第一篇:隧道两井定向联系测量
在隧道施工中,需要把地面上的已知点及方位角传到地下,即联系测量,联系测量的方法有多种,为了提高定向精度,可利用隧道的两个施工竖井(或在长隧道中部钻孔)进行两井定向。
两井定向是在两施工竖井(或钻孔)中分别悬挂一根钢丝,与一井定向相比,由于两钢丝间的距离大大增加了,因而减少了投点误差引起的方向误差,有利于提高地下导线的精度,这是两井定向的主要优点。其次是外业测量简单,占用竖井的时间较短。
两井定向时,利用地面上布设的近井点或地面控制点采用导线测量或其他测量方法测定两钢丝的平面坐标值。在地下隧道中,将已布设的地下导线与竖井中的钢丝联测,即可将地面坐标系中的坐标与方向传递到地下去,经计算求得地下导线各点的坐标与导线边的方位角。
在地面上采用导线测量测定两根钢丝的坐标,在地下使地下导线的两端点分别与两根钢丝联测,这样就组成一个附合图形。在这个图形中,两根钢丝处缺少两个连接角,这样的地下导线是无起始方向角的,故称它为无定向导线。按无定向附合导线计算步骤和方法计算出各点的坐标及方位角。
采用人工测量方法进行盾构管片安装测量时,应针对不同构造的盾构机的特点,制定相应的测量方案。
对管片安装测量使用全站仪、水准仪和带有水平气泡的板尺,分别采用极坐标法、水准测量方法和直接丈量方法。在管片出车架,壁后注浆完成后,将板尺水平横放在衬砌环上,测量板尺中心和该处的顶、底板高程等直接或间接得到衬环中心坐标、底板高程、水平直径、垂直直径和前端面里程,测量误差在±3mm以内。
根据成环管片的内径,采用铝合金制作一铝合金标尺,铝合金标尺长接近内径。在铝合金标尺正中央位置做标识,并在其侧面贴上反射片。测量时,将铝合金标尺水平放置在某一环片上,首先用水平尺把铝合金标尺精确整平,使用全站仪采用极坐标法测量铝合金标尺中心坐标,即为环片中心坐标;使用水准仪测量铝合金标尺正中央位置的底板和顶板高程,从而得到环片直径及圆心。由此,就可以推算出的成环管片中心轴线的实际三维坐标,以及与设计比较后的差值。每次成环管片测量时,应对已经测过的管片进行重叠测量,以便进行检核。
1、平面线形应直捷、连接、顺适,并与地形地物相适应,与周围环境相协调;
2、必须满足行驶力学要求,视觉和心理上的要求对高速路应尽量满足;
3、保持平面线形的均衡与连贯;
4、应避免连续急弯的线形;
5、平曲线应有足够的长度。一般来说道路线型分为以下六类:
1、基本型
直线+缓和曲线+圆曲线+缓和曲线+直线,这种线型和地铁平曲线里的大部分线型是一样的。
2、S型
缓和曲线1+圆曲线1+缓和曲线1+(反向)+缓和曲线2+圆曲线2+缓和曲线2
S型曲线几点注意:
(1)相邻两个回旋参数A1和A2宜相等,当采用不同参数时,A1/A2<2.0,有条件时应<1.5;(2)两反向曲线之间不设直线,不得已插入直线时,必须尽量短,其直线长度或重合段的长度应满足L≤(A1+A2)/40。
(3)S型两圆曲线半径之比不宜过大,宜为:R2/R1=11/3。
3、卵型
缓和曲线1+圆曲线1+缓和曲线(过渡)+圆曲线2+缓和曲线2
卵型曲线的几点注意:
(1)卵型上的回旋参数A不应小于该级公路关于回旋线最小参数的规定,同时宜在下列界限内:R2/2≤ A≤ R2(R2为小圆半径);
(2)两圆曲线半径之比宜在下列界限之内:0.2≤R2/R1≤ 0.8(R1为大圆半径);
(3)两圆曲线的间距,宜在下列界限之内:0.003≤D/R2≤ 0.03(D为两圆曲线最小间距)。
4、凸型
直线+缓和曲线1+(同向)缓和曲线2+直线
5、复合型
直线+缓和曲线1+(同向)缓和曲线2+圆曲线+……
6、C型
圆曲线1+缓和曲线1+(同向)缓和曲线2+圆曲线2
第二篇:王家岭进风井立井联系测量定向的报告
王家岭进风井立井联系测量定向的报告
王家岭煤业公司:
王家岭煤矿进风大巷向北已施工72m,根据《煤矿测量规程》第62条规定:陀螺定向边应大于50m,进风大巷已具备陀螺定向的条件,计划采用日本索佳陀螺全站仪进行定向。采用800m长钢尺和自动安平水准仪进行高程导入,采用高强度细直径钢丝配合南方全站仪进行坐标导入。
1、施工人员统计:
陀螺定向:工程师1名,技术员2名。
高程导入测量:工程师2名,技术员2名,测工2名。坐标导入测量:工程师2名,技术员4名,测工2名。
2、立井联系测量用时统计: 1)、施工准备:
1、钢丝、钢尺等工器具准备和鉴定:1天,○
2、地面控制点复测检查:1天 ○2)、施工用时:
1、陀螺定向1天,○
2、高程导入测量:1天 ○
3、坐标导入测量:1天。○
4、数据分析整理、平差计算:1天 ○
3、王家岭煤矿进风立井联系测量定向费用如下:
1、高程导入测量:8000元,2、坐标导入测量:12000元,3、陀螺边:18000元。
特此报告
2010/7/20
中煤五公司一处王家岭项目部
第三篇:隧道测量总结
[转帖]隧道测量总结
上中隧道工程南线隧道经过几个月紧锣密鼓的施工已经顺利穿越黄浦江,正朝着接收井挺进。为了能使隧道顺利贯通还有许多障碍及难关,如穿越多层民房、地下管线及准确进洞都是对我们考验。
测量工作的重要性是不可忽视的。从工程开始的围挡,地面基础设施的施工,盾构的出洞进洞,直至工程的竣工验收都有着测量工作人员的汗水结晶,更是智慧与科学的体现。
隧道测量的误差主要由地面控制、联系测量、地下控制及盾构仪的精度四方面构成。为了减少误差确保贯通,我们做了大量的工作。现对前期测量工作进行回顾总结,以更好地做好下一步工作。一控制测量
隧道施工在公路、铁路施工中都是一个重点。对于长隧道或曲线隧道,确保盾构推进能沿着设计轴线推进及全线贯通,主要取决于控制测量、联系测量和地下控制测量。
1. 地面控制测量
地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终点横向点位误差即终点的横向位移。这是盾构机能否顺利进洞的关键因素之一。终点的横向点误差是由测角误差和边长误差的共同影响所产生。开工前由业主提供地面控制网。我们严格按照要求对控制点进行3个月一次的复测,保证其点位的稳定。平面控制我们选用了Leica的TCR1201进行观测,此仪器为一秒级,其相对精度均符合规范。在盾构推进前项经部还委托有专业资质的第三方采用二等GPS测量,对平面控制点进行复测以确保精度。
高程控制我们也按规范进行联测,选用Leica的NA2水准仪加平行玻璃板,使精度达到0.1毫米。同样在盾构推进前项经部还委托有专业资质的第三方采用二等水准及跨河水准测量,对高程控制点进行复测以确保精度来有效地控制隧道高程贯通误差。
2.联系测量
在隧道施工中为了保证隧道正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下。这个传递工作称为竖井联系测量,是联系测量中常用地一种。坐标与方向地传递又称为定向测量,通过定向测量,使地下平面控制网与地面上有统一地坐标系统。而高程传递则使地下高程系统获得与地面统一地起算数据。提高测量精度及分析测量误差通常我们可采用附和或闭合路线来完成这项工作。定向工作可分为几何和物理方法。但隧道测量是工程测量中很特殊的一个部分,由于受条件的限制无法按常规的方法。我们公司在高级工程师(教授级)的主持下,经过无数次的深化,确立了运用几何法进行定向测量(联系三角形测量)的方法将地面控制点传递到地下。实践证明,几何法定向成本低、收敛快、可靠性强、不受施工影响,施工企业在经济上容易承受。根据几何学原理通常情况下在竖井内投放两根钢丝与井上测站沿轴线布置成狭长三角形,钢丝下挂重锤,使其构成铅垂。建立竖直面,在该面上两垂线间任意两点连线的方位角均相等,同一垂线上任意点的坐标也都相等。测量是一份责任心相当重的工作,每个测量人员对自己都是严格要求,考虑问题相当的严密谨慎,顾由唐工倡议由原有悬挂两根钢丝的基础上增加一根。使之组成两个联系三角形,以提高精度又能校核成果。对于三跟钢丝的布置也有相当的讲究两根钢丝与仪器的夹角不能超过2度,这样在平差过程中可以减少计算角的误差。定向悬挂高强度的钢丝(0.3mm),并吊以重锤拉直钢丝,由于定向测量有4-5个方向、9个测回且需井上井下同时进行,将地面和地下连成一个整体,形成一个系统。难度较高,故重锤需置于油桶中,是其更为稳定不易晃动同时又可减轻钢丝的压力。根据现有设备及隧道长度及施工要求,我们我们已经将传统定向中用钢尺人工量边改为全站仪无棱镜测距。使每条边的精度达到0.1mm,大大高于限差≤2mm的规范要求。同时我们准备每条隧道施工期间安排三次定向测量。定向测量由总公司唐震华高级工程师把关,并有多名技师现场参与,现已完成了二次。结果比较满意。各方面的误差均小于规范要求。
高程控制点我们采用高程传递的方法将地面控制点传递至地下,这也就是所说的高程导入法。在进行高程传递前,必须对地面上的起始水准点的高程进行核对。在井上井下设置两架水准仪,钢尺悬挂在固定支架上,下端悬挂重量为10kg的重锤。由地面上的水准仪在起始水准点的水准尺上读书a,钢尺的读数为β1。井下水准仪的钢尺读数为β2,而井下水准点的读数为b。井下水准点的高程HB可用一下公式计算:
HB=HA+a-[(β1-β2)+△t+△l]-b 式中:△t为钢尺的温度改正
△l为尺长改正
HA为井上水准点的高程 在经过3次同样的高程传递后,才可以确定井下水准点是否稳定,有没有受到竖井和隧道自身沉降的影响。同时不同仪器所求得的井下水准点高程不同,一般高程的不符值不应超过2mm.3.地下控制
地下控制测量包括导线及高程测量。地下导线测量的目的是以必要的精度,按照与地面控制测量统一的坐标系统。建立足以确保盾构顺利进洞的井下控制系统,为盾够姿态的测定提供依据。由于隧道内没有足够的空间无法随意布设导线,只能以支导线形式向前延伸。然而支导线精度较差,势必造成较大的误差,所以我们采用工作量较大的双导线测量,以提高精度,是保证隧道的贯通的较佳方法。导线点通常设在隧道衬砌的上弦位置,其位置相对稳定不易受到外来因素的影响。但是由于上中路隧道目前是世界第一大直径隧道,考虑到安全及施工问题,我们将导线点设在腰部,仅保留靠近井口的两个观测台。用以定向后的数据比较。井下导线复测不少于三次。测角、测距选用的仪器为一秒级的全站仪,用全圆法测角、用往返正倒镜测距,测回数不少于4次。
地下水准测量的目的同样也是为了建立一个与地面统一的高程系统,作为隧道施工中路面铺设、中板放样之用,当然主要目的也是为了隧道贯通做好保障。高程测量均为支水准线路,因而需要用往返观测及多次观测进行检核。由于坡度较大使测站增加,故工作量比较大。为确保盾构测量使用数据的准确,我们几乎每二天要测一次水准。大直径隧道增加了空间,但也给我们测量增加了难度,习惯的测量位置都在隧道顶部,自动测量系统又限制我们只能在车架上完成一系列测量工作,导线及高程都需要在车架的行架上进行空中接力。我们使用Leica NA2水准仪,采用悬挂钢尺的方法将控制点高程连接至仪器台面上,保证了盾构高程沿着设计轴线掘进。二.盾构仪安装 所谓盾够仪就是盾够测量的标志。盾够在掘进时,在土层中的姿态必须通过测量的方法来测定。不管是我们传统的人工测量还是先进的自动测量系统都需要在盾构机上作一个标记,使我们的仪器可以清楚的看到它。自动测量系统的标志安装在盾构中心的上方,其标志有一个棱镜及一个光靶组成,稍后在自动测量系统中将结合其他功能做详细的介绍。虽然我们所用是当今世界最大的,设备最为齐全的TBM。有利必有弊,对于我们测量可以利用的空间并不宽敞。理论上说盾构仪的前靶后靶的距离应尽量的拉长,这样就提高了反算到切口和盾尾的精度。同时前靶后靶的位置尽量应该靠近盾构的中心,这样收到盾构旋转的影响较小。进行盾构机内标志的安装,对盾构起始姿态的测量十分重要。贯通测量影响精度的误差一部分来自于标志安装是否正确。所以在掘进前测量的头等大事就是正确地测好盾构机的起始姿态。当盾构机主体结构完全焊接安装完成,静止在基座上时,通过垂吊麻线求出盾构切口及盾尾的外壳两端地象限点,实测其坐标。然后将切口两端象限点坐标与盾尾两端象限点坐标的平均线作为盾构机的平面中心线,同时求出盾构机的转角。然后实测切口与盾尾顶和底的高程求出盾构的高程中心线,以及盾构静止状态的坡度。在盾构机内选择合适的位置安装姿态测量标志,由于盾构机中心部位已被自动测量系统占据,因此我们只能安装在尽可能靠近中心线的位置,与此同时只能将后靶加长至千斤顶顶块的后部,使前后靶距离增加至两米。为了避免标志被破坏或变动,同时也可以进行校核,安装了三个标志,通常情况下使用两个,一个备用。接着按实测的静止盾构坡度及转角安装坡度板(如图)
坡度板的垂线距离同样要求尽可能的放长,以消除坡度板的制作误差。同时我们打破常规,淘汰了原有通过环号累积来求得盾构里程的做法,在标志上安装棱镜(如图)通过实测坐标反算切口及盾尾的里程,同时通过这一里程更为准确的判断盾构的偏离值。但是,随着精度的提高,井下测量人员的素质也需要相应的提高。采用这种新的标志后,人工测量必须能够熟练操作全站仪,所以对测量人员又是一种挑战。三.盾构及管片姿态的测定 在隧道施工过程中,测量人员的主要任务是随时确定盾构的掘进方向。虽然现在我们有自动测量系统,人工测量还是一种让人较为放心的方法,毕竟在我们隧道施工过程中得到了广泛和长久的使用,而且效果显著。人工测量还是每天担当着复合自动系统的重任。利用安放在控制台上的仪器测量盾构前后靶的坐标。特别要提的是控制台上所使用的是可以消除对中误差的强制对中盘,以前的强制对中盘是通过插入铜螺丝来固定,但是随着现在仪器摩擦制动运用的增多,铜螺丝与孔之间存在间隙,所以使用铜螺丝固定并不理想。因此我们采用了螺纹式的强制对中盘,将螺丝焊接在对中盘上,基本消除了对中误差。在得到切口盾尾坐标后,反算盾构的位置也就是求出里程。对于盾构平面来说通常都会经过直线-缓和曲线-圆曲线-缓和曲线-直线这一过程,因此里程的判断相当重要。直线段中计算偏离值公式:(aX+bY+c)÷√(a2+b2)
缓和曲线段中计算偏离值公式: L3÷(6RL0)-L7÷(336R3LO3)圆曲线段中计算偏离值公式:R-√(△X2+△Y2)由于隧道的坡度盾构的直径较大,在盾构的长度上需要用坡度加以改正,这在以前的地铁盾构中是可以忽略不计的,同样转角改正也是不可忽视的,盾构标志高出盾构中心将近六米,盾构每旋转一分就会有Xmm差值。坡度、转角及盾构总长的改正使盾构姿态测定能有较高的精度(小于5mm)。有了正确的里程后,用实际坐标与设计坐标进行比较就可以得出盾构得偏差值。在直线、缓和曲线、圆曲线得计算方法都有所不同。高程偏离的测定,是利用观测台的高程加上盾构转角改正后的标高归算前靶处盾构的中心高程。然后通过盾构实际坡度归算切口中心标高及盾尾中心标高,同样通过里程算出设计高程与实际高程比较得出差值即偏离值。
管片中心偏值是实量管片成环后管片四周与盾壳的间隙加上根据测定的盾构姿态按几何尺寸与定分比数字公式导出推算管片拼装位置的偏离值。使用公式:(L-S)÷L×B+S÷L×A+X(Y)÷2 L-盾构总长
S-管片前沿至盾尾距离 A-实测盾构切口偏离值 B-实测盾构盾尾偏离值
X-为管片与盾壳左右两侧的间隙之差 Y-为管片与盾壳下上两侧的间隙之差
在测定盾构偏离值时需要运动大量的计算,为了不影响施工进度,我们使用携带方便的CASIC fx-4800,SHARP PC—E500计算机,运用Q-BASIC语言编写计算程序来完成,避免了人为的失误。五.自动测量系统
南线隧道大型盾构机的测量原先完全采用法国PYXIS系统。如何使PYXIS系统在我们上中路隧道工程中顺利应用,上中项经部领导着实花了大力气。丁志诚经理更是运筹帷幄,得知香港落马州地铁盾构运用的也是PYXIS系统,早在工程的初期就已经派测量人员赴香港地铁工地学习。虽然落马州地铁盾构已经拆除,不能进行实地的勘察,但还是在香港测量工程师那里了解到许多关于PYXIS系统情况,并对盾构推进过程中的使用与维护有了较为清晰的概念。结合后期法国人的说明和讲解,使盾构推进前PYXIS系统的安装调试进行的非常顺利。经过一段时间的实际运行及一系列PYXIS的界面操作,我们觉得这套系统能与瑞士(VMT)、英国(ZED)相媲美,给我们耳目一新的感觉,其功能强大,所有测量数据的采集、计算和反馈及一些盾构的参数设定、管片拼装选型等都能简便的操作于界面上。
针对这套测量系统方面,我们认为可以再增加适当的测量距离,频繁的转站会使系统不能发挥其最大功能,而我们的导线转站的累计误差也会相应增大。另一方面,激光器的选型应与全站仪配套,其功率要大型号的,尽量减少对其的调节使之增加使用寿命。
总之,地下测量的工作项目较多,每天都在进行。盾构姿态测量更是受到领导重视。的确,盾构的姿态直接关系到隧道施工的进度和质量。所以盾构姿态测量我们淘汰了以前一贯使用的普通经纬仪,而使用全站仪测量,使盾构里程的精度大大提高,那么偏差值的准确性也更高了。可以及时准确地反映出盾构机的趋势。为了更详细地了解隧道的变形情况,我们对管片的横径、管顶的沉降进行监测,横径通常是五环一点,每一点测三次(盾尾、一号车架后、二号车架后),如数据变化大,我们会在管片离开车架后运用对边测量进行监测,确保数据的准确及时和完整。与此同时管顶的沉降也是我们的一个重要工作,受车架的限制,测点只能布置在管片的顶部,5环一点,特殊时期会增至两环一点,测量次数有2—4次不等。当盾构穿越黄浦江底时,覆土不足九米,我们及时增加了测量次数。对于管顶的沉降相当的敏感,管顶的沉降并没有规律,有时上浮有时沉降。所以针对不同的情况我们会进行调节,满足各方面的需要。由于隧道施工采用错缝拼装,管片的旋转是行业中公认的难点。需要及时发现及时的纠正,我们每五环设一点测量,当旋转度过大时,就要及时的向有关人员反映,以帮助现场施工员和拼装工及时的纠正管片的位置,满足设计要求。
综合前期的测量工作,成绩是肯定的。主要是由于项经部领导管理有方,各部门通力合作。因为测量工作需要多方配合,如测量台的制作、焊接、灯光照明等。相信在今后的工作中能得到更好的支持,取得更大的进步!
第四篇:隧道测量总结
篇一:隧道测量总结
帖]隧道测量总结
上中隧道工程南线隧道经过几个月紧锣密鼓的施工已经顺利穿越黄浦
江,正朝着接收井挺进。为了能使隧道顺利贯通还有许多障碍及难关,如穿越多层民房、地下管线及准确进洞都是对我们考验。
测量工作的重要性是不可忽视的。从工程开始的围挡,地面基础设施的施工,盾构的出洞进洞,直至工程的竣工验收都有着测量工作人员的汗水结晶,更是智慧与科学的体现。隧道测量的误差主要由地面控制、联系测量、地下控制及盾构仪的精度四方面构成。为了减少误差确保贯通,我们做了大量的工作。现对前期测量工作进行回顾总结,以更好地做好下一步工作。
一控制测量
隧道施工在公路、铁路施工中都是一个重点。对于长隧道或曲线隧道,确保盾构推进能沿着设计轴线推进及全线贯通,主要取决于控制测量、联系测量和地下控制测量。
1. 地面控制测量
地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终点横向点位误差即终点的横向位移。这是盾构机能否顺利进洞的关键因素之一。终点的横向点误差是由测角误差和边长误差的共同影响所产生。开工前由业主提供地面控制网。我们严格按照要求对控制点进行3个月一次的复测,保证其点位的稳定。平面控制我们选用了leica的tcr1201进行观测,此仪器为一秒级,其相对精度均符合规范。在盾构推进前项经部还委托有专业资质的
首先组织学习了围岩观测测量规范、围岩量测实施细则、围岩量测作业指导书等,按照作业指导书上严格布设和测设,洞内测量严格按照120文件的布设距离和测量频率进行,此项工作的难点就是围岩量测观测点的埋设和保护,由于是双线隧道,隧道净空断面比较大,所以围岩量测观测点的埋设要和掌子面的进度保持一致,利用开挖台车进行布设,还需要现场施工人员密切配合,才能做好。洞内围岩量测观测点的保护是此项工作难中之难。洞内施工比较复杂,主要是掌子面放炮和各种机械作业经常破坏点位,其次是初喷污染观测点反光片,这些都会导致围岩量测的数据不准确、不及时。如果不能及时对其补设补测都会使得数据失真,使得测量数据没有可参考性。对其容易出现的问题我们也及时针对性的出了一些解决对策。例如,掌子面放炮容易损坏反光片的情况,我们就给埋设的钢筋头上焊接了一个大约3×3cm的铁片,埋设点位时使得反光观测点向下向外方向约60°夹角,这样能有效的减小破坏率。总之,在围岩量测工作中我们不断的总结经验,从而提高围岩量测数据的准确性。为隧道施工安全做好最重要的一道防线。
其次是按照规范及局指要求,对隧道内的开挖断面、初支断面、二衬净空断面进行测量,形成超欠挖断面资料及时反馈到现场技术人员手中,用以指导和控制开挖断面超欠。及时对欠挖部位进行处理,有效的减少日后返工。很大程度上保证了二衬施工厚度符合设计及规范要求,保证质量安全的前提下加快了施工进度。
另外还需要督促并配合施工队测量人员进行掌子面及二衬、仰拱等施工放样测量进行复核测量,以达到换手测量,相互复核的目的,以确保现场测量放样准确无误。
三、桥梁测量
勤练技能 服务一线
首先组织测量队人员对桥梁图纸上的基础数据进行了复核计算,并整理形成了桥梁细部尺寸极坐标计算书。其次通过5800计算器利用程序计算将桥梁的细部放样坐标等数据进行计算,将计算器计算出的结果与根据图纸手算的结果进行对比,达到对比复核的效果。最后进行桥梁测量的放样工作。
桥梁的放样准备工作主要包括熟悉图纸与测量前与现场技术员的技术交底,通过图纸与技术交底的对比校核确保数据的准确性。桥梁的测量工作主要有线路中线与特殊点坐标放样,工区采用线路偏距放样,放样内容包括线路中线点,模板的定位,以及施工后的复核等,根据图纸设计的里程和线路的偏距来测量具体位置。测量时,应尽量使望远镜瞄准棱镜的底部,减小因棱镜杆的歪曲产生的误差而影响测量的精度。测量放样工作的整个过程必须做到细心仔细,尽可能多的通过各种方法来对测量的结果进行校核,在确保正确测量的情况下尽量使测量误差达到规范最小值。同时为工程的安全施工提供服务。
四、内业资料的计算与编制
内业资料的计算也是一项细心而重要的工作,首先要收集所需的设计资料“曲直线要素表、纵断面图、线路中线逐桩坐标表等,按照设计图纸上要素逐个计算并复核设计参数,保证设计提供的数据准确无误。其次是编制测量放样资料。隧道施工各项工序都要有过程控制资料,要做到及时、准确。
五、测量日常管理
按照公司测量办法规定,我们实行的是测量队长负责制。因此测量队长首先要以身作则,要带领全体成员完成好各项测量任务,组织落实测量工作,实行“三检”制度,对计算成果要进行换人校核,组织好全体测量员的内业工作,不断提高测量员的内业资料计算水平和团队协作能力。
勤练技能 服务一线
六、工作中的不足之处
1、部分资料整理不及时、不准确。
2、围岩观测点的埋设与保护工作不到位。
3、测量制度落实与执行不到位。
4、测量人员的内业资料计算与整理的功底比较差。
5、团队协作精神还有待加强。
以上几点不足之处今后要加大督促和指导力度,使得全队的内业计算能力、制度的落实及执行力、团队协作精神得到更大的提高。
七、2013年工作计划
2013年我们将在项目部班子的领导下,保质保量的完成好各项测量任务。我们将通过以下几点来展开工作:
1、要全面提高测量队的整体素质,要牢固树立服务一线,顾全大局的意识。加强学习,务实工作。坚决做到:踏踏实实学做人,诚诚恳恳做工作。锻炼出一支“能吃苦,善思考,勤学习”的测量队伍。
2、继续完善各项内业资料,做到不拖欠资料,尽量避免错误或返工。
3、根据《**铁路5标一项目部2013年施工进度计划》的内容,进行合理安排现场测量工作。保证做到:只要现场需要,我们随叫随到。
测量队全体队员将始终如一为张唐铁路项目建设做好基础技术服务保障工作,为张唐铁路一项目部建设的顺利进行贡献一份力量。
第五篇:隧道控制测量
浅 谈 隧 道 控 制 测 量
摘要:在隧道施工中,采用两个和多个同向的掘进工作面分段掘进隧道,使其按设计要求在预定地点彼此接通。为实施贯通而进行的有关测量工作,称之为贯通测量。贯通测量设计大多数的隧道测量内容,由于各项测量工作中都存在误差,从而使贯通长生偏差。因此在隧道测量中为了保证贯通误差的设计要求,这就要求在隧道有关测量中要尽量的避免或减少误差,控制的方法有精确测量还有一定的测量方法和技巧。
关键词:贯通测量,控制,控制测量,导线布设,高程测量,超欠挖,路线定线
1.1隧道施工测量的内容和作用
随着现代化建设的发展,我国地下隧道工程日益增加。如公路隧道、铁路隧道、水利工程输水隧道、地下铁道、矿山通道等。地下隧道工程施工需要进行的主要测量工作主要包括:(1)地面控制测量:在地面上建立平面和高程控制网;(2)联系测量:将地面上得坐标方向和高程传递到地下,建设地面下统一坐标系统;(3)地下控制测量:包括地下平面与高程控制;(4)隧道施工测量:根据隧道的设计进行放样、指导及衬砌的中线及高程测量。根据工作地点划分,隧道施工测量可以分为地面测量和地下测量两大部分。
1.2 地面控制测量
地面控制测量主要是对施工隧道进行定位、定向和控制,一般根据实际情况不成网状或导线。
1、控制网布设步骤 ①
收集资料
主要包括施工地区的比例尺地形图;隧道所在地段的路线平面图;隧道的纵、横断面图;隧道平面图;隧道施工技术设计;周围以后控制点资料;该地区的水文、气象、地质及交通等方面的资料。
②
现场勘查与交桩
在对收集到的资料进行初步的分析之后,为了进一步判定已有资料的正确性和了解实地情况,需对隧道穿越的地区进行实地勘查。一般沿隧道线路中线,从洞口一端向另一端进行,观察隧道两侧地形,应特别注意洞口路线的走向、地形与施工设施的布设情况。勘查过程中有设计人员向测量人员现场交桩。
③
选点布网
一般直接到现场勘查先点,要注意利用已有控制点,选点时应考虑一下因素:
(1):在隧道的进出口,斜井与平洞等的标桩位置,竖井的附近,曲线的起点、终点及交点等处应选点。(2):三角网的基线应选在平坦的地方,三角性的边长应大致相等,求距角应不小于30°。(3):控制点要选在稳定、牢靠的地方,不受施工的影响。(4):在每个洞口至少有三个控制点,确保洞内导线测量有足够的起始和检测数据。(5):相邻两点要通视,避免造高标。
三角网的形式一般采用单三角锁,当隧道出口附近有精度可靠的高级三角点时,可考虑布设三角网或三边网。
2、地面导线测量 ① 选点要求
(1)在直线隧道中,为了减少导线距离误差对隧道横向贯通误差的影响,应尽量将导线沿着隧道中线布设,导线点数应尽可能的少,以减少测角误差对横向贯通误差的影响。
(2)对于曲线隧道,应沿曲线的切线方向布设,最好能把曲线的起、终点也作为导线点。这样曲线转折点上的总偏角就可以根据导线测量结果计算出来。
(3)导线点应考虑横洞、斜井、竖井的位置
(4)为了增加校验条件,提高导向测量精度,应尽量布设成闭合导。
3、地面水准测量
水准测量的等级,取决与隧道的长度、隧道地段的地形情况等。水准测量施测,一般可利用路线基平水准点高程作为起始高程,沿水准路线在每个洞口至少应埋设三个水准点。水准路线应构成环,或者布设成两条相互独立的水准路线。
1.3 竖井联系测量
为了使井上、井下采用统一坐标系统所进行的测量工作,称坐联系测量。联系测量的任务在于确定:
①井下导线中一条边的方位角;
②井下导线中一个点的平面坐标x和y; ③井下起始点的高程;
定向分为几何定向和物理定向两大类。
1.4 地下控制测量
1、地下导线测量
地下导线测量的目的是以必要的精度,按照与地面控制测量统一的坐标系统,建立地下的控制系统。根据地下的导线坐标,就可以标定隧道中线及其衬砌位置,保证贯通等施工。地下导线的起始点通常设在隧道的洞口、洞口、斜井口。起始点坐标和方位角有地面控制测量或联系测量确定。
这种在隧道施工过程中所进行的地下导线测量与一般地面导线测量相比较有以下特点:
(1)地下导线随隧道的开挖而向前延伸,所以只能逐段布设支导线。而支导线采用重复观测的方法进行校核。
(2)导线在地下开挖的坑道内布设,因此其导线形状完全取决于坑道形状,导线点选择余地小。
(3)地下导线是先布设精度较低的施工导线,然后在布设精度较高的基本控制导线。
设地下导线是应考虑贯通是所需要的精度要求,另外还应考虑到导线点的位置,以保证在隧道内以必要的精度放样。在隧道建设中,导线一般采用分级布设。
(1)施工导线:在开挖面向前推进时,用以进行放样且指导开挖的导线测量。施工导线的边长一般为25——50米。
(2)基本控制导线:当掘进长度达100——300米以后,为了检查隧道的方向是否与设计的相符合,并提高导线精度,选择一部分施工导线点布设边长较长,精度较高的基本控制导线。
(3)主要导线:当隧道掘进大于2千米时,可选择一部分基本导线点布设主要导线,主要导线的边长一般可选在150——800米。
在隧道施工中,一般只布设施工导线与基本控制导线。当隧道过长时才考虑布设主要导线。导线点一般设在岩石坚固的地方。隧道的交叉处须设点。考虑到使用方便,便于寻找,导线点的编号尽可能做到简单,那次序排列。
由于地下导线布设成支导线,而且测一个新点后,中间要间断一段时间,所以当导线继续向前测量时,需先进行原点检测。在直线隧道中,检核测量可只进行角度观测,在曲线隧道中还需检核边长,在有条件是尽可能构成闭合导线。
由于地下导线的边长较短,仪器对中误差和目标偏心误差对测角精度影响较大,因此应根据施测导线等级,增加对中次数。
2、地下水准测量
下水准测量以洞口水准点的高程为起始数据,经导入高程传递到地下水准基点,然后有地下水准基点出发,测定隧道内个水准点的高程,作为施工放样依据。
地下水准测量的特点:(1)水准线路与地下导线相同,在隧道贯通之前,地下水准线路均为支线,因而需要往返测。
(2)通常利用地下导线点作为水准点.(3)在隧道施工中,地下水准支线随开挖面的紧张而向前延伸。为满足施工要求,一般可先测设精度较低的临时水准点,其后在测设精度较高的永久水准点。
1.5 施工测量
在隧道施工测量中,对隧道走向的控制极为重要,而控制隧道走向的控制条件就是控制隧道中线,以此来控制隧道的走向。
隧道中线的控制,是根据设计图纸所给的参数来控制的。根据设计图纸所给的设计参数,计算出有关桩号的坐标,准确放样中线里程桩号。在隧道施工中,隧道中线基本控制隧道的开挖的前进方向,再由设计参数控制隧道的开挖轮廓线。
其中现在应用最广泛,最简单的操作方法就是将所给的设计参数和设计路线编写成一个计算程序,根据里程算出坐标称之为正算,根据坐标推算里程称之为反算,再加上高程计算,这样就可以把一条隧道立体的控制。同样,只要把路线中线确定,我们就可以确定任意一点距相对应的同一里程中线的偏移量,从而达到控制隧道走向的目的。在隧道的施工过程中,最主要的就是控制超欠挖、控制路线的走线、控制二衬厚度、隧道的标高。
超欠挖控制:超欠挖控制的核心理念就是开挖半径必须大于等于设计开挖半径,从而给初期支护和二次衬砌留有做够的空间,从而保证初期支护厚度和二次衬砌厚度,最终符合净空设计要求。超欠挖计算就是根据所测点的三维坐标,计算出该点的实际半径,在于设计半径相比较。
路线走向控制:;路线走向控制就是要控制隧道中线的控制,同时也要控制隧道两边墙距中线的距离,从而达到控制路线走向。中线控制主要是利用两坐标点的距离来计算的,计算距离的前提就是计算出这一点同一里程的中线坐标,从而计算出该点与中线的距离,而该点的中线坐标计算就要知道该点的里程,此时应用坐标反算里程得出该点的里程。计算出该点距中线的距离,从而控制隧道两边墙的走向,最终控制隧道走向。
控制而成厚度:控制二衬厚度在整个隧道施工中都是核心,二衬承载者整个隧道的受力,保证隧道的正常通行,所以二衬厚度必须保证,按照设计要求,给二衬提前预留空间,这就要控制好开挖,必能出现欠挖这样才能保证二衬厚度,同样二衬台车定位也要做到准确,而二衬台车定位依据就是隧道中线点,从而对准确放样隧道中线点要求极高。
隧道标高控制:隧道标高控制主要是根据路线设计中线高程,控制隧道标高。通过对路面的标高控制来决定隧道底部的开挖。在四级以上围岩级别带仰拱的开挖,要根据路面高度和仰拱设计高度准确控制仰拱的开挖轮廓线。
隧道是一个三维的立体结构,从而要想控制隧道施工符合设计要求,必须从三维来控制,从而达到设计贯通误差要求。
参考文献
《测量学》 人民交通出版社 《公路与城市道路、桥梁、隧道工程专用
人民交通出版社 》