第一篇:XX年数据分析师年终总结
XX年数据分析师年终总结
XX年数据分析师年终总结怎么写,以下是小编精心整理的相关内容,希望对大家有所帮助!
XX年数据分析师年终总结
在数据分析岗位工作三个月以来,在公司领导的正确领导下,深入学习关于淘宝网店的相关知识,我已经从一个网店的门外汉成长为对网店有一定了解和认知的人。现向公司领导简单汇报一下我三个月以来的工作情况。
一、虚心学习,努力提高网店数据分析方面的专业知识作为一个食品专业出身的人,刚进公司时,对网店方面的专业知识及网店运营几乎一无所知,曾经努力学习掌握的数据分析技能在这里根本就用不到,我也曾怀疑过自己的选择,怀疑自己对踏出校门的第一份工作的选择是不是冲动的。但是,公司为我提供了宽松的学习环境和专业的指导,在不断的学习过程中,我慢慢喜欢上自己所选择的行业和工作。一方面,虚心学习每一个与网店相关的数据名词,提高自己在数据分析和处理方面的能力,坚定做好本职工作的信心和决心。另一方面,向周围的同同事学习业务知识和工作方法,取人之长,补己之短,加深了与同事之间的感情。
二、踏实工作,努力完成领导交办的各项工作任务
三个月来,在领导和同事们的支持和配合下,自己主要做了一下几方面的工作:
1、汇总公司的产品信息日报表,并完成信息日报表的每日更新,为产品追单提供可靠依据。
2、协同仓库工作人员盘点库存,汇总库存报表,每天不定时清查入库货品,为各部门的同事提供最可靠的库存数据。
3、完成店铺经营月报表、店铺经营日报表。
4、完成每日客服接待顾客量的统计、客服工作效果及工作转化率的查询。
5、每日两次对店铺里出售的宝贝进行逐个排查,保证每款宝贝的架上数的及时更新,防止出售中的宝贝无故下架。
6、配合领导和其他岗位的同事做好各种数据的查询、统计、分析、汇总等工作。做好数据的核实和上报工作,并确保数据的准确性和及时性。
7、完成领导交代的其它各项工作,认真对待、及时办理、不拖延、不误事、不敷衍,尽量做到让领导放心和满意。
三、存在的不足及今后努力的方向
三个月来,在公司领导和同事们的指导和配合下,自己虽然做了一些力所能及的工作,但还存在很多的不足,主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。另外,由于语言不通的问题,在与周围的同事沟通时,存在一定的障碍。
针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同事,把网店的数据分析工作做细做好。
四、对公司人员状况及员工工作状态的分析
1、对公司人员状况的分析
要想管好一个企业,首先要管好这个企业的人,要想管好一个企业的人,首先要对这个企业人员的基本情况有个比较全面的、细致的、科学的正确的了解。目前公司成员大部分为90后,是一个年轻化的团队。他们大部分在长辈们的宠爱中长大,心理素质不怎么成熟,没有自信心,没有目标,责任心不强,不怎么能吃苦,心理承受能力较弱,不爱学习,不明白工作的真正意义。不过也有一部分比较懂事,做事比较踏实、勤奋、性格也比较好。
因此,我们在招聘的时候,要招那些肯学习、善于学习、领悟力学习力强的人。不过,这部分人一般都比较现实,对待遇、公正公平、发展空间比较看重。其实,我们要想打造一流的企业,培养一流的员工,一流的管理人员并不是难事。最重要的是要有一颗真正的,持之以恒的做事业的心。
2、对员工工作状态的分析
目前,部分岗位存在分工不明确的现象,出现问题时,同事之前相互推诿,不愿意承担责任,这也是部分员工责任心不强的最直接反映。部分员工没有团队合作意识,这就可能导致工作在某个环节衔接不上,进而有可能出现重大问题。
因此,明确分工和加强员工的团队合作意识也是公司目前需要解决的问题。
五、对公司企业文化的分析
企业文化,对我本人来讲,是一个管理学里面比较专业的词,我怕自己讲不好它。但我却可以深刻的体会到,这个无形的东西就在我的周围,在我们的骨髓里。因为我觉得它重要,所以,还是想讲它,而且觉得非讲不可。
在我所走到的企业里,旺旺集团的企业文化给我留下的印象最深。他们有自己明确的经营理念、经营目标、公司训、公司口号、企业标识、公司社歌和独立的传媒机构。他们的企业文化具有很强的感染力和凝聚力。
但是,很长一段时间以来,我们的公司一直处在“黎明前的黑暗”之中,为什么公司领导的那种不到山顶不罢休的气势、决心和信心,并没有感染所有的员工,那种不到山顶不罢休的气势、决心和信心并没有很好的变成我们的企业文化。没有被突出出来,没有在公司发展的日日夜夜中,张扬的体现给我们企业所有的员工们看。甚至是没有被人感觉到。
所以,加强健康向上的企业文化的建设工作,也就成为一种必要。十分的必要。也该引起足够的重视。把目前创业阶段的决心和信心力量、企业和员工相互之间的理解、信任、支持和默契融入到我们的企业文化中去。从而感染和吸引更多的优秀人才到我们中来,共同开创我们企业的未来。
XX年数据分析师年终总结
在数据分析岗位一年以来,在公司部门领导和党支部的的正确领导下,认真贯彻执行党的各项方针、政策,紧紧围绕公司开展的“积极主动谋发展,务实奋进争一流”的主题实践活动,深入学习实践科学发展观,全面完成了各项工作目标,现简单的向领导汇报一下我一年来的工作情况。
作为一名党员和公司的一份子,具备良好的政治和业务素质是做好本职工作的前提和必要条件。一年来,我一方面利用工作和业余时间认真学习了科学发展观、十一届全国人大二次会议和xx在中纪委十七届三次全会上的讲话精神,进一步提高了自己的党性认识和政治水平;一方面虚心向周围的领导、同事学习工作经验、工作方法和相关业务知识,取人之长,补己之短,加深了与各位同事之间的感情,同时还学习了相关的数据库知识,提高了自己在数据分析和处理上的技术水平,坚定了做好本职工作的信心和决心。
一年来,在主管的带领和同事们的支持下,自己主要做了以下几项工作:
一是认真做好各项报表的定期制作和查询,无论是本部门需要的报表还是为其他部门提供的报表。保证报表的准确性和及时性,并与报表使用人做好良好的沟通工作。并完成各类报表的分类、整理、归档工作。
二是协助主管做好现有系统的维护和后续开发工作。包括topv系统和多元化系统中的修改和程序开发。主要完成了海关进出口查验箱报表、出口当班查验箱清单、驳箱情况等报表导出功能以及龙门吊班其他箱量输入界面、其他岗位薪酬录入界面的开发,并完成了原有系统中交接班报表导出等功能的修改。同时,完成了系统在相关岗位的安装和维护工作,保证其正常运行。
三是配合领导和其他岗位做好各种数据的查询、统计、分析、汇总工作。做好相关数据的核实和上报工作,并确保数据的准确性和及时性。
四是完成领导交办的其他工作,认真对待,及时办理,不拖延、不误事、不敷衍,尽力做到让领导放心和满意。
一年来,在办公室领导和同事们的指导帮助下,自己虽然做了一些力所能及的工作,但还存在很多的不足:主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。
针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同志,共同把办公室的工作做细做好。
第二篇:CDA大数据分析师 学习心得
人大经济论坛CDA大数据分析师培训学习心得
CDA 大数据分析师的课程让我对“大数据”这个概念有了更为具体的认识。以往对于“大数据”,我的认知还是仅仅停留在概念层面上。而上完课后,尤其是了解如何搭建Hadoop平台以及其生态环境之后,“大数据”这个概念终于落地了。
Hadoop的核心框架是Hdfs和MapReduce。Hdfs是分布式文件系统,其主要作用是存储及读取数据。而MapReduce实际上是Hadoop工作的核心思想。任何想要在Hadoop集群上完成的算法都必须基于MapReduce的思想实现。因此,我认为想要学习Hadoop,其核心在于充分理解MapReduce。而同时,MapReduce的理解也是理解大数据分析思想的关键,即如何将庞大的数据分解成可以进行操作的小数据集。
人大经济论坛Hadoop大数据分析师课程大致可分为如下几个部分(阐述并不是按照时间顺序,而是按照个人对于这个课程的理解)。第一部分是原理及背景的讲解:个人认为,这一部分其实是重点,因为涉及到了大数据分析的核心,也包括了Hadoop的运行原理。例如1.0版本与2.0版本的差异,其核心在于2.0版本增加了独立的资源管理器Yarn,这极大的提升了Hadoop处理海量数据时的效率;第二部分是搭建平台:从最初的单机模式,至伪分布模式,到最终的集群模式。这部分内容中核心的部分是如何写好配置文件,在这里课程中也会涉及到核心参数的介绍,这对于理解Hadoop平台及今后自己如何配置Hadoop集群模式都是十分有用的;第三部分是Mahout的介绍: Mahout是建立在Hadoop平台上的软件,其中集成了许多很有用的算法。这些算法往往不是十分前沿的,但在处理海量数据时往往可以显现出强大的作用。课程中对于Mahout的讲解也是十分仔细的,因为它是目前最为常用且方便的分析海量数据的软件;第四部分是Java培训: 由于Hadoop是由Java编写的,因此对于自己想编写MapReduce的学员,这部分内容其实是十分关键的。因为我认为想真正成为一个大数据分析师,仅仅会用Mahout上现成的算法是远远不够的。修改已有的算法甚至是构造新算法都是一个想真正进入这一行业的从业人员所必需的。课程中也会涉及到怎样在源文件中修改MapReduce程序,从而实现自带的算法所不具有的功能。从这一点上也体现了课程的深度;第五部分是对Hadoop整体生态环境的介绍,介绍并在Hadoop平台上搭载了如Hive, HBase等等常用的应用。对于其优劣势也有较为详细的介绍,例如Hive可以利用HQL语句进行数据库操作,便于那些熟悉SQL语句的DB管理人员操作。而HBase是一种面向列的数据库,使得查询及插入数据更高效。相较于Hive,HBASE显然更适用与海量数据的管理。这些对于Hadoop整体生态环境的介绍体现了课程一定的广度。
总体来讲,人大经济论坛hadoop大数据分析师培训课程,无论是课程内容的深度和广度,还是课程的教学质量,都是完美的,学完本人受益匪浅,通过最短的时间使自己快速进入到大数据分析的领域中。八天的培训中,最让我感动的是培训老师的认真负责的态度。课程中每一步骤都由老师一对一,手把手指点,耐心程度让人点赞。这样的教学方式保证能让每个学员都能跟上进度,有些入门级的同学当然问得更多些,老师也能一一解答,相信他们的收获比我更多。
人大经济论坛CDA大数据分析师第二期课程学员
第三篇:大数据分析师究竟是干什么的
【甘肃大数据培训】大数据分析师究竟是干什么的!
全民大数据的时代里,产生了一个新的职业。大数据分析师。那么什么是大数据分析师呢?大家都是知其然而不知其所以然。相信大家都会很好奇在大数据培训之后,我们的工作内容是什么吧。我们可能会去到的公司。那么,科多现在就带你一起,走进大数据分析师的世界。
现代生活中的我们,无时无刻不在产生着大量的数据,从咱们睁开眼洗漱的那一刻起就已经有数据开始产生并被记录。一直到晚上咱们关灯正式休息。可以毫不夸张的说,现代社会就是一个大型的数据库,咱们每个人都是一个数据源。每天咱们产生的数据被分类汇总到各类数据库中。当千千万万个我们这些数据源产生的千千万万的数据分类汇总到一起那就是大数据。而大数据分析师的工作内容。就是使用各种分析手段对大数据进行科学分析、挖掘、展现并用于决策支持的过程。
那么大数据分析师与传统的数据分析师之间有什么区别呢?数据分析可谓由来已久,举例说明一下。帐房先生在某种意义上讲也可以称之为数据分析师,分析着往来帐务、应收、支出等,传统的数据分析师只是基于自身数据的统计而已。所以相较于传统的数据分析师来说,大数据分析师首先要学会的就是打破信息孤岛利用各种数据源,在海量数据中寻找数据规律,在海量数据中发现数据异常。根据项目设计开发数据模型、数据挖掘和处理算法;通过数据探索和模型的输出进行分析,给出分析结果。
而现在大数据的发展深受国家和企业的重视,大数据的相关产业的发展也是成井喷式爆发。但是大数据的人才缺跟不上大数据产业发展的步伐。按照对于各大招聘网站的大数据统计,我国大数据人才的缺口在150万左右。大数据人才的平均薪酬也在15K左右,即便是实习生也是6K到8K.。国家和企业也越来越重视大数据培训,意在搭建自己的大数据团队。
在成都,科多大数据作为国家工信部大数据授权的人才培养基地、工信部大数据工程师授权认证中心中国智慧城市大数据技术创新联盟副理事长单位。成都大数据技术产业创新联盟会长单位也成为了贵阳大数据交易所、亚马逊大数据的认证合作培训机构。成都大数据技术产业创新联盟、成都大数据俱乐部的认证合作培训机构。其授课老师团队由国家大数据标准制定专家组成员、企业大数据总架构师、电子科大大数据研究中心教授们组成。
而现在的大数据分析师也不在仅仅是简单的IT工作人员,而是可以参与到企业决策发展制定中的核心人物。当然这都是譬如总架构师之类的大数据分析师了。普通的大数据分析师还是主要对各类大数据进行分析形成项目所需要的报告。
如果用举例子的办法来说明大数据分析师的工作的话,咱们的信用征信大数据。现在的支付宝和微信都是大家常用的支付软件,而在支付宝中也有各种类似蚂蚁花呗、借呗、分期等等金融产品,而且它还有一个芝麻信用,以芝麻信用来评估咱们的信用等级。那么芝麻信用是怎么判断的呢??它参考的大数据就是阿里体系内的电商交易数据、互联网金融数据、集团体系之外的公安网、最高法、工商、教育部门等公共机构以及其合作伙伴数据。还有咱们用户自己上传的数据。大数据分析师的工作就是对大数据进行用户行为分析,进行用户画像,使用分类算法及数据对比算法等一系列手段来进行风险评判与决策支持。充分利用大数据带来的价值,在进行数据挖据与展现后,呈现给企业决策者的将是一份清晰、准确且有数据支撑的报告。这就是大数据分析师的工作。这就是大数据分析师!
来吧,科多带你走进大数据的世界
第四篇:2008年数学科组总结2008
岩口小学数学科组总结
2009年春季学期
本学期我们科组的老师在学校领导的带领下,认真学习贯彻落实各级教育工作精神,进一步转变教育教学观念,齐心协力,积极投身教改和教研活动中,较好地完成了本学期的各项工作。
下面将本学期数学科组的工作总结如下:
1.认真学习新课程标准,制定本学期的教学计划。开学前,每个老师都利用休息时间读了《课程标准》、《“课程标准”解读》、等教育理论书籍,开学后,每隔两周利用周四下午第二、三节课的时间加强理论学习和教学研究,使教育工作始终在理论的指导下进行,使我们的教育目标更加明确。通过学习,我们进一步明白了只有在教学中把学生的学放在教学的首位,抓住重点、难点,才能更好地提高课堂的效率。在学习过程中,大家还针对教学上出现的问题进行了热烈的讨论,同时又结合所任班级的教学情况制定了相应的教研、教学计划。
2、我们坚持采取“走出去,请进来”的学习方式,适时创造机会,让教师汲取校外老师的教学经验,并要求每位外出学习的教师在科组内开展交流活动。
3.加强课堂教学的常规工作,认认真真地上好每一节课,扎实地抓好教学的各个环节,向四十分钟要质量。在课堂教学中还要注意加强对学生创新精神和实践能力的培养。
4.进一步抓好备课、听课工作,完善备课、听课制度。做到及时评课或与上公开课的老师及时交换意见,使每位老师的教学水平都有所提高。本学期每个数学老师都上了1节体现“新理念、新教材、新教法”的数学研究课。本学期数学组开展了一年级——六年级对全体老师开放的教学研究课,获得好评。
5.抓好培优补差的工作。本学期从一年级到毕业班都开设数学兴趣班,让热爱数学的学生有机会多学习多提高,特别对数学广角的学习,把数学知识渗透到现实生活中去,对数据的整理,热爱大自然,进行环境污染的教育,使学生深深知道保护环境从小做起,同时把每个年级的“后进生”列出来,作为辅导的重点对象。我们认为,对“后进生”要多关心多鼓励、多辅导,提高他们的学习积极性。
6、每单元进行一次教学质量检查,做好成绩记录,并以年级为单位对学生进行鼓励,加强竞争意识,营造浓厚的数学氛围。
7.不足之处是数学的连贯性较强,而一些学生的基础知识薄弱,以致到高年级跟不上进度,因而必须加大基础知识的教学力度。
本学期数学科组的老师团结协作、认真踏实地工作,克服自己家庭和身体的各种困难,把学校和学生的工作放在第一位,体现了良好的敬业精神和师德.我们将继续认真工作,努力提高我校的数学教学水平,从而使我校学生的数学水平得到较大的提高。
2009年6月22日
第五篇:一个电商数据分析师的经验总结
一个电商数据分析师的经验总结
king 发表于 2013-07-27 20:54 来源:贾鹏
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。
就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。
最开始进公司的时候是在运营部,主要是负责运营报表的数据,当时的系统还很差,提取数据很困难,做报表也很难,都是东拼西凑一些数据,然后做成PPT,记得当时主要的数据就是销售额、订单量、毛利额、客单价、每单价、库存等一些特别基础的数据,然后用这些数据作出一些图表来。在这个阶段基本上就是做一些数据的提取工作,Excel的技巧倒是学到了不少,算是数据分析入门了吧。
后来公司上了数据仓库,里面就有了大量的原始数据,提取数据非常方便了,而且维度也多,可以按照自己的想法随意的组合分析,那个阶段主要就是针对会员购物行为的分析,开始接触数据建模,算法等一些比较难的东西,也是学到东西最多的时候。记得当时做了很多分析报告,每周还要给总裁办汇报这些报告,下面详细说一下当时使用的一些主要的模型及算法:
1、RFM模型 模型定义:在众多的客户关系管理的分析模式中,RFM模型是被广泛提到的。RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。在RFM模式中,R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M(Monetary)表示客户在最近一段时间内购买的金额。一般的分析型CRM着重在对于客户贡献度的分析,RFM则强调以客户的行为来区分客户。利用RFM分析,我们可以做以下几件事情:
⑴ 建立会员金字塔,区分各个级别的会员,如高级会员、中级会员、低级会员,然后针对不同级别的会员施行不同的营销策略,制定不同的营销活动。
⑵ 发现流失及休眠会员,通过对流失及休眠会员的及时发现,采取营销活动,激活这些会员。
⑶ 在短信、EDM促销中,可以利用模型,选取最优会员。⑷ 维系老客户,提高会员的忠诚度。
使用方法:可以给三个变量不同的权重或按一定的规则进行分组,然后组合使用,即可分出很多不同级别的会员。
2、关联分析
关联分析最原始的案例来自于沃尔玛的“啤酒与尿布”。通俗意义上讲,就是只买了A商品的人,又有很多人买了B商品,那么我们就可以认为A、B两个商品的关联性比较高。很多数据挖掘工具都有关联挖掘,主要使用的算法是Apriori算法,在计算的过程中会主要考察项集、置信度、相关性这三个结果数据,以最终确定商品之间的相关性。除了Apriori算法外,还有许多其他的关联分析的算法,基本上也都是从Apriori发展而来,比如FPgrowth。本人从几年的数据分析经验感觉,关联分析在零售业中并不太实用,挖掘出来的关联度比较高的商品一般都是同类商品或者同品牌的商品,像“啤酒与尿布”这种,很少能够有。使用方法:组套销售或者相关陈列等。
3、聚类分析
零售行业的聚类分析主要是指将具有相似购物行为的顾客进行群体的细分,以支持精细化的营销活动,带来更大的营销效果,节省成本。Spss里面的聚类分析主要有两种K-means聚类和系统聚类。也可以在数据仓库中根据顾客购买的商品属性进行会员的聚类分析,这里就不需要算法的支持,只需要根据系统的已经有的商品分类,把购买过相同商品类别的顾客划分到一起。这种方法可能与公司的业务更加贴近。聚类分析是进行会员精细化管理,精细化营销的基础,做好聚类分析,对企业将有很大的益处。使用方法:对顾客细分,精准化营销。
4、“之”字分析法
该种方法主要是有一种很明确的会员群体,然后通过分析这些会员群体的购买行为,提取这些购物行为的相似点,然后再通过这些相似点返回到整个数据里面,从中抽取更大的会员群体,以制定精准的营销。
再后来,公司又上了SAP,又去BW组去做报表开发,做报表开发这一块能够接触到更多的业务方面的知识,虽然做数据挖掘比较少了,但是数据最终是要指导业务的,所以这对我的成长也算是非常有利的。业务方面主要了解到了几大块:
1、库存管理-库存管理这块主要有正品库存的管理,滞销库存,高库存商品等各种不同类型的库存该怎么定义以及该如何去管理。比如去管理供应商的库存的时候会根据正品库存及滞销库存和库存正常的周转天数来计算该供应商的库存是否在合理的水平,是否该进货还是要减少库存。
2、促销管理-促销管理是以提高销售额为目的,吸引、刺激消费者消费的一系列计划、组织、领导、控制和协调管理的工作。数据方面来说主要是针对不同的促销方式来计算不同的方式收益情况,不同的促销方式可以带来不同的效果,因此在使用促销的时候要审慎的选择,以达到理想的效果。
另外,还有财务报表、采购流程等很多方面的东西,这些接触的比较少就不写啦。
在BW项目组的时候,也经常会帮网站做一些分析工作,自己也自学了两本关于网站数据分析方面的书,感觉学到了一些皮毛,下面说一下吧:
1、网站流量分析
网站流量的比较重要的KPI指标有浏览量、访问量、独立访客数、跳失率、转化率、页面停留时间、访问页面数、流量来源、流量来源ROI等等。通过这些数据可以全面的反映网站的整体情况。其中跳失率可以用来衡量页面的质量,流量来源及转化率可以衡量市场及营销的工作情况。进行网站数据分析的时候,需要牢牢的把握转化率这一指标,然后由这一指标的变化来寻找其他相关数据的变化,最终找出原因,做相对应的策略,改进我们的工作。
2、网站分析细分
数据分析行业有句话-无细分,毋宁死,足矣看出细分对数据分析意义。对于网站的数据分析尤其是如此。网站的流量数据量非常大,从整体上看根本都看不出那里会出现问题,所以必须要细分。比如说营销人员需要看的转化率,必须就要细分到每个渠道里面,然后再看到这些渠道来的会员的点击情况,他们都看过那些网页,对什么感兴趣,跳失率是多少,浏览时间多长,最终转化的是多少等等,这样才能看出问题。
3、网站的短信促销及EDM
在这个电子商务普遍烧钱的时代,花出去的钱到底能有多少能够带来实际的收益呢?在抢占市场的同时,怎么才能做到ROI最大化这个问题急需要解决。公司每天几乎都要发几万条甚至几十万条的促销的短信,短信的反馈率基本上都在2%一下,怎么才能提高转化率,这就需要更精准的用户定位,把钱花到最有可能带来收益的地方。因此网站的短息促销及EDM促销,必须要依据会员的精细化细分,不但要满足客户的需求,更要挖掘出他们的需求。
写到这里基本上写的差不多,通过总结才发觉自己原来很是知道的很少,还有很多需要学习的地方,比如说数学建模方面的知识不够,统计学软件使用不够好,业务了解的不够深入,对整个电子商务行业的发展把握不清晰,这些都是需要以后加强的地方。最近在一个数据分析师的前辈的博客上看到他对数据分析师的要求只有一点,就是要热爱数据。感觉自己还不够,平时工作的时候还不够投入,总觉得是在为公司工作,不是在为自己的兴趣工作,其实一个人每天做的事,一定要都当做是为自己做才行,就算真的不是为自己做,也要从中学到一些东西来变成自己的东西,为自己服务。