洪灾害的成因及特点、防灾设施、工作基础等也有差别,应根据各地山洪灾害的特点,针对目前防御山洪灾害监测预警工作中存在的问题,总结成功的经验,切合实际地设计和建设监测预警系统。要突出重点,兼顾一般,按轻重缓急要求,逐步完善监测预警系统。

(3)坚持经济实用、稳定可靠、容易实施、便于操作和推广的原则。考虑本地区的暴雨特点、地形地质条件、经济状况、人员分布、交通及通信条件等实际状况,制定监测预警系统设计方案并组织实施。既要利用遥测、通讯、网络和地理信息系统等先进技术,又要充分考虑山丘区的实际条件,可以采用人工观测简易雨量筒、手摇报警器、无线广播、敲锣打鼓等适合当地条件的监测预警方式方法,扩大系统覆盖面,达到既能有效解决监测、通信及预警问题,又能节约投资的目的。同时要保证系统稳定可靠、经久耐用,尽可能地降低使用运行成本。

(4)遵循相关规程、规范。系统设计要以现行的相关水文监测、通信系统组网、软件开发、数据库构建等方面的规程、规范为依据;各种构件优选符合国家标准的型材和通用件,以利于施工的质量控制和系统运行的维护管理。

(5)充分利用现有气象、水文及地质灾害监测预警网,系统建设要与相关行业的规划、建设相协调。目前气象预报站网已基本布设到县级,水情预报站网按流域设置,地质灾害监测站在重点地区也设到县级。应充分利用现有的气象、水文、地质灾害监测预警站网,雨量站网建设要与气象发展规划协调,山洪监测预警要与地质灾害的监测预警相结合。

(6)充分利用已有资料和成果,并与国家防汛指挥系统相衔接。分析确定山洪灾害预警指标、制定监测预警方案等,要充分利用已有资料、成果及积累的经验;山洪灾害监测预警系统是国家防汛抗旱指挥系统的补充,山洪灾害监测预警系统的数据库结构要与国家防汛抗旱指挥系统的数据库结构相统一,技术标准要与国家防汛抗旱指挥系统的标准相衔接。

第二章 需求描述及分析

2.1 概述

山洪灾害监测预警系统就是由水雨情监测系统实时监视水雨情状况,查询统计出雨水情信息,之后由数据汇集系统提供实时天气预报、实时雨量信息、实时/历史台风路径、实时卫星云图等气象信息,滑坡、泥石流等隐患点基本信息及监测信息,并结合群测群防监测到的水雨情信息进行汇集统计,预报给决策子系统,决策子系统经过判断后将危险信息传于预警系统,最后预警系统将信息发给防汛人员,之后在传给社会公众,这样山洪灾害的预警就启动了。

2.2 需求描述 2.2.1.业务需求

2.2.1.1.水雨情监测系统

通过建设实用、可靠的水雨情监测系统,扩大山洪灾害易发区水雨情收集的信息量,提高水雨情信息的收集时效,为山洪灾害的预报预警、做好防灾减灾工作提供准确的基本信息。

水雨情监测系统以雨量监测为主,必要时辅以水位监测和流量监测,设计内容主要包含水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。

水雨情监测系统监测项目主要包括降雨量、水位。站类主要包括雨量站、水位站。雨量站监测雨量信息,水位站监测的信息主要包括雨量和水位。根据山洪灾害预警的需要和各地的建站条件,考虑山洪灾害易发区地形复杂、降雨分布不均、群众居住分散、地方经济发展不均衡等实际情况,水雨情监测站可建成简易监测站、人工监测站和自动监测站。

(1)简易监测站

为扩大水雨情信息的监测覆盖面,在山洪灾害防治区内的村、组设立简易监测站。因地制宜地配置简易的雨量、水位观测设施,采用直观、可行的观测方法进行水雨情信息的监测。利用本地区适用的传播方式进行信息的传输,达到群测群防的目的。

简易雨量站采用有雨观测、下大雨加强观测的工作体制,有条件时及时上报;简易水位站在有雨时或接到通知时观测,水位接近成灾水位时加强观测,有条件时及时上报。

(2)人工监测站

对于无条件建设自动监测站,但拥有公用通信资源(程控电话、移动通信网)的地区,按照人工观测站的技术要求建立相应的水雨情人工监测站。采用人工观测和管理的模式,通过语音或通话报汛进行雨量、水位信息的采集和传输。

人工监测站采用定时观测,定时报汛的工作体制,在暴雨天气状态下则加密观测、增加报汛段次。

(3)自动监测站

根据本地区的通信、经济条件,设立雨量、水位自动监测点。采用有人看管,无人值守的管理模式,配置相应的雨量、水位传感器,以及遥测终端及通信终端设备,实现水雨情信息的自动采集、传输。

自动监测站采用定时自报、事件加报和召测兼容的工作体制;对超短波组网的自动监测站,则采用增量随机自报与定时自报兼容的工作体制;人工置数信息应有反馈确认的功能。

2.2.1.2.信息汇集与预警平台

根据各地山洪灾害防御工作的特点和山洪灾害预警决策的需求,利用通信、计算机网络、数据库应用等技术手段,建设省级或市级或县级防汛指挥部门山洪灾害防治信息汇集与预警平台,为收集山洪灾害防治区水雨情数据信息以及其它部门的相关信息、信息查询、山洪预报决策、预警等服务。

山洪灾害防治信息汇集与预警平台是山洪灾害监测预警系统数据信息处理和服务的核心,主要由计算机网络系统和数据库系统组成。基于平台的山洪灾害预警系统结构见图(2.2-1)。

图2.2-1 基于平台的山洪灾害预警系统结构图

计算机网络系统主要为系统数据接收、处理、加工与信息查询、预报决策、预警与信息发布、信息交换等服务提供硬软件平台。

数据库系统主要为系统维护管理、信息查询与服务、预报决策与预警提供数据信息。在设计信息汇集与预警平台时,各地应结合本地现有的网络结构、通信信道、网管系统、网络设备状况,按照各自的山洪灾害监测预警系统对网络和通信的实际要求,充分利用现有资源,合理制定设计方案。

2.2.1.3.信息汇集、信息查询子系统

信息汇集子系统与信息查询子系统主要包括监测站的实时数据接收处理和其它相关部门的共享与交换信息的处理以及各类信息的查询服务。

信息汇集子系统主要完成平台所辖各监测站的水雨情信息的实时接收、处理和入库。对其它相关部门的共享与交换信息经处理后按规定的数据库表结构存入数据库中。

信息查询子系统主要为防汛决策部门、系统维护管理等部门提供基于WEB方式的各类数据信息的查询服务。

信息汇集子系统主要由数据接收处理单元(硬件设备)和实时数据接收处理软件构成。数据接收处理单元主要由数据接收通信设备、数据接收处理计算机、电源以及设备安装设施和避雷系统组成。

各自动监测站点的水雨情信息通过数据传输信道传输到平台后,进入数据接收处理计算

机,通过数据接收软件实时完成监测站水雨情数据的实时接收处理,并存入数据库中。人工观测的水雨情信息通过语音电话报汛方式自动存入数据库中,或通过其它的人工报汛方式收集后采用人工录入的方式存入数据库中。

对于简易监测站的信息可采用事后整理的形式存入数据库。

对于上级部门转发的相关信息经处理后,按照统一的数据格式存入数据库中。预留气象、国土等部门信息接口,通过信息汇集与预警平台与气象、国土等部门进行信息交换,经处理后存入数据库。

2.2.1.4.预报决策子系统.山洪灾害预报决策子系统是基于平台的山洪灾害预警系统的重要组成部分,为各省级、市级或县级山洪灾害防御指挥部门进行山洪灾害预警提供依据。预报决策子系统包括水雨情分析预报、预警信息生成、子系统维护及管理等3个模块。

山洪灾害预报决策子系统具有水雨情分析预报、预警信息生成、系统维护和管理以及信息输出等功能。将现代信息技术和传统技术融入山洪预报预警工作中,增强山洪灾害预测预警能力,提高防灾、减灾决策的科学性。

预报决策子系统建设内容具体为:(1)水雨情分析预报模块

结合实时水雨情、气象预报信息,根据水雨情分析预报模型,对小流域、中小水库水位、流量进行预测,并输出预测结果(文字、表格或图形)。

(2)预警信息生成模块

根据预报成果及预警指标实时编制预警信息,并及时将预警信息发送至预警平台。(3)系统维护和管理模块

该模块可以对整个系统的内容进行添加和删除,具有控制系统权限的功能。本模块为系统维护管理提供工具。

2.2.1.5.预警子系统

预警子系统建设是在监测信息采集及预报分析决策的基础上,根据预警信息危急程度及山洪可能危害范围的不同,通过适宜的预警程序和方式,将预警信息及时、准确地传送到山洪可能危及区域,使接收预警区域人员根据山洪灾害防御预案,及时采取预防措施,最大限度地减少人员伤亡。

预警子系统主要包括预警信息的获取和预警信息的发布。根据预警信息的获取渠道不同,预警信息的获取分为从各级建立的基于平台的山洪灾害防御预警系统获取信息和群测群

防获取信息两种途径。预警信息的发布主要由各级山洪灾害防御指挥部门或者群测群防监测点上的监测人员通过预警信息传输网络和其它方式完成。预警子系统的组成见图2.2-2。

图2.2-2预警子系统组成图

预警流程

(1)基于平台的山洪灾害防御预警流程

在建立了基于平台的山洪灾害防御预警系统的地区,预警信息由该系统的预报决策子系统制作。根据平台设立的防汛指挥部门的级别不同,分为平台设立在县级、市级防汛部门两种情况。县级防汛指挥部门获取发布的预警信息,各乡(镇)政府接收县级防汛部门发布或下发的预警信息,传输给村、组、户。紧急情况下县级防汛部门可直接对村、组发布的预警信息。基于平台的预警流程见图(2.2-3)。

图2.2-3基于平台的预警流程图

(2)群测群防预警流程

群测群防预警信息的获取来自县、乡(镇)、村或监测点。由监测人员根据山洪灾害防御培训宣传掌握的经验、技术和监测设施观测信息,发布预警信息。县级防汛指挥部门接收群测群防监测点、乡(镇)、村的预警信息,逐级发布。各乡(镇)政府除接收县防汛部门发布或下发的预警信息,还接受群测群防监测点、村和水库、山塘监测点的预警信息。村、组接受上级部门和群测群防监测点、水库、山塘监测点的预警信息。

图2.2-4 群测群防的预警流程图

2.2.1.6.群测群防的组织体系

由于山洪灾害突发性强,从降雨到发生灾害之间的时间短,且往往在灾害发生时断电、断路、断信号,因此群测群防尤为重要。群测群防组织体系为建立县、乡(镇)、村、组、户五级山洪灾害防御责任制体系,群测群防组织指挥机构主要在县、乡(镇)、村一级建立。

1、县级组织指挥机构的构成

在县级设立指挥部,指挥部与县防汛抗旱指挥部合署办公,由县防汛抗旱指挥部统一指挥。

指挥部设政委、指挥长、副指挥长。成员由发改委、水利、国土、民政、气象、财政、建设、交通、公安、卫生等相关职能部门的负责人组成。

指挥部下设办公室、5个工作组(监测组、信息组、转移组、调度组、保障组)及应急抢险队。

2、乡(镇)组织指挥机构的构成

在乡(镇)设立山洪灾害防御指挥机构,指挥机构设指挥长、副指挥长,成员由水利、国土、民政、气象、建设、交通、公安、卫生等相关职能部门负责人组成。指挥机构下设监测、信息、转移、调度、保障等5个工作组和应急抢险队。

3、村组织指挥机构的构成

各行政村设立以村主任为负责人的山洪灾害防御指挥机构,各村应成立以基干民兵为主体的应急抢险队,确定监测预警员,并造花名册报送乡(镇)、县指挥机构备查。

接口需求

图形库中基础电子地图、水利要素分布图以及公用数据专题图等GIS数据,是由大量空间对象组成,这些空间数据的存储和管理主要有两种方式,即电子地图文件和关系数据库表。

文件形式

将不同的电子地图数据以计算机文件的方式存放于计算机中,采用文件目录的方式管理电子地图。在图形数据根目录下分别建立各自的子目录用于存放基础电子地图、水利要素分布图以及公用数据专题图,在各自的子目录下再建立子目录用于存放不同类别的电子地图文件。

由于是以文件的方式管理电子地图,其安全性只依赖于计算机操作系统。关系数据库表形式

近年来,一些GIS应用系统开始采用大型数据库系统进行空间数据的管理,这样可以充分利用RDBMS已有的数据管理功能实现海量空间数据存贮与管理、事务处理(Transaction)、记录锁定、并发控制和数据仓库等功能,利用扩展的SQL语言对空间与非空间数据进行操作,同时可以方便地实现长事务和版本管理。尤其使空间数据与非空间数据得以集成在统一的数据平台,从而促使GIS应用与一般应用的无缝集成。同时 利用关系数据库管理空间数据的

关键在于面向对象的空间数据模型的采用。面向对象的空间数据模型的采用改变了原有GIS中图形与属性分离的概念,反映空间对象的几何图形数据只是作为一个属性字段(如BLOB字段)与其它非空间属性存贮于关系数据表的一行中。这种数据模型可以方便地定义空间对象之间、空间对象与非空间对象之间的关联关系和规则,能更好地对现实世界建模。

目前使用此技术的有ESRI ArcSDE和Oracle Spatial,MapInfo SpatialWare、SuperMap SDX+等。

性能需求

1、对软件系统的各类人机交互操作、信息查询、图形操作等应实时响应;信息查询、操作、输入界面用图形、文字和数据三种方式在计算机上展现,数据表格应具有报表打印功能;系统的操作要求简单易用。

2、采用WebGIS方式执行GIS的分析任务。通过标准的浏览器(如 IE)来访问地图服务,对于水雨情监测、预警响应的相关处理,均要求能在GIS上进行可视化处理查询,并能实现无级缩放,具备等雨量线、等雨量面等绘制功能。推荐采用1:50000的电子地图,如果没有条件,也可采用1:250000的电子地图;

3、速度要求:

WEBGIS响应速度:<5秒; 复杂报表响应速度:<5秒; 一般查询响应速度:<3秒;

安全需求

安全性要求:用户认证、授权和访问控制,支持数据库存储加密,数据交换的信息包加密,数据传输通道加密,可采用64位DES加密算法,发生安全事件时,能以事件触发的方式通知系统管理员处理;

可靠性要求:应能够连续7×24小时不间断工作,平均无故障时间>8760小时,出现故障应能及时报警,软件系统应具备自动或手动恢复措施,自动恢复时间<15分钟,手工恢复时间<12小时,以便在发生错误时能够快速地恢复正常运行,软件系统要防止消耗过多的系统资源而使系统崩溃;

2.3 需求分析 2.4 系统涉众分析 简易观测站:需观测员用透明盛水器皿进行雨量观测,河边需有观测员用水尺桩对水位进行观测。人工观测站:观测员根据水位观测尺按照报讯的要求,以语音、短信或通话方式进行报讯。中心站工作人员记录后将信息录入计算机。自动监测站:无人使用,有人看管,系统自动采集数据。根据地势的不同,采用卫星,超短波,短信,gprs,pstn进行数据传输。5 信息汇集与预警平台:防汛决策部门、系统维护管理部门的工作人员将通过浏览器对信息汇集子系统,信息查询子系统,预报决策子系统,预警子系统进行增加、删除、修改、查询的操作。预报决策子系统:工作人员将得到的信息打印成表格,进行人工报警或自动报警;系统维护模块分三个权限,系统管理员、预报分析用户、信息查询用户。系统管理员掌握预报决策系统的管理权限,并可以对整个系统的内容进行修改、添加和删除,管理员可以通过此模块控制系统的发布权、删除权、表现权等所有事项;预报分析用户可查询、调用相关数据,实现水雨情分析预报,写入预警信息;信息查询用户只能查询其中内容,不能向数据库中更新、删除、写入数据。预警子系统:预警信息的发布主要由各级山洪灾害防御指挥部门或者群测群防监测点上的监测人员通过预警信息传输网络和其它方式完成。根据预警信息获取途径不同,预警发布权限归属不同的防汛负责人(或防汛部门)。建立了基于平台的山洪灾害防御预警系统的地方,预警发布权限归属其对应的防汛负责人(或防汛部门),即:平台建立在县级,预警发布权限归县防汛负责人(或防汛部门)。依靠群测群防进行预警的地区,预警发布权限归属县级、乡(镇)、村的防汛负责人(或防汛部门)和监测员。群防群测组织体系:

(1)在县级设立指挥部,指挥部与县防汛抗旱指挥部合署办公,由县防汛抗旱指挥部统一指挥。

指挥部设政委、指挥长、副指挥长。成员由发改委、水利、国土、民政、气象、财政、建设、交通、公安、卫生等相关职能部门的负责人组成。

指挥部下设办公室、5个工作组(监测组、信息组、转移组、调度组、保障组)及应急抢险队。

(2)在乡(镇)设立山洪灾害防御指挥机构,指挥机构设指挥长、副指挥长,成员由水利、国土、民政、气象、建设、交通、公安、卫生等相关职能部门负责人组成。

指挥机构下设监测、信息、转移、调度、保障等5个工作组和应急抢险队

(3)各行政村设立以村主任为负责人的山洪灾害防御指挥机构,各村应成立以基干民兵为主体的应急抢险队,确定监测预警员,并造花名册报送乡(镇)、县指挥机构备查。

2.5 功能需求分析 2.6 水雨情监测系统

2.3.2.1.1.简易监测站

为扩大水雨情信息的监测覆盖面,在山洪灾害防治区内的村、组设立简易监测站。因地制宜地配置简易的雨量、水位观测设施,采用直观、可行的观测方法进行水雨情信息的监测。

雨量、水位的观测:

(1)雨量观测 :为便于观测员能直观和方便地观测雨量,承水器皿可设计为透明的装置,并根据区域内雨情的临界值或降雨强度,在承水器皿外进行划分或标注明显的预警标志。

(2)水位观测:在岸边修建简易的水尺桩,水尺桩可设计为木桩式或石柱型;对于无条件建桩的观测站,可选择离河边较近的固定建筑物或岩石上标注水位刻度;水位观测尺的刻度以方便观测员直接读数为设置原则,各地应根据当地的实际情况,以现场标注致灾的临界水位值的方法,作为预警的标准。

通信方式:

简易监测站的设站目的是群测群防。当降雨将可能达到临界雨量值或水位将可能达到临界水位值时,观测员可采用人工传递或采用对讲机报告给乡(镇)、村防灾负责人,有条件的可采用电话或手机逐级报送到县级防御指挥部;紧急情况时,可直接向村、组、户发出预警。有条件的地方可给观测员配置对讲机、移动电话等。

2.3.2.1.2.人工监测站

对于无条件建设自动监测站,但拥有公用通信资源(程控电话、移动通信网)的地区,按照人工观测站的技术要求建立相应的水雨情人工监测站。采用人工观测和管理的模式,通过语音或通话报汛进行雨量、水位信息的采集和传输。

人工监测站采用定时观测,定时报汛的工作体制,在暴雨天气状态下则加密观测、增加报汛段次。

雨量、水位观测:

(1)雨量观测:应配置虹吸式雨量观测设备;确定设备的安装方式,设计必要的安装设施;观测员按照报汛的要求,以语音或通话方式进行数据传输。

(2)水位观测:对于新建的水位站需修建水位观测尺和观测道路;观测员按照报汛的要求,以语音、短信或通话方式进行报汛。

通信方式:

人工监测站通常采用语音报汛进行数据传输,测站需要配备电话线路和电话机,中心站配置语音卡和计算机,实现报汛信息的自动接收、处理和入库;对不具备电话通信条件但已

被移动通信所覆盖的地区,测站可配置手机采用移动电话报汛,中心站人工记录校核后录入到计算机。

对于没有公共通信可利用的地区,可根据测站距中心站的距离、地形条件,采用短波通信或超短波通信方式报汛。采用短波通信,测站和中心站均需配置短波电台、天馈线及电源。采用超短波通信测站和中心站均需配置超短波电台、天馈线及电源,距离较远或有阻挡时,需建设中继站进行接力。

2.3.2.1.3.自动监测站

根据本地区的通信、经济条件,设立雨量、水位自动监测点。采用有人看管,无人值守的管理模式,配置相应的雨量、水位传感器,以及遥测终端及通信终端设备,实现水雨情信息的自动采集、传输。

自动监测站采用定时自报、事件加报和召测兼容的工作体制;对超短波组网的自动监测站,则采用增量随机自报与定时自报兼容的工作体制;人工置数信息应有反馈确认的功能。

雨量、水量观测:

(1)雨量观测: A雨量观测场地

①雨量监测站原则上不新建雨量观测场,已建有雨量观测场的站,将雨量传感器放置在雨量观测场内;

②未建雨量观测场的站,则利用屋顶平台予以观测,但安装时应注意与建筑物、树木等障碍物的水平距离为障碍物高度的两倍。

B雨量传感器 ① 承雨口口径:Φ200

+0.6

mm;

② 分辨力:当测站为基本雨量站时,年平均降雨量≥800mm的测站采用0.5mm的雨量传感器,年平均降雨量<800mm的测站采用0.2mm的雨量传感器;对于非基本雨量站,南方湿润地区可选用1.0mm的雨量传感器,北方干旱或半干旱地区可选用0.5mm的雨量传感器;

③ 测量误差(准确度):较大降雨量的误差采用实测降雨量与其自身排水量相比较的相对误差检验;较小降雨量采用绝对误差检验。不同分辨力的雨量传感器量测精度详见表2.4-1 ④环境条件:工作温度0℃~+50℃,工作湿度≤95%(40℃); ⑤可靠性指标:在满足仪器正常维护条件下,MTBF≥25000小时。(2)水位观测: A水位传感器选用

各省(自治区、直辖市)可根据实际情况选用浮子水位计、压力水位计和超声水位计进行水位观测。对已建有水位自记井且可利用的监测站选用浮子式水位传感器;未建井或不能建井的测站,视河流及水情特点配备压力式(压阻式、气泡式)或超声式水位传感器,主要技术指标应满足:

①分辨率:水位传感器的分辨率为1cm。

②测量误差:95%测点的允许误差±2cm,99%测点的允许误差±3cm。③环境条件:工作温度-30℃~+50℃,工作湿度 <95%(40℃)。④可靠性指标:在满足仪器正常维护条件下,MTBF≥25000小时。B水位自记观测井建设要求

适宜新建水位自记观测井的测站,应以建设简易水位自记井为原则。井筒可采用直立式或斜井式,一般可选用水泥管、钢管、铸铁管或PE管;井口直径应根据所采用的浮子式水位计及有关水位观测技术标准进行设计,同时需考虑防淤积的措施。

C气泡压力式水位计安装要求

①气泡压力式水位计应放置在位于基本水尺断面处的仪器房内,其传感器感应探头需设置在水面以下。

②管道敷设时应沿河岸护坡顺坡而下,不能出现负坡,以免感压管内结露,形成水栓。③为解决大变幅水位观测问题,可结合各站实际情况,分多级敷设压力感压气管或至中水处敷设感应探头。

通信方式:

自动监测站的数据传输通信,各省(自治区、直辖市)应根据当地的通信资源及地形条件因地制宜地选用超短波、GSM短信、GPRS、北斗卫星、PSTN通信方式组网。

(1)北斗卫星通信系统

北斗卫星通信系统由卫星及网管中心、监测站、中心站组成,其通信网络结构示意见图2.3-1。在北斗卫星通信网络中,监测站和中心站需配置北斗卫星通信终端及天馈线等主要通信设备。

图2.3-1北斗卫星通信系统网络结构示意图(2)GPRS通信系统

GPRS通信数据传输网络结构示意见图2.3-2。GPRS接入方式主要有Internet接入、专线接入,可根据需求选用。采用GPRS通信组网,监测站需配置GSM/GPRS通信终端,中心站则根据接入方式不同,需配置接入Internet的固定IP或专线。

图2.3-2 GPRS通信组网结构示意图(3)程控电话(PSTN)通信

在程控电话(PSTN)通信网中,监测站和中心站均需申请一门程控电话,并配置有线MODEM和电话避雷器等主要通信及避雷设备。PSTN通信网设备配置见图2.3-3。

图2.3-3程控电话(PSTN)通信设备配置示意图

(4)超短波通信

在超短波通信网中,测站、中继站、中心站所必需的主要通信设备为超短波电台及天馈线、同轴避雷器,其典型的设备配置示意见图2.3-4。

图2.3-4超短波通信设备配置示意图

(5)短信通信

利用短信通信实现数据传输,各地可根据需求采用点对点通信或申请特服号专线连接。用短信通信方式组成数据传输网,在测站需配置短信通信终端及天线、SIM卡,中心站则根据选用的组网方式不同配置短信通信终端及天线、SIM卡或者配置短信专用服务器及专线等,组网结构见图2.3-5。

图2.3-5 GSM通信组网结构示意图

对于有公网覆盖的地区,一般应选用公网进行组网;对于公网未能覆盖的丘陵和低山地区,一般宜选用超短波通信方式进行组网;对于既无公网,又无条件建超短波的地区,则选用卫星通信方式;对于重要监测站且有条件的地区尽量选用两种不同通信方式予以组网,实现互为备份,自动切换的功能,确保信息传输信道的畅通。

2.2.3.1.信息汇集与预警平台

信息汇集与预警平台数据库系统是在选择一个合适的数据库管理平台的基础上建立包括实时水雨情数据库、预报预警成果以及气象数据库、工情数据库、管理数据库和超文本数据库等,以实现数据信息与服务共享的要求。

建立在省或市、县等不同行政区的山洪灾害信息汇集与预警平台对数据库系统的要求不尽相同,因此,可按照各地的具体情况选择合适的数据库操作系统。

数据库操作系统的选型应与当地所建的国家防汛抗旱指挥系统水情分中心的数据库选型相一致。对数据库操作系统的其它要求可根据各省、市、县的实际需求并结合以下几个方面予以考虑:

(1)依照实用的原则和处理的数据量大小以及对分布式应用的支持要求,来选择适当的数据库系统。

(2)为实现数据库数据的实时共享,数据库系统应具有并发控制功能。

(3)在选择专业数据库时必须考虑数据库设计的难易程度。是否便于系统的维护、开发、移植;是否有面向用户的易用的开发工具,先进的数据库开发工具将大大减少系统开发和运行维护的工作量。

(4)数据库系统对数据库管理和维护的支持程度,也是选择数据库系统的一个重要的参考指标。主要是指数据库系统的用户管理、权限管理、数据库备份、数据传递等功能,这些功能将对系统运行的稳定性和安全性有很大的影响。

(5)选择数据库系统是否有比较配套的开发工具支持。(6)数据库系统的升级能力。数据库设计要求:(1)数据库设计内容

信息汇集与预警平台数据库从内容上可划分为属性数据库和图层空间数据库。属性数据库主要包括:水雨情信息数据库、气象信息数据库、工情信息数据库、经济社会信息库、灾情数据库、单位机构信息数据库、图形图像数据库和超文本数据库等。

空间数据库主要包括各省、市或县区域图、行政区划图、流域水系图、水库山塘分布图、报汛站点分布图、防洪工程布置图、交通设施图、安全区和危险区分布图等。

(2)数据库表结构

数据库表结构应按照《国家防汛指挥系统工程》对实时雨水情数据库表结构、防洪工程

数据库表结构等进行设计;其它各类数据库应结合各地的灾害特点、实际需要和资料情况,进行合理设计。

2.2.3.2.信息汇集、信息查询子系统

1、信息汇集子系统

信息汇集子系统与信息查询子系统主要包括监测站的实时数据接收处理和其它相关部门的共享与交换信息的处理以及各类信息的查询服务。

根据平台接收的数据信息特点,数据接收处理软件总体结构设计应满足如下要求:(1)能实时接收自动监测站的水雨情数据和工况信息;(2)具有对自动监测站进行远程控制功能;

(3)能实时处理接收的数据信息,并分类存入数据库中;(4)具有数据查询与维护功能;(5)具有人工数据的录入功能;

(6)软件运行环境支持中文Win2000/中文WinXP等操作系统。

2、信息查询子系统

为了实现对山洪灾害监测信息的访问、查询和比较,需要开发与之配套的查询系统。针对山洪灾害防御的实际需求和信息的查询方便,结合现代信息处理技术、网络技术和GIS技术,在水雨情信息、气象信息、工情信息、灾情信息、山洪灾害防治预案、规章制度等多种信息一体化集成基础上,提供对数据库水雨情、气象基础数据、工情、灾情的查询、检索及分析对比功能。

系统开发要求:

(1)以数据库为接口,进行数据查询软件的设计和开发,查询结果应采用表格、图形等方式进行展示。

(2)信息查询软件具有通用性,信息的范围、内容能够实现自定义。

(3)具有强大的信息输出和表现功能。除具备基础信息、水情信息、雨情信息、统计信息和分析信息数据表现外,还具备图形化查询功能,如:过程线、柱状图等多种方式展示,展示方式可由用户选择。

(4)对整编信息能分时段查询,如:可以进行年、月、旬、日等时段的查询和统计值的查询。

(5)丰富的系统页面可以对数据进行分析、比较,具有生成各项统计报表的功能和打印功能。

(6)软件可采用B/S和C/S两种结构相结合的模式开发,为了获得较好的系统运行效率,有条件的建议采用B/S方式来组织软件体系,同时充分利用C/S结构的优点,系统的部分辅助性的功能使用C/S结构实现。没有条件的可采用C/S体系结构。设计内容和功能要求:

2.2.3.3.预报决策子系统

2.2.3.3.1.水雨情分析预测模块

对于有水文资料的流域,可以利用已有水文资料采用常规的方法编制预报方案。但对于大部分小流域而言,水文站点稀少,水文资料缺乏,因此可以采用以下几种预报方法:

(1)降雨径流预报方法

产流根据各地实际情况可采用折减系数(径流系数)、降雨径流关系、初损后损等方法计算。

汇流根据山洪沟的实际情况,可采用单位线(经验单位线、瞬时单位线、综合单位线)、汇流系数(曲线)等方法计算。

有条件时可利用DEM和GIS提取的山洪灾害防治区小流域的特征,建立分布式洪水预报模型。

(2)上下游水位(流量)相关法

对于上、下游有水位(文)站的河流,则可运用历史水位、流量资料,建立上游水位、流量和下游水位、流量相关关系。对于上游有水位(文)站,下游(或灾害点上游)没有水位(文)站的河流,但下游可以调查到较大洪水的洪峰水位,则可利用上游的实测水文资料和下游的调查资料,建立上下游水位相关关系,编制水位相关预报方案。

(3)雨量水位(流量)相关法

对于流域面积小、汇流时间短的山洪沟,根据实测或调查的降雨量和灾害点上游实测或调查的水位(流量)资料建立流域降雨与灾害点上游的水位(流量)相关关系,编制预报方案。

(4)比拟法

对于无水文资料的山洪沟,可借用临近水文气象和地理条件相似流域的预报方案,必要时对相关参数进行适当调整。在收集到水文气象资料以后,修订相关参数或重新编制预报方案。

以上编制的预报方案,在有实测资料或有新的调查资料后应及时进行修编和重新编制。

2.3.2.3.1.预警信息生成模块

1、预警指标

发的预警指标是指触发山洪灾害的雨、水情临界值。山洪灾害预警条件、预警时间以是否接近、达到、超过临界雨量和成灾水位(流量)为主要的依据。预警指标的确定,需要分析利用现有历史灾害、雨量、水位(流量)资料,通过分析计算得到,缺乏资料的山洪灾害

地区可以采用内插法、比拟法、山洪灾害实例调查法、灾害与降雨频率分析法等方法确定本地区的临界雨量、成灾水位(流量)。

(1)临界雨量分析计算

一般情况下,南方湿润地区年降雨量大的地区,临界雨量较大,北方干旱地区年降雨量小的地区,临界雨量较小。但各灾害点因地质、地形、气候等条件不同临界雨量差异较大,各地区应根据当地降雨特点,利用现有资料分析计算确定各灾害点的临界雨量。随着资料的积累及灾害的发生,临界雨量应不断进行校核与修订。

(2)成灾水位(流量)分析计算

对于已布设水位站或水文站的灾害点,只需要将历史上发生的所有山洪灾害对应的水位(流量)进行统计,其最小值就是成灾水位(流量)初值,根据灾害点的地形资料确定成灾水位(流量)。对于过去未设但拟布设水位或水文站,站址对应灾害点的成灾水位(流量)可由灾害点的成灾水位(流量)换算得到。换算方法一般可采用水面比降法、河道比降法等。设站以后,根据水文观测资料对成灾水位(流量)进行校核与修订。

2、预警信息编制

根据实时水雨情、水文气象预报信息及预警指标,决定是否编制预警信息。山洪灾害预警等级一般分为三级。具体内容如下:

(1)Ⅲ级警报

当预报有强降雨发生,降雨可能接近或达到临界雨量,或者预报水位(流量)可能接近或达到成灾水位(流量),将可能发生山洪灾害时,编制Ⅲ级预警信息。

(2)Ⅱ级警报

当已有强降雨发生,预报降雨可能达到临界雨量,降雨还将持续,或者预报水位(流量)可能达到成灾水位(流量),山洪灾害即将发生时,编制Ⅱ级预警信息。

(3)Ⅰ级警报

当已有强降雨发生,实测降雨接近或达到临界雨量,且前期降雨量接近山洪形成区土壤饱和含水量,预报降雨将持续,实测水位(流量)接近或达到成灾水位(流量),水位(流量)仍在上涨,将发生严重山洪灾害时,编制Ⅰ级预警信息。

3、系统维护和管理

针对现有的水雨情数据、预报方案、灾情数据、预警指标等进行系统维护和管理,对数据进行编辑、录入及各类参数设定等。

(1)水雨情数据维护

山洪灾害防治区实时雨量监测信息,各中小流域、中小型水库水位、流量实时监测信息,是系统的数据支撑和运行基础,建立水雨情数据的维护模块以对这些信息进行简单的录入、数据的编辑及对数据的检查和分析,能有效的保证数据的正确性和合理性。

(2)预报方案管理

为不同的地区指定相应的预报方案并存入方案库,同时为各预报方案设定初始的模型计算参数,建立预报方案管理维护模块和模型参数维护模块,方便不同地区之间的预报方案管理。

(3)预警指标设置

设置预警指标,对触发山洪灾害的雨、水情临界值进行维护和管理,制定各地区的临界雨量表、成灾水位(流量)表。建立预警指标数据库,随着资料的补充和系列的延长,对预警指标进行补充、更新等。

(4)权限管理

系统对用户名和密码等资料可进行添加、删除和维护,并对不同用户实行分级管理。具有系统管理员身份才能对系统进行维护管理。

预报决策子系统用户分三级进行管理:系统管理员、预报分析用户和信息查询用户。山洪灾害监测预警系统平台所在地(省、市、县)设置系统管理员权限和预报分析用户;其他用户为信息查询用户。

为保证系统运行安全,系统管理员掌握预报决策系统的管理权限,并可以对整个系统的内容进行修改、添加和删除,管理员可以通过此模块控制系统的发布权、删除权、表现权等所有事项;预报分析用户可查询、调用相关数据,实现水雨情分析预报,写入预警信息;信息查询用户只能查询其中内容,不能向数据库中更新、删除、写入数据。

2.2.3.4.预警子系统

1、预警信息发布(1)预警发布权限

根据预警信息获取途径不同,预警发布权限归属不同的防汛负责人(或防汛部门)。建立了基于平台的山洪灾害防御预警系统的地方,预警发布权限归属其对应的防汛负责人(或防汛部门),即:平台建立在县级,预警发布权限归县防汛负责人(或防汛部门)。

依靠群测群防进行预警的地区,预警发布权限归属县级、乡(镇)、村的防汛负责人(或防汛部门)和监测员。

(2)预警发布内容

预警发布内容包括:暴雨洪水预报信息,暴雨洪水监测信息,水库及山塘水位监测信息,降雨、洪水位是否达到临界值,流量监测信息预警信息等级等。

(3)预警信息发布对象

预警信息发布对象为可能受山洪威胁的城镇、乡村、居民点、学校、工矿企业等。根据预警等级确定不同的发布对象。

(4)预警发布方式

预警发布方式分为通信网络畅通下的预警发布方式和无通信网络(或通信网络中断)下的预警发布方式两种情况。建立短信预警发布平台和电话传真预警发布平台,在规定的条件下自动发送山洪灾害预警信息。

通信网络畅通时,预警信息发布单位或责任人利用internet公网、语音电话、手机通话、手机短信、传真、有线电视、广播等及时向下发布预警信息,各级根据接收的预警信息,按照预案采取相应的措施。

在无通信网络(或通信网络中断)时,根据当地预警设备配置情况和山洪灾害危险情况,按照预案中事先确定的报警信号,利用发送信号弹、鸣锣、启动报警器和无线广播、高音喇叭喊话等方式,向灾害可能威胁区域发送警报。

短信预警发布平台提供短信群发功能,能向列表中的各级主管领导、责任人自动发送山洪灾害预警短信。

电话传真预警发布平台能自动向列表中的各个单位传送山洪灾害预警信息或调度指示文件等,克服人工拨号打电话、发传真,费时易出差错的问题。

(5)预警信息发布软件开发

预警信息发布软件主要完成预警信息的处理和发布。为了获得较好的系统运行效率和方便使用,有条件的地区建议采用B/S体系结构、并充分利用C/S结构的优点进行开发,没有条件的地区可采用C/S体系结构开发。

预警信息发布软件开发要求如下:

① 能提供电话、短信、广播通知自动发布功能,可实现预警信息自动传真群发布、短信发送和广播通知等。

② 软件开发应基于省、市、县山洪灾害数据汇集及预警平台,利用山洪灾害预警平台统一设计的数据库结构。

③ 系统要求做到界面清晰,接口标准,操作简单。

2、预警信息通信方式

根据山洪灾害的特点,可用于预警信息传输的通信方式有电视、广播、Internet网络、电话、传真、移动通信、短信、报警器、锣鼓号等,各地可根据当地经济状况、现有通信资源条件以及各种通信方式的适用性,并考虑山洪灾害预警信息传输的时效性和紧急程度,选用适宜的通信方式组建山洪灾害预警信息传输通信网。

为保障预警信息能及时发布到乡(镇)、村、组、户,有条件的县与乡(镇)应尽可能建立双信道的通信网络,以保证一种信道通信中断时预警信息能够顺利传递。

(1)固定时间发布的预警信息,接收的对象主要是公众,应充分考虑通信覆盖面,综合选择多种方式同时发布,可选择电视、广播、短信、自动传真等与群众生活联系紧密的通信平台。

(2)不定时的山洪灾害警报信息,时效性要求比较强,通过电话、移动电话等直通方式进行通信。对于特别紧急的情况,警报传输通信必须各种方式并用。当公共通信(固定电话、移动电话)均遭山洪破坏而失效时,有条件的地区可采用卫星通信方式进行应急通信。

(3)对于公共通信条件较好、且运行维护费用有保障的地区可综合运用固定电话、移动通信通话和短信、传真、internet网络、有线电视和广播警报系统的多种方式。

(4)山高、地形复杂、人口密度低、缺乏电力供应的山丘区,电话、传真、internet网络等发布方式都难以实现,或者山洪灾害造成这些信息发布方式都中断时,可采用短波通信或超短波通信进行预警信息传输。

(5)对于没有公共通信条件,人口居住比较分散的偏僻山村,可以通过广播、喇叭、锣鼓、报警器、烟火、人力等根据已设定的预警信号发布预警信息。

第三章 总体设计

3.1 总体设计目标

山洪灾害监测预警系统主要包括水雨情监测系统和预警系统。为更好地发挥系统的防灾减灾作用,还需建立群测群防的组织体系,加强宣传培训。

水雨情监测系统主要包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。乡(镇)、村自身预警的监测设施,一般以简易的为主;县级以上可根据经济状况和山洪灾害特点,布置有一定技术含量、实用、先进、自动化程度较高的设施。汇入山洪灾害防治信息汇集及预警平台的水雨情监测信息以县级以上的自动遥测信息为主,群测群防水雨情监测信息以乡(镇)、村简易观测信息为主。根据我国山洪灾害范围广、成因复杂的特点,要加密现有水文气象部门的监测站网,以控制水雨情,及时发布预警信息。

山洪灾害预警系统由基于平台的山洪灾害防御预警系统和山洪灾害群测群防预警系统组成。基于平台的山洪灾害防御预警系统中的山洪灾害防治信息汇集及预警平台是该预警系统数据信息处理和服务的核心,主要由信息汇集子系统、信息查询子系统、计算机网络子系统和数据库子系统组成;基于平台的山洪灾害防御预警系统主要由信息汇集子系统、信息查询子系统、预报决策子系统和预警子系统组成,在县级以上防汛指挥部门建立,山洪灾害严重的区域应建立该系统,以获取实时水雨情信息,及时制作、发布山洪灾害预报警报;系统一般要求具有水雨情报汛、气象及水雨情信息查询、预报决策、预警、政务文档制作和发布、综合材料生成、值班管理等功能,并预留泥石流、滑坡灾害防治信息接口。群测群防预警系统包括预警发布及程序、预警方式、警报传输和信息反馈通信网、警报器设置等;预警信息、预警方式、预警信号等应根据各地的具体条件,因地制宜地确定,预警方式、预警信号应简便,且易于被老百姓接受。

群测群防的组织体系主要包括建立县、乡(镇)、村、组、户五级山洪灾害防御责任制体系,明确县、乡(镇)、村、组防御山洪灾害的组织机构、人员设置、职责等。通过建立群测群防责任制组织体系,保障县、乡(镇)、村、组、户防灾信息上传下达畅通,监测、预警、避灾措施落实。

宣传培训包括防灾知识的普及,防灾准备,监测、警报设施的维护和操作,预案的宣传、演练等。

3.2 总体设计原则

(1)可靠性:系统应保证长期安全地运行。系统中的硬软件及信息资源应满足可靠性设计要求。

(2)安全性:系统应具有必要的安全保护和保密措施,有很强的应对计算机犯罪和病毒的防范能力。

(3)容错性:系统应具有较高的容错能力,有较强的抗干扰性。对各类用户的误操作应有提示或自动消除的能力。

(4)适应性:系统应对不断发展和完善的统计核算方法、调查方法和指标体系具有广泛的适应性。

(5)可扩充性:系统的硬软件应具有扩充升级的余地,不可因硬软件扩充、升级或改型而使原有系统失去作用。

(6)实用性:注重采用成熟而实用的技术,使系统建设的投入产出比最高,能产生良好的社会效益和经济效益。

(7)先进性:在实用的前提下,应尽可能跟踪国内外最先进的计算机硬软件技术、信息技术及网络通信技术,使系统具有较高的性能指标。

(8)易操作性:贯彻面向最终用户的原则,建立友好的用户界面,使用户操作简单直观,易于学习掌握。

3.3 总体逻辑架构设计

由于山洪预见期短、致灾快,因此为有效防御山洪灾害,需特别加强县级以下行政区的防灾工作。根据我国目前县级以下行政区的经济社会发展状况、技术水平、防灾特点以及各级防汛部门在防灾中的作用,提出以下三种监测预警系统建设基本模式:

模式一:在县级行政区建立基于平台的山洪灾害预警系统,省、市、县、乡(镇)、村等各方面的山洪灾害防治相关信息汇集于平台,县级防汛部门根据系统信息,及时发布预报、警报。同时县、乡(镇)、村、组建立群测群防的组织体系,开展监测、预警工作。

这种模式适宜于山洪灾害严重,县级防汛部门有能力建立山洪灾害防治信息汇集及预警平台,省、市、县信息实现共享,县级防汛部门能制作山洪灾害预报警报的县级行政区。

模式二:县、乡(镇)、村、组建立群测群防的组织体系,依靠县、乡(镇)、村、组的

监测设施,结合省级、市级防汛部门的信息、指令,开展监测预警工作。县、乡(镇)、村根据暴雨、洪水及水库(山塘)等监测信息,发布预报警报。一般按县→乡(镇)→村→组→户的次序进行山洪灾害预警;遇紧急情况(暴雨洪水陡涨、水库山塘溃坝等)村可直接报告县级防汛指挥部和乡(镇)防汛指挥机构,并可直接发布预警。

这种模式适宜于尽管山洪灾害严重,但经济条件差,不具备建立山洪灾害防治信息汇集及预警平台的人、材、物等条件的地区;或者山洪灾害总体不严重的区域。我国部分省级行政区面积大、人口密度较小,市、县经济发展水平较低,山洪灾害防御立足于群测群防,依靠建立县、乡(镇)、村、组防御山洪灾害的组织体系和加强宣传培训,采用简易设施开展山洪灾害的监测预警工作。

模式三:在市级行政区建立基于平台的山洪灾害预警系统,省、市、县收集的山洪灾害防治相关信息汇集于系统,市级防汛部门根据系统信息,及时发布预报、警报;县级防汛部门配置信息接受终端,与市级防汛部门山洪灾害防治信息汇集及预警平台信息实现共享,县级以下部门执行市级防汛部门的指令。同时县、乡(镇)、村、组建立群测群防的组织体系,开展监测、预警工作。

这种模式适宜于市级行政区内局部地区山洪灾害严重,县级行政区经济条件差,防汛部门力量相对较弱,市级防汛部门更有能力建立信息汇集及预警平台,发布预报、警报的区域。

对不同山洪灾害特点、不同经济社会发展水平的区域要因地制宜地制定山洪灾害监测预警系统建设方案。地处东部季风区、山洪灾害严重的区域,若经济发展水平相对较高,宜采用模式一;省级行政区面积大、人口密度小,市级、县级行政区经济发展水平较低的区域,宜主要采用模式二;对市级行政区局部地区山洪灾害严重,县级行政区经济发展水平较低,防汛部门力量相对较弱的区域,可采用模式三。

3.4 网络系统设计

(1)网络体系结构

计算机网络对外互联采用TCP/IP协议,局域网内部应支持TCP/IP等协议。目前比较流行和成熟的计算机网络系统应用集成的体系结构模式主要有客户/服务器(CLIENT/SERVER,简称C/S)两层体系结构模式以及浏览器/服务器(BROWSER/SERVER,简称B/S)三层体系结构模式。B/S结构具有良好的扩充性,对客户端没有任何特殊要求,对用户数也没有限制,只需支持网络并具有浏览器功能即可。B/S模式只在服务器端安装应用程序,客户端不须安装程序,直接使用IE或其他浏览器即可使用,修改应用程序只与服务器有关,客户端不作任何改动,操作简单,维护方便。C/S结构具有较强的互动性,特别有利于系统的维护和复杂功能的实现,可以对信息进行各种操作,在高速网络环境下可以满足不同用户的需要。

因此,根据上述各自特点,系统信息的查询与发布等应用系统建议采用B/S三层体系结构,信息汇集子系统则可采用C/S体系结构。

(2)网络拓扑结构

山洪灾害信息汇集与预警平台计算机网络结构采用以太网交换技术。千兆位以太网或快速以太网交换技术成熟,组网性价比高,是当前的主流网络交换技术,本平台的计算机网络系统可采用千兆位以太网或快速交换式以太网技术,拓扑结构采用星形结构。

对外数据信息共享与交换可通过路由器与光纤或专线连接的方式实现。在设计时提出各条线路的带宽要求。

注:三种监测站通过传输通信网将信息传入信息汇集系统,根据当地不同的情况选择不同的传输方式。对于有公网覆盖的地区,一般应选用公网进行组网;对于公网未能覆盖的丘陵和低山地区,一般宜选用超短波通信方式进行组网;对于既无公网,又无条件建超短波的地区,则选用卫星通信方式。

3.5平台选择

服务端操作系统:Microsoft Windows Server 2003 服务端数据库:Microsoft SQL Server 2008 服务端Web服务:IIS 5.0以上 GIS平台:Supermap或Topmap 客户端操作系统:Microsoft Windows XP SP2以上 客户端浏览器

:Internet Explorer 5.5以上

网络版杀毒软件:根据各试点县具体用户量配置客户端;

3.6 标准规范设计

根据贵方项目的要求和国家有关法规的要求,我们经过认真研究、分析设计本系统方案。该系统具有性能先进、质量可靠、经济实用等特点,而且该系统具有方便扩展、与其它信息系统实现无缝连接的能力。为实现安防系统的可视化管理奠定了基础。

依据的相关规范包括:

《工业企业通用设计规范》(GBT42-81)《中华人民共和国公共行业标准》(GA/T70-94)《安全防范工程程序与要求》(GA/T75-94)

《电气装置安装工程施工及验收规范》(BGJ232.90.92)《民用闭路监视电视系统工程技术规范》(GB50198-94)《民用工业建筑电气设计规范》(GJT16-92)

.第四章 详细设计

4.1 技术架构设计

4.1.1设计思路 在软件体系架构设计中,分层式结构是最常见,也是最重要的一种结构。微软推荐的分层式结构一般分为三层,从下至上分别为:数据访问层、业务逻辑层(又或成为领域层)、表示层。

三层结构原理:

3个层次中,系统主要功能和业务逻辑都在业务逻辑层进行处理。所谓三层体系结构,是在客户端与数据库之间加入了一个“中间层”,也叫组件层。这里所说的三层体系,不是指物理上的三层,不是简单地放置三台机器就是三层体系结构,也不仅仅有B/S应用才是三层体系结构,三层是指逻辑上的三层,即使这三个层放置到一台机器上。三层体系的应用程序将业务规则、数据访问、合法性校验等工作放到了中间层进行处理。通常情况下,客户端不直接与数据库进行交互,而是通过COM/DCOM通讯与中间层建立连接,再经由中间层与数据库进行交互。

1、表示层

位于最外层(最上层),离用户最近。用于显示数据和接收用户输入的数据,为用户提供一种交互式操作的界面。

2、业务逻辑层

业务逻辑层(Business Logic Layer)无疑是系统架构中体现核心价值的部分。它的关注点主要集中在业务规则的制定、业务流程的实现等与业务需求有关的系统设计,也即是说它是与系统所应对的领域(Domain)逻辑有关,很多时候,也将业务逻辑层称为领域层。例如Martin Fowler在《Patterns of Enterprise Application Architecture》一书中,将整个架构分为三个主要的层:表示层、领域层和数据源层。作为领域驱动设计的先驱Eric Evans,对业务逻辑层作了更细致地划分,细分为应用层与领域层,通过分层进一步将领域逻辑与领域逻辑的解决方案分离。业务逻辑层在体系架构中的位置很关键,它处于数据访问层与表示层中间,起到了数据交换中承上启下的作用。由于层是一种弱耦合结构,层与层之间的依赖是向下的,底层对于上层而言是“无知”的,改变上层的设计

对于其调用的底层而言没有任何影响。如果在分层设计时,遵循了面向接口设计的思想,那么这种向下的依赖也应该是一种弱依赖关系。因而在不改变接口定义的前提下,理想的分层式架构,应该是一个支持可抽取、可替换的“抽屉”式架构。正因为如此,业务逻辑层的设计对于一个支持可扩展的架构尤为关键,因为它扮演了两个不同的角色。对于数据访问层而言,它是调用者;对于表示层而言,它却是被调用者。依赖与被依赖的关系都纠结在业务逻辑层上,如何实现依赖关系的解耦,则是除了实现业务逻辑之外留给设计师的任务。

3、数据层

数据访问层:有时候也称为是持久层,其功能主要是负责数据库的访问,可以访问数据库系统、二进制文件、文本文档或是XML文档。简单的说法就是实现对数据表的Select,Insert,Update,Delete的操作。如果要加入ORM的元素,那么就会包括对象和数据表之间的mapping,以及对象实体的持久化。本系统包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。用户需要在网站上浏览水雨情信息,固采用服务架构,B/S的三层结构。

4.1.2设计原则

1、要保证软件的高内聚低耦合性,所以我们选择了三层结构。

2、系统要保证长期安全运行,硬软件及信息资源要满足可靠性要求。

3、要做好安全保护,有防范病毒的能力。

4、系统应对不断发展和完善的统计核算方法、调查方法和指标体系具有广泛的适应性。

5、因为系统所需硬件很多,而且随着时间的退役硬件会有更新,所以系统的硬软件应具有扩充升级的余地,不可因硬软件扩充、升级或改型而使原有系统失去作用。

6、使用系统的人群从乡镇,到县城,到地级市,到省里,人员混杂,对电脑的使用能力不一,固要建立友好的用户界面,使用户操作简单直观,易于学习掌握。

架构决策

选择三层结构,是为了软件的高内聚低耦合性。选择B/S模式,是因为主要操作用户是通过浏览器使用软件。技术架构

系统架构在WebGIS的底层ArcObjects之上,地图显示,相应的地图操作以MapControl为依托。山洪灾害防治规划信息系统采用三层体系结构,以数据库为基础,采用中间件和组件技术,实现数据管理、区划成果分析等应用。并提供良好的人机交互界面。系统采用B/S架构开发,B/S模式的管理系统负责数据的入库、数据的组织维护、图件与报表的组织生成,数据信息输出等功能。运用本系统可以方便的查询各类信息,对查询结果进行统计、输出,提供各种方式的灾害信息统计较好的辅助了规划工作。

功能设计 数据获取

从指定的数据源获取数据,数据获取的方法包括人工数据录入、自动数据获取两种方式; 数据处理

数据处理是指把获取到的数据按照目标数据库进行预处理、校验、分类、入库操作; 配置管理

配置管理模块能够对系统的数据源信息配置、目的数据库配置、运行控制参数等进行配置; 监视统计

对系统的运行状态、数据汇集日志进行监视,对系统运行情况和数据汇集情况进行分析统计。

4.2 设计安全

安全性要求:用户认证、授权和访问控制,支持数据库存储加密,数据交换的信息包加密,数据传输通道加密,可采用64位DES加密算法,发生安全事件时,能以事件触发的方式通知系统管理员处理;

4.3 用户界面设计

考虑操作直观、方便的要求,系统应对所有水雨情、气象、工情、灾情信息数据模块建立公共的查询接口,界面简洁一致,表现方式灵活。主要设计内容和功能要求如下。(1)系统主界面

用户可通过IE浏览器访问系统,在IE浏览器地址栏输入网站地址,进入系统的登录界面,输入用户名和密码,系统通过验证确定该用户是否合法,如果是授权用户,系统进入主页面,如果是没有授权用户,系统将拒绝其访问本系统。当授权用户登录后,就可以进入主菜单,获取相应功能的模块菜单。(2)基础信息查询

① 雨量站基本信息

查询雨量站的基本信息,如:雨量站类别(自动、人工、简易等)、水系、河名、站号,站名,站址位置、设立日期、所属部门等。

② 水文(位)站基本信息

查询水文(位)站的基本信息,如:测站类别(自动、人工、简易等)、站号,站名,站址,经度,纬度,高程、设立日期等。

③ 工情基本信息

查询堤防工程、水库、山塘等的基本信息,如:建设地点、所在河流、集水面积、多年平均降雨量(径流量)、设计洪水位(流量)、库容、坝顶高程等。

④ 灾害点基本信息

查询灾害点的基本信息,如:地理、地质、气候特点、人口密度、基础设施、灾害频繁程度等。

(3)水雨情信息查询

通过对系统数据库的访问,可以实现各小流域、中小型水库水位、流量实时监测信息、历史资料信息查询,为预报决策提供历史资料对比分析。可以实现单站、多站实时或者历史水雨情图形化查询。具体包括:水文(水位)站雨量、水位(流量)实时和历史资料查询(包括日平均水位/流量、月水位/流量等),以及降雨量统计表、降雨量图等形式对雨量资料进行日、时段等综合查询。(4)气象信息查询

将查询数据库得到的气象信息显示给用户,主要包括:中央气象台、省气象台和临近省气象台、本地市(县)气象台发布的当日天气预报(文字、图、表),卫星云图信息(图片)、多普勒雷达测雨信息、台风警报信息等。(5)工情信息查询

工情信息主要包括:堤防、水库的各种特征值、工程图、工程指标、工程运行状况等数据;水库运行状况的实时信息,如闸门开度、大坝安全状况,溢洪道、泄洪洞、输水洞流量,水库、山塘水位状况(流量)、水库调度方案等。堤防主要信息有各断面水位、堤防安全状况、出险情况及类型。可以实现单站、多站实时和历史工情信息和运行参数的查询。

(6)经济社会状况及灾情信息查询

山洪灾害监测区域经济社会指标:村镇分布、人口分布、固定资产、重要设施、GDP等。

直接总经济损失:受灾范围,受灾人口,受淹城市,倒塌房屋,死亡人口等。工业、交通运输业直接经济损失:停产工矿企业(个),铁路、公路中断(条次)、毁坏路基(面)(千米),毁坏输电线路,毁坏通讯线路(千米)等。

水利设施直接经济损失:毁坏水库,水库跨坝,毁坏堤防、护岸、水闸,冲毁塘坝,毁坏灌溉设施,毁坏机电井、水电站、机电泵站,毁坏雨量站、水文测站。

农林牧渔业直接经济损失:农作物受灾面积,农作物成灾面积,农作物绝收面积,减少粮食,死亡大牲畜,水产养殖损失等。(7)数据的输出保存打印

查询系统具有信息输出和表现功能,除具备基础信息、水雨情信息、工情、灾情统计分析信息的数据输出外,还具备表、文字、图形的输出和保存以及打印功能。

第五章 技术支持和服务

5.1 技术支持

技术培训

服务商负责组织客户进行培训。客户有权对服务商提出的培训方案和培训计划进行选择和调整。培训费用计入总价,同时应提供分项的细项报价。培训方案作为评判整体解决方案优劣的因素之一。

①服务商在应答时应制定详细的人员培训方案,培训方案应包括培训目的、培训时间安排、人数、教材编写(列出培训教材基本内容)、培训师资情况(包括教师简历)、培训组织方式等。服务商必须根据标书采购的设备及采用的相关技术,在标书中提出全面的培训计划和课程内容安排,并在合同签定后征得用户方同意后实施。

②培训费用除包括服务商自身的费用以外(包括教员费、教材费、场地费等),所有学员的费用也应计算在内,学员的食宿费按每人每天300元计算。

③服务商必须提供高水平的培训。培训应包括各应用子系统的安装、操作、配置和维护等,系统软、硬件常见故障现象的诊断和处理,常见的问题及解决办法等。服务商必须为所有被培训人员提供培训环境、文字资料和讲义等相关用品。所有的资料必须是简体中文书写。

④所有的培训教员必须用中文授课,除非有其它的协议规定。⑤培训工作必须在系统整体验收之前安排,具体时间由招标方指定。(3)培训要求

①服务商须选派具有一定资质和实践经验,且受过专门训练的高级专业技术人员负责各分项工程的技术培训工作。

②服务商的培训内容包括数据库厂商认证培训、业务应用及系统管理培训(系统平台培训)等。

③服务商须在培训开始前20天内将培训计划和教材提交客户审核,除上述培训外,服务商还须负责在现场组织对系统的安装、调试和运行进行技术示范和业务指导。

5.2 售后服务

1、系统终验合格后进入系统质量保证期,自双方代表在系统终验合格单上签字之日起计算,有效期为3年。说明免费维修、维护的方式、范围(产品、技术、模块、部件)。说明系统质量保证期满后维修、维护的方式、范围(产品、技术、模块、部件)和收费标准。

2、系统质量保证期内,售后服务应由原设备生产厂家提供,同时不再收取额外费用。系统运行过程中如果发生故障,服务商必须保证用户在3个工作日内得到无故障设备/产品。

3、系统质量保证期内,系统运行过程中如果出现技术故障,服务商应保证在最快的时间内解决问题,恢复正常运行。

4、系统质量保证期满后,服务商需提供与系统质量保证期内同等的服务。

5、服务商须认真理解上述保修要求,详细列出保修方案和系统应急方案(考虑本地化服务等),一经应答将作为合同的一部分。

6、所有硬件产品提供厂家的7*24小时服务,接到用户报障电话以后1小时内答复,保证4小时内到现场服务,8小时不能修复的需提供备用品。

7、质保期后服务商应对产品出现故障提供技术支持及有偿维修服务。并在报价表中列出系统设备主要可更换的硬件价格和服务费用。

8、服务商应承诺在质保期间,在客户书面正式提出增加或修改相关需求后的一个月内,服务商负责进行本系统的软硬件改造工作。

第四篇:尾矿库安全监测系统考察总结报告

尾矿库安全监测系统考察总结报告

摘要

通过此次山西各地尾矿库的实地考察我们了解了现实中尾矿库的具体内容,其中安全监测(又称在线监测)设备在尾矿库当中的应用是考察的重点,此次考察我们一共考察了9个尾矿库,其中尖山尾矿库是山西省第一个引进成套安全监测设备的矿业单位,同时据我们了解它也是山西省目前在安全监测方面最具权威的单位,在坝体浸润线、坝体水平(沉降)位移、滩顶高程以及库水位等方面的监测已经相当纯熟,因此以尖山尾矿库安全监测系统为例来简述尾矿库安全监测系统的具体内容。

正文

一、尖山尾矿库概况

尖山铁矿是国家大型黑色冶金矿山企业,是太钢集团重要的铁精粉原料生产基地,年产铁精粉320多万t。其城东沟尾矿库距选矿厂5 km,筑坝方式为上游式,采用水力旋流器筑坝工艺同分散放矿相结合的方法堆筑子坝平台。初期坝设在沟口,初期坝地面标高1 276 m,初期坝坝顶标高1 305 m,坝高29 m。尾矿库按原设计选矿厂年处理原矿400万t,尾矿产率60%,尾矿最终堆积标高1 400 m,最大坝高124 m,总库容9 427万m3。按原处理量尾矿库可使用51 年。目前尾矿堆积标高1 354 m,尾矿坝坝高已达78.0 m,从1 354 m到最终堆积标高1 400 m尚有库容6 427万m3,按年处理原矿1 100万t,最终堆积标高提高到1 410 m,尚可使用15 年,属于三等尾矿库。整体布局见下图。

图1.1 尾矿库远景

图1.2

尾矿库远景2

图1.3

尾矿库主坝

图1.4

尾矿库主坝2

图1.5

施工建设中的后期坝

图1.6

尾矿库干滩

图1.7

尾矿库干滩2

二、尾矿库安全监测概况

尖山铁矿是山西省首家投用尾矿库在线监测系统矿山企业,系统于2009年7月30号全部建设完成并投入使用,由北京矿咨信矿业技术研究有限公司设计和承建,主要监测:坝体浸润线埋深、坝体水平(沉降)位移、滩顶高程、干滩特征点高程、库区水位、降雨量,通过对比分析,得出警告、预警和报警信息,实现尾矿库的安全稳定运行。

下面按照各个测量量的相关方面进行阐述:

1、坝体浸润线埋深————渗压管深埋测量

尖山尾矿库浸润线监测是:浸润线观测点按平行坝轴线间距120 m,垂直坝轴线间距100 m布置,总共有39个浸润线观测点。现状条件下,浸润线观测点:1320 m子坝3个,1340 m子坝7个。并采用进口渗压计检测,浸润线埋深控制:最小埋深6m(埋深普遍在15.5—30米)。浸润线检测:浸润线水位测餐的精度不大于15 mm。

据了解渗压管本身很长,它的前端两米不透水,以此为线以上部分为透水层,通过人工钻孔让坝体内的地下水流过,流过时水面的高度平面便形成了所谓坝体一侧的浸润线,通过实时监测浸润线的位置(高度)数据从而有效保证尾矿库安全。值得一提的是,尖山尾矿库对不同时期的后期坝浸润线测量有所区别,前期主要采取图2.1的坚固模型,而随着后期堆积的不断拔高,浸润线测量则采取了联合水位监测仪的方法,如图2.2所示。

图2.1 前几期尾矿库浸润线监测点

图2.2

后几期尾矿库浸润线监测点

2、库水位以及干滩长度监测————溢洪塔底端带有浮子式水位计

前面提过尖山尾矿库分为主坝和子坝,排洪系统使用塔洞方案,溢洪塔为框架式结构,有4个溢洪塔。l#,2#,3#溢洪洞已经封堵埋没,现在只启用4#溢洪塔。其中库水位的监测主要在4个溢洪塔那边,在溢洪塔底端带有浮子式水位计以及监控设备,如图3.2所示据了解溢洪塔测量干滩长度主要是根据干滩长度可以通过沉积滩顶与库水位高差、尾矿库的实际运行坡度计算获得,通过设置安全长度对坝体安全进行预警。

库水位检测采用防感应雷击能力较强的遥测水位计。该水位计是一种浮子传感器型水位计。

图3.1

4号溢洪塔铭牌

图3.2

溢洪塔底端(带有浮子式水位计)

图3.3

溢洪塔远景

3、坝体水平(沉降)位移————GPS定位监测

尖山尾矿库可以说走在了全省坝体位移监测的最前列,率先安装了全套GPS位移监测系统,由于GPS具有精度高、操作性强和易于管理等优点,通过尾矿库监测管理系统可以轻松的做到实时监测坝体位移将数据反馈到管理者界面上。

尾矿库没置了位移观测设施,位移观测点按平行坝轴线问距120 m、垂直坝轴线间距100 m布置,初期坝和尾矿坝共布置39个位移标点。目前子坝1356 1111标高以下,坝体表面位移标点:初期坝2个,1320 m子坝3个,1340 m子坝7个;坝体表面形变检测采用GPS位移检测的方式。

尖山尾矿库坝体形变监测系统,其包括:监测站,包括监测站GPS天线和监测站GPS接收机以及监测站通讯模块;基准站,包括基准站GPS天线和基准站GPS接收机以及基准站通讯模块;以及数据控制模块,连接于监测站和基准站,用于处理来自于监测站和基准站的数据,并对监测站和基准站进行控制。

如图4.1所示,GPS监测点上面安有4个接收天线,用于接收GPS信号从而得到坝体位移信息。不过美中不足的是购买成套的GPS位移监测系统成本过高,对于项目的研究不是很合适,但是在坝体位移监测方面也为我们提供了一个很好的借鉴。

图4.1

GPS监测点

图4.2

GPS监测点远景

4、滩顶高程测量————干滩设置标杆测量

尖山尾矿库干滩自动化监测系统,是在尾矿库干滩上设置多个剖面,每个剖面设两个监测点,在上述监测点处设置干滩高程监测仪,测量该监测点处的高滩高程数据,通过无线传输方式传送至数据采集设备;上述数据采集设备所汇集的高滩高程数据,传送至控制中心计算机中,计算机内的专用软件根据每一个剖面的滩顶和滩内两处高程数据,结合库区水位数据,解算库区的安全高差和调洪高差是否处于尾矿安全生产规范所要求的安全标准内,并根据解算结果自动发出相关预警信息。本实用新型实现了尾矿库干滩数据在各种恶劣条件下的自动化采集,真正实现了尾矿库干滩数据、安全高差、调洪高差在各种条件下的实时监测,具有产业上的利用价值。

如图5.1所示,干滩中等间距设置了10个测量标杆,仔细观察会发现在标杆顶端有一个类似于突起的装置,据了解是小型太阳能装置,能够为标杆的传感器进行供电,从而合理的利用资源,而且这种滩顶高程的测量方法还能够达到很高的标准,能够满足尾矿库的精度要求。

图5.1

滩顶高程测量标杆

图5.2

测量标杆远景

5、太阳能供电装置

尖山尾矿库在环保节能方面也走在了前面,在坝体的一侧设置了专门的太阳能供电模块,称为“采集室”,如图所示,房顶安装有一块太阳能板,据了解在阳光充足的情况下可以对整个系统进行持续供电,不但节省成本,也能避免造成过多的资源浪费和环境污染。

图6.1 太阳能供电模块

图6.2

太阳能采集室

6、视频监控设施

尖山尾矿库在主要6个地点设置了视频监控点,通过安全监测系统对如干滩、尾矿坝大院、初期坝等尾矿坝关键地段进行实时的视频监控,实时的掌握大坝基本情况,对于任何可能的突发状况做出快速有效地处理,更好的提高大坝监测的安全系数。

图7.1 监控室视频监控界面

7、监控室尾矿库管理系统概况

尖山铁矿尾矿库安装了成套在线安全监测系统,其中也包括工程师在监控室中完成实时监控的管理系统,如图所示是我们拍到的尾矿库管理系统的界面和主要功能以及相关数据,在监测过程中用户可以通过设置一定的数值上限作为报警临界值,若超过此值则报警,管理者可以很轻松的完成对大监测的各方面进行实时管理,同时系统模块化设计更方便人们来管理,及时发现问题并作出相关措施,这是监测过程核心的部分。

图8.1

系统模拟尾矿库画面(红色标记干滩监测点位置)

图8.2

GPS观测点分布

图8.3

浸润线观测点分布

图8.4

实时监测数据界面

图8.5

沉降位移监测界面

结合了解到的尾矿库安全监测系统的信息可以看出了解到现在可行的在线监测系统公认的设计要求,如下所示:

(1)浸润线观测孔和坝体表面位移标点要按照尾矿库设计单位的设计布设,另外还要考虑尾矿库后续27个浸润线观测孔和27个坝体表面位移标点的扩展性和部分数据线的预先铺设。数据传输用光缆从尾矿库传至矿调度中心。

(2)坝体表面形变检测:采用GPS位移检测的方式,检测精度不大子2 mm。

(3)防洪高差检测:防洪高差的检测是通过液位计检测处理得到的,精度为≤±0.1 m。(4)库水位检测:库水位测量的精度不大于15mm。

(5)干滩长度检测:干滩长度的检测是通过数据处理得到的,精度为≤±10 m。由于尖山铁矿在实际运行过程中干滩长度近l km,远远大于设计420 m的干滩长度要求,所以对干滩长度检测精度要求较低。

三、收获与不足

此次考察尾矿库之行可以说收获颇丰,相对于泛泛的在实验室查资料凭空想象,实地的考察则显得更加直观明了,现实中跟自己脑子里面想的有很大区别,也让自己对尾矿坝有了一个全新的认识,更加重要的是通过现场调研我们也真正了解了实际的尾矿库安全监测是什么样子、具体用什么方法、采用何种设备以及实际操作状况等信息,同时在监控室里也亲身体验了在尾矿库安全监测系统操作下各种监测如何协调等方面的解决,通过考察真正对尾矿坝安全监测、对咱们的项目规划有了全新的认识。

不过美中不足的是由于实际安装了安全监测系统的尾矿库是集体采购的一整套在线安全监测系统,因此对于具体到每个器件甚至传感器单元的具体信息以及参数等详细信息生产厂家并没有提供,我们也就无法得到具体到节点的有效信息,只能得知一些合作公司的简单信息,具体细节并不是很详细,但是通过此次考察我们还是学到了很多东西,尤其是了解到很多有用的信息,对后面的项目进程都有很大帮助。

四、安全监测系统的可行性方案

综合所考察的9个尾矿库安全监测系统的实际情况可以看出,在监测对象方面可以大体分为浸润线、库水位、干滩长度、干滩标程,坝体位移,降雨量、视频监控等几个方面来监测,通过客户端与服务器连接从而实时的反映出各个检测量的情况,并通过网络向上级机关进行汇报,大大加强了尾矿库的安全系数。对于安全监测的几个方面,结合我们自己的想法,我想提出自己的可行性方案如下:

1.浸润线监测:所有考察的尾矿库都是采用深埋渗压管来实现,通过中间透水部分流过的水面高度来监测浸润线,一般埋深为15.5到30米,在渗压管中安装类似于浮子式水位计的压力传感器,根据水的压强变化来监测,同时还可监测渗流量,这个方法是现在比较成熟的。传感器方面建议采取振弦式渗压计安装在渗压管中,从而实时监测浸润线和渗流量等参数。

2.坝体位移监测:同样的所有尾矿库都是采用GPS监测位移,包括水平位移和沉降位移,这也是一个核心的部分,一套完整的在线监测系统最重要也是最昂贵的就是GPS位移监测模块,只是价格上来说比较昂贵,我曾经考虑过用激光原理来监测位移,但是由于激光的直线性传输使得它很难对位移的细微变化准确监测,而且激光本身也需要耗费大量时间且技术并不成熟,因此这个方法行不通。综合考虑还是应该选用GPS监测系统来实现位移监测,不过我们想所拍到的只是GPS的接收装置,另外在监控室旁边设有GPS基站,以此为基准进行测量,因此我们可以做的应该是接收装置以及后期的无线组网这些工作,具体用到的高精度传感器需要另行购买。3.干滩长度、库水位:前面已经提到干滩长度和库水位都是通过安装在溢洪塔上面的水位计来实现的,区别在于库水位是直接测量得到,而干滩长度则是通过库水位和干滩长度成反比的关系,同时结合具体的几何关系相似三角形计算得出的因此二者可以合二为一,库水位监测有多种选择,常见的是浮子式,另外还有超声波等,值得一提的是干滩高程的监测就是在标杆上端安装超声波传感器,通过两点间干滩的高度差经计算便可得出干滩长度,因此才会划分成干滩长度和干滩高程两个测量参数。4.视频监控:我想这个应该是最简单的,现在的视频监控技术越来越成熟,应用也很广泛,只需要选好几个监测点,一般为6到9个点,然后安装摄像头最后组网即可,而且我们的现实条件也允许我们自行制作视频监控设备,十分方便。另外在龙华尾矿库我们还发现除了摄像头他们还加装了夜视仪,也算是一个创新了。

5.系统界面:需要作为补充的是,我们所考察的9个尾矿库中监控室里面除了实时传送的视频监控图像外,还有为了方便监控的管理员系统,正如上面举例的尖山尾矿库安全监测系统界面一样,不同公司做的系统有所不同,但基本功能都差不多,我想到后期我们也需要做出这样的一个系统软件,方便用户对实时了解尾矿库现状并进行管理,使用起来能够方便快捷。

第五篇:烟气在线监测安全规程

烟气在线监测安全规程

1、在线监测严禁非专业人员检修和保养。

2、现场监控室严禁非工作人员进入,无公司职能部门批准任何人不得对系统参数进行查看修改。

3、现场检查时注意监测室内空气的气味,发现异味,马上打开门窗通风并检查管路是否泄漏,电器元件是否有过热和烧损现象。

4、经常检查站房内的各线路,防止用电超负荷或电源短路。

5、在线监测系统属精密仪器,禁止用湿抹布擦拭。

6、为防止因故障导致数据上传失常或信号中断,岗位人员应定时重启设备运行监测系统,重播DTU电源。

烟气在线监测岗位责任制

1、严格遵守安全操作规程,严格执行巡检制度,做到“四防一坚守”防盗窃、防破坏、防雨水、防雷电,坚守岗位。

2、每日对在线监测的各项浓度、温度、压力、流速、湿度等参数认真检查,并按时做好机器运行,检查数据台账。

3、保持监测房内环境整洁,对电源控制器、空调等辅助设施,进行检查,保证检查房内温度、湿度满足仪器正常运行的要求。

4、值班人员在发现烟气监测装置,出现死机时要立即向生产技术科或运营商巡查人员汇报。

5、经常检查测量元件的工作状况,是否正常,各测量参数(如SO2、NOX、烟尘)有无异常,数据异常时及时向生产技术科报告。

6、认真做好交接班记录、巡检记录、按交接班制度进行交接。

污染源在线监测系统管理制度

为加强污染物控制和环境保护治理,提高区域环境质量,保护生态平衡,进一步明确污染控制目标,强化各部门治污责任,加强对烟气(在线)监测系统的维护和管理,确保安全稳定运行,特制定本管理制度:

一、燃除车间设置在线监测岗位,负责本系统的日常运行和维护管理,岗位人员要确保系统中采样管线的畅通,严格按规定程序操作,定时对烟气成分的监测参数进行认真记录。

二、每天将24小时汇总报表交车间,生产技术科及主管经理,运行中发现监测数据出现误差问题是,要及时采取有效措施查明原因,无法恢复时要及时向车间或有关部门报告,不得延误和记录假数据。

三、生产技术科要充分发挥监督职能作用,加强对在线监测的日常监督检查,要求岗位人员严格遵守安全操作程序,严格执行巡检制度,做到“四防一坚守”(防盗窃、防破坏、防雨水、防雷电、坚守岗位),每日对在线监测提供的各项温度、浓度、压力、流速、湿度等参数进行认真检查,发现有高于或低于指标趋势,要及时组织各部门、车间召开专题会议,分析原因,采取有效措施并组织实施或及时下发污染治理通知单,烟气整改并检查验证,同时对责任部门及责任人进行严肃处罚并通报批评。

四、生产技术科每季度要请县环境监测站对烟气排放成分进行一次全面比对监测,通过对监测报告中发现的问题,要及时组织各部门召开专题会议,要查明原因,采取有效治理措施,并组织实施,确保在线监测安全稳定运行。

五、电气车间仪表工负责污染源在线监测系统中电气,仪表系统的日常维护保养工作并做好记录,做到“早发现、早处理、早汇报”,确保监测系统稳定运行。

六、在线监测系统严禁非专业人员检修保养,现场端监控室严禁非工作人员进入,无有关部门批准任何人不得对系统参数进行查看修改。

烟气在线监测系维护制度

为了保证我公司烟气在线监测设备的正常运行,防止因故障或维护不当导致数据上传失常,要求值班人员本着及时发现问题及时处理的原则,做好如下工作:

一、每天要求值班人员对烟气在线监测设备进行每小时巡回检查一次。

二、值班人员要认真检查各测量元件的工作状况是否正常,测量参数有无异常,如果测量参数异常(如SO2、NOX的示值为0,或烟尘的示值明显偏大,说明角反射接受到污染,需要清洁)要立即向生产技术科汇报,通知运营商巡查人员对镜片进行清洗,每次巡检完要在巡检记录薄上记录巡检事件,各参数值及设备的工作情况。

三、要求运营商巡查人员每周对烟气监测装置各元件进行一次例行检查,发现问题及时处理,特别是角反射镜片,如果积尘多,要立即组织人员对镜片清洗,;另外还要对站房卫生(设备外观、地面)、风机过滤器、工控机风扇过滤网进行清扫,检查完毕后,检查人员要在理性检查记录薄上做好记录,并亲笔签名。

四、运营商巡查人员每月对烟气监测装置角反射镜片进行一次例行清洗,在例行检查记录薄上做好检查记录,并亲笔签名。

五、值班人员在发现烟气监测装置出现死机时,对于不能处理的问题要及时与生产技术科或运营商巡查人员汇报。

六、运营商巡查人员在处理故障过程中,对于不能处理的问题要及时与生产技术科科长沟通,并汇报环保部门领导。

七、工作人员对设备的一系列操作,应参照污染源(烟气)在线监测系统《日常操作大纲》、《规则制度》的有关规定执行。

下载尾矿库实时在线安全监测预警系统方案及说明word格式文档
下载尾矿库实时在线安全监测预警系统方案及说明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    污染源在线监测系统技术方案

    www.xiexiebang.com 污染源在线监测系统技术方案 污染源在线监测实现对废水、废气等污染源的实时在线监测,通过对污染监测数据的采集、传输、统计、分析等,实现污染源监测数据......

    2011年尾矿库安全专项整治方案

    2011年尾矿库安全专项整治方案 按照国家五部委关于尾矿库三年整治的工作安排,结合今年尾矿库安全监管总体要求,在去年尾矿库综合治理的基础上,特制订本实施方案。 一、整治任务......

    窑尾烟气在线监测系统数据超标原因说明

    关于XXXX公司 窑尾烟气在线监测数据超标说明 xxx市环境监察支队: xxxx公司窑尾烟气在线监测系统于11月1日至11月3日8时期间,多次出现氮氧化物数据超标现象。经联系xxx有限公司......

    基坑安全监测方案汇报材料

    基坑安全监测方案 各位专家,领导好! 下面我给大家汇报一下基坑安全监测方案,考虑到大家的时间,我就不一条一条给大家读了,把针对监测方案相关重点,给大家汇报一下。  第一章、工程......

    江苏省疫苗出入库信息实时网络报告监测方案(试行)5篇范文

    附件1: 江苏省疫苗出入库信息实时网络报告 监测方案(试行) 随着疫苗品种的增加,疫苗管理手工登记和报告的信息量迅速膨胀,疫苗管理任务越来越重。为规范疫苗出入库管理,及时掌握......

    2.3 重大危险源安全监测监控措施说明

    安全监控系统、措施的落实情况说明 一、安全监控监控系统 1、在建设项目设计前,公司委托湖南有色冶金劳动保护研究院对公司新建项目进行了安全预评价报告,全面辨识了危险有害......

    2022年农产品质量安全监测方案

    2022年农产品质量安全监测方案为切实做好2022年度种植业农产品质量安全监测工作,保障人民群众的消费安全,促进我县农业产业高质量发展,按照省市年度检测任务安排和我县农产品质......

    电站锅炉入炉煤质在线监测与燃烧优化运行系统方案

    电站锅炉入炉煤质在线监测 与燃烧运行优化系统 广州市峻宇计算机科技有限公司 2008年6月 一、概述 目前国内火电厂入炉煤质的监测主要采用取样、秤重、烘烧、灼烧、氧弹分析......