浅谈长大隧道控制测量

时间:2019-05-12 21:43:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈长大隧道控制测量》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈长大隧道控制测量》。

第一篇:浅谈长大隧道控制测量

浅谈长大隧道控制测量

2007年09年16日 10:27:32 作者: 风吹叶落

浅谈长大隧道洞内控制测量

作者 张军军

摘要:本文通过笔者对太行山隧道1#,2#斜井的洞内控制测量经验,阐述了长大隧道平面控制,洞内导线的布设方法、施测方案、施测方法及单线双隧右线控制方法。关键词:导线、控制网、导线复测,控制网精度,贯通精度。工程简介

太行山特长隧道是新建铁路石家庄至太原客运专线的重点工程,位于孤山特大桥和盂县车站之间。本隧道设计为两座相互平行的单线隧道,线间距35.0m,隧道内线路位于直线上。

中铁十七局集团五公司承担施工的Z3标段,位于盂县仙人乡咀子上村,起讫里程为DK73+201~DK77+801(YDK73+201~YDK77+801),正洞全长4600m,设两个无轨运输施工斜井。其中2#斜井坡度11.6%。1#斜井坡度为11.2%.2#斜井承担正洞任务2000m。1#斜井承担正洞任务2600m。

根据石太客运专线太行山隧道洞内控制精度要求。洞内导线测角中误差1.5”,测距误差≤1/100000.测量仪器:徕卡TCRA1102全站仪,测角精度为2”,脚架4个,棱镜3个,对讲机4个,卡西欧4800计算器一个。遮阳伞一把。一,导线整体布设思路

导线布设前首先应根据工程实际情况和隧道允许贯通误差预先确定导线控制网精度等级,选择导线的布设网型,确定导线边长的范围。太行山隧道1#,2#斜井口距离约7KM,2#与3#斜井口距离约7.5KM,根据《新建铁路测量规范》确定,隧道允许的贯通误差为6cm。为了保证贯通精度,太行山隧道1#,2#斜井导线控制网的精度等级根据实际估算及设计院建议,确定了导线控制网等级为二等。导线布设采用闭合导线网,导线以洞口所投GPS点为起始点,按双导线向内测设。形成闭合导线环,导线每延伸一到两个控制点,两导线交会成一个节点,节点坐标采用平差值,作为继续向前延伸的依据。在施工阶段,综合考虑施工进度等经济指标及贯通精度要求,前期控制网导线边长斜井内定在300米左右,正洞内根据横通道布置特点,为控制右线的需要,在每个横通道口布设导线点,导线边长约420米左右。由于旁折光对精密测角观测结果有系统性影响,因此导线点沿隧道中线布设成等边直伸多边形导线闭合环,每个导线环的边数设计为4-6条。隧道的横向贯通误差随着测站数的增加而迅速增大,所以在保证洞内通视的情况下,采取将增长导线边长的方法,以减少方位角传递误差。二,施工阶段中线控制方案

在施工初期阶段,根据斜井的掘进进度,选择导线点布设位置,在斜井刚进洞时,以设计院提供的洞口GPS点作为进行洞口及进洞方向放样的依据,根据现场实际情况,当用洞外GPS点放样不能满足通视要求时,开始布设控制点。1#,2#斜井在掘进到250左右时布设了一对导线点K1,K1’。与洞外GPS点形成闭合环,采用二等导线测量方法进行导线测量,采用严密平差方法进行计算,并已此作为向前掘进放样的依据。为了不影响进度,在以后的导线延伸时,以导线网最后一条已知边作为起算边,与新布设的导线点形成闭合环进行延伸,导线边长斜井内在300米左右。在每次导线延伸测量时,对起算的导线边进行检查,及时发现由于山体压力或洞内施工、运输等的影响而产生的点位位移。

三、复测方案

采用上面所述导线布设与测量方案,虽然可以节省时间,最大程度的减少对施工进度的影响,但是由于每次的导线延伸测的边长较短,增加了方位角传递误差,并造成误差累积,使前面导线点精度不足.所以,根据掘进进度,每3-4个月应进行一次从洞外GPS点开始的导线复测,进行整体严密平差,以控制导线方向。导线复测采用导线网进行。导线网一般布设成若干个彼此相连的带状导线环。网中所有边,角全部观测。每个导线环一般为4-6条边。如下图为2#斜井导线控制网: 与施工阶段导线延伸测量不同的是,导线复测时为了保证测角及测距精度,应根据洞内通视条件,将原导线边长进行适当延长。洞内烟尘和照明不足将影响测量精度,所以在复测期间应采取措施,保证洞内环境满足测量要求。

导线复测采用两组人员,使用不同仪器进行测量,以便复核。

在隧道施工进行到中期间段,应及时对导线网贯通误差进行估算,以便掌握现控制网是否符合隧道贯通要求,并可及时调整控制方案,以使隧道顺利贯通。

太行山隧道1#~2#,2#~3#之间在2006年12月进行了一次贯通误差估算,估算结果1#与2#之间贯通误差为8cm,2#~3#贯通误差为5.9cm。1#与2#之间的贯通误差预计不能满足规范要求。经分析,1#、2#斜井内导线点对隧道贯通误差影响最大,为了保证顺利贯通,及时调整了控制方案,将1#、2#斜井内部分控制点去掉,从新对控制网进行复测,复测完毕后,重新对1#,2#贯通误差进行了估算,估算结果为3.5cm,在允许误差之内。说明及时改变控制方案是正确的。

在隧道贯通前应组织一次贯通复测。以使在贯通前及时调整导线方向。必要时适当扩大断面,保证隧道建筑界限。

目前2#与3#之间已经顺利贯通,实测贯通误差为1.9cm。完全满足贯通要求。1#与进口也顺利贯通,实测贯通误差为1cm。

四、右线控制

对于双洞隧道来说,由于斜井与正洞交角较小,导线只能从斜井引测到正洞左线,长导线无法直接进入正洞,所以右线中线一般依附左线导线控制网通过左右线的联系横通道进行控制。其控制方法有以下两种:

1,第一步:通过左线横通道口布设的导线点Z1,通过横通道放样右 线中桩Y1,第二步:在放样出的右线中桩设站,后视左洞导线点,放样右洞前进方向中桩Y2,再以这两Y1,Y2中桩使用穿线法作为右线施工中线放样依据。

在掘进进行到下一个横通道后,在用同样的方法进行放样右线中桩Y3:

然后在Y1上设站后视Z1放样Y3,用以复核。若偏差,则取Y3,Y3’连线的中点作为新中桩。此方法缺点是放样误差大,穿线法误差容易累积。优点是实施起来方便,对施工影响较小。误差只在两个横通道口累积,并可以在第2个横通道打通后,及时调整误差。2,在右线横通道口中桩附近做点,通过与左线横通道口布设的导线点联测形成一个四边形闭合环,平差后使用右线点作为右线控制依据。如下图:

此方法优点是形成闭合环,右线点位精度较高。但横通道只有35m,而两横通道之间为420m,相临边长之比较大,各种调焦误差,目标偏心差,对中误差影响较大。且测量起来费时较多,对施工影响较大。

根据以上右线控制的方法来看,虽然各有所长,但控制精度都不如导线直接进入右洞用长导线控制精度较高,所以从贯通精度方面考虑,在斜井与正洞相交处,左线与右线的施工联系通道与正洞的夹角设计成与斜井一样的角度,这样从洞外引测的导线网便可以直接进入右洞,提高右线的控制精度。从施工进度等经济指标来考虑的话,左右线各一组导线网,必然会增加控制测量的时间,对施工进度产生影响。由于隧道的贯通精度主要取决于控制网的精度,放样精度对贯通精度影响不大,以本文所述第一种方法控制右线,其贯通精度主要取决于左线控制网的精度。太行山2#斜井一直采用的本文第一种控制方法。目前右线已经贯通,从实测贯通误差来看,第一种方法也能很好的满足贯通精度要求。所以从经济角度考虑,采用第一种方法较好。

以上分析看出,对于单线双隧来说,左线控制网的精度至关重要。所以做好左线控制网的测量工作是非常关键的。

五、导线布点及测量方法

1,布点方法:a:埋点:埋点时要将点位附近虚碴清理干净,在基岩上钻眼,埋设φ22的钢筋做桩,桩顶要处理成光滑平面。钢筋长度约30cm。露出地面约5mm。用钢钉在桩顶打点或锯十字,点直径不大于1mm。然后用直径15cm的钢管,高约30cm,护桩。在钢桶周围用C20混凝土包围,混凝土包裹大小约1平米。混凝土凝固后在钢桶上加盖。导线点埋置完成后,在边墙上标明位置点号,以便测量使用。2,测角

测角采用方向观测法,当只有两个方向时,采用左右角观测法。由于洞内环境的特殊性,需采取一些特殊的措施。

a,洞口内,外两个测站的测角,应该给予足够的重视。由于洞口内外温差较大,洞口空气对流严重,空气密度变化剧烈,洞内外光线反差较大,使得测角时,目标成像极不稳定,严重的影响照准精度,切折光影响异常显著,给洞口内外两个测站的测角带来极大的困难,而这两个角距贯通面最远,对贯通误差的影响最大,所以观测这两个测站时应选择最有利的时间进行,分不同时段分次观测,在上午和下午太阳落山后各观测半数测回,然后取平均值。在照明能保证的情况下,在夜间测量最好.b,在测回之间仪器与目标应该重新对中,以减小目标偏心差和仪器对中误差对测角精度的影响。

c,由于洞内施工产生大量烟尘,空气质量较差,因此测量时要进行提前进行通风排烟,等成像清晰后在进行观测。在照明目标时,要避免单侧照明,应在目标的两个侧面进行照明。以减小瞄准误差。3,测距

采用全站仪测距应进行温度和气压等气象改正。特别是温度对测距影响较大。所以在测距时要使仪器适应环境温度。测距采用对向观测取平均值,并将其改正到平均高程面上。4,平差

平差采用软件严密平差。平差时应将边长等改正完成后进行。

结语:隧道控制测量的主要任务是保证隧道开挖按规定的精度要求贯通,长大隧道导线控制的精度直接关系到贯通精度,因此隧道控制测量必须以规定的精度认真、慎重的进行,避免产生严重后果,造成浪费和返工。参考资料:《新建铁路工程测量规范》 TB 10101-99

第二篇:隧道控制测量

浅 谈 隧 道 控 制 测 量

摘要:在隧道施工中,采用两个和多个同向的掘进工作面分段掘进隧道,使其按设计要求在预定地点彼此接通。为实施贯通而进行的有关测量工作,称之为贯通测量。贯通测量设计大多数的隧道测量内容,由于各项测量工作中都存在误差,从而使贯通长生偏差。因此在隧道测量中为了保证贯通误差的设计要求,这就要求在隧道有关测量中要尽量的避免或减少误差,控制的方法有精确测量还有一定的测量方法和技巧。

关键词:贯通测量,控制,控制测量,导线布设,高程测量,超欠挖,路线定线

1.1隧道施工测量的内容和作用

随着现代化建设的发展,我国地下隧道工程日益增加。如公路隧道、铁路隧道、水利工程输水隧道、地下铁道、矿山通道等。地下隧道工程施工需要进行的主要测量工作主要包括:(1)地面控制测量:在地面上建立平面和高程控制网;(2)联系测量:将地面上得坐标方向和高程传递到地下,建设地面下统一坐标系统;(3)地下控制测量:包括地下平面与高程控制;(4)隧道施工测量:根据隧道的设计进行放样、指导及衬砌的中线及高程测量。根据工作地点划分,隧道施工测量可以分为地面测量和地下测量两大部分。

1.2 地面控制测量

地面控制测量主要是对施工隧道进行定位、定向和控制,一般根据实际情况不成网状或导线。

1、控制网布设步骤 ①

收集资料

主要包括施工地区的比例尺地形图;隧道所在地段的路线平面图;隧道的纵、横断面图;隧道平面图;隧道施工技术设计;周围以后控制点资料;该地区的水文、气象、地质及交通等方面的资料。

现场勘查与交桩

在对收集到的资料进行初步的分析之后,为了进一步判定已有资料的正确性和了解实地情况,需对隧道穿越的地区进行实地勘查。一般沿隧道线路中线,从洞口一端向另一端进行,观察隧道两侧地形,应特别注意洞口路线的走向、地形与施工设施的布设情况。勘查过程中有设计人员向测量人员现场交桩。

选点布网

一般直接到现场勘查先点,要注意利用已有控制点,选点时应考虑一下因素:

(1):在隧道的进出口,斜井与平洞等的标桩位置,竖井的附近,曲线的起点、终点及交点等处应选点。(2):三角网的基线应选在平坦的地方,三角性的边长应大致相等,求距角应不小于30°。(3):控制点要选在稳定、牢靠的地方,不受施工的影响。(4):在每个洞口至少有三个控制点,确保洞内导线测量有足够的起始和检测数据。(5):相邻两点要通视,避免造高标。

三角网的形式一般采用单三角锁,当隧道出口附近有精度可靠的高级三角点时,可考虑布设三角网或三边网。

2、地面导线测量 ① 选点要求

(1)在直线隧道中,为了减少导线距离误差对隧道横向贯通误差的影响,应尽量将导线沿着隧道中线布设,导线点数应尽可能的少,以减少测角误差对横向贯通误差的影响。

(2)对于曲线隧道,应沿曲线的切线方向布设,最好能把曲线的起、终点也作为导线点。这样曲线转折点上的总偏角就可以根据导线测量结果计算出来。

(3)导线点应考虑横洞、斜井、竖井的位置

(4)为了增加校验条件,提高导向测量精度,应尽量布设成闭合导。

3、地面水准测量

水准测量的等级,取决与隧道的长度、隧道地段的地形情况等。水准测量施测,一般可利用路线基平水准点高程作为起始高程,沿水准路线在每个洞口至少应埋设三个水准点。水准路线应构成环,或者布设成两条相互独立的水准路线。

1.3 竖井联系测量

为了使井上、井下采用统一坐标系统所进行的测量工作,称坐联系测量。联系测量的任务在于确定:

①井下导线中一条边的方位角;

②井下导线中一个点的平面坐标x和y; ③井下起始点的高程;

定向分为几何定向和物理定向两大类。

1.4 地下控制测量

1、地下导线测量

地下导线测量的目的是以必要的精度,按照与地面控制测量统一的坐标系统,建立地下的控制系统。根据地下的导线坐标,就可以标定隧道中线及其衬砌位置,保证贯通等施工。地下导线的起始点通常设在隧道的洞口、洞口、斜井口。起始点坐标和方位角有地面控制测量或联系测量确定。

这种在隧道施工过程中所进行的地下导线测量与一般地面导线测量相比较有以下特点:

(1)地下导线随隧道的开挖而向前延伸,所以只能逐段布设支导线。而支导线采用重复观测的方法进行校核。

(2)导线在地下开挖的坑道内布设,因此其导线形状完全取决于坑道形状,导线点选择余地小。

(3)地下导线是先布设精度较低的施工导线,然后在布设精度较高的基本控制导线。

设地下导线是应考虑贯通是所需要的精度要求,另外还应考虑到导线点的位置,以保证在隧道内以必要的精度放样。在隧道建设中,导线一般采用分级布设。

(1)施工导线:在开挖面向前推进时,用以进行放样且指导开挖的导线测量。施工导线的边长一般为25——50米。

(2)基本控制导线:当掘进长度达100——300米以后,为了检查隧道的方向是否与设计的相符合,并提高导线精度,选择一部分施工导线点布设边长较长,精度较高的基本控制导线。

(3)主要导线:当隧道掘进大于2千米时,可选择一部分基本导线点布设主要导线,主要导线的边长一般可选在150——800米。

在隧道施工中,一般只布设施工导线与基本控制导线。当隧道过长时才考虑布设主要导线。导线点一般设在岩石坚固的地方。隧道的交叉处须设点。考虑到使用方便,便于寻找,导线点的编号尽可能做到简单,那次序排列。

由于地下导线布设成支导线,而且测一个新点后,中间要间断一段时间,所以当导线继续向前测量时,需先进行原点检测。在直线隧道中,检核测量可只进行角度观测,在曲线隧道中还需检核边长,在有条件是尽可能构成闭合导线。

由于地下导线的边长较短,仪器对中误差和目标偏心误差对测角精度影响较大,因此应根据施测导线等级,增加对中次数。

2、地下水准测量

下水准测量以洞口水准点的高程为起始数据,经导入高程传递到地下水准基点,然后有地下水准基点出发,测定隧道内个水准点的高程,作为施工放样依据。

地下水准测量的特点:(1)水准线路与地下导线相同,在隧道贯通之前,地下水准线路均为支线,因而需要往返测。

(2)通常利用地下导线点作为水准点.(3)在隧道施工中,地下水准支线随开挖面的紧张而向前延伸。为满足施工要求,一般可先测设精度较低的临时水准点,其后在测设精度较高的永久水准点。

1.5 施工测量

在隧道施工测量中,对隧道走向的控制极为重要,而控制隧道走向的控制条件就是控制隧道中线,以此来控制隧道的走向。

隧道中线的控制,是根据设计图纸所给的参数来控制的。根据设计图纸所给的设计参数,计算出有关桩号的坐标,准确放样中线里程桩号。在隧道施工中,隧道中线基本控制隧道的开挖的前进方向,再由设计参数控制隧道的开挖轮廓线。

其中现在应用最广泛,最简单的操作方法就是将所给的设计参数和设计路线编写成一个计算程序,根据里程算出坐标称之为正算,根据坐标推算里程称之为反算,再加上高程计算,这样就可以把一条隧道立体的控制。同样,只要把路线中线确定,我们就可以确定任意一点距相对应的同一里程中线的偏移量,从而达到控制隧道走向的目的。在隧道的施工过程中,最主要的就是控制超欠挖、控制路线的走线、控制二衬厚度、隧道的标高。

超欠挖控制:超欠挖控制的核心理念就是开挖半径必须大于等于设计开挖半径,从而给初期支护和二次衬砌留有做够的空间,从而保证初期支护厚度和二次衬砌厚度,最终符合净空设计要求。超欠挖计算就是根据所测点的三维坐标,计算出该点的实际半径,在于设计半径相比较。

路线走向控制:;路线走向控制就是要控制隧道中线的控制,同时也要控制隧道两边墙距中线的距离,从而达到控制路线走向。中线控制主要是利用两坐标点的距离来计算的,计算距离的前提就是计算出这一点同一里程的中线坐标,从而计算出该点与中线的距离,而该点的中线坐标计算就要知道该点的里程,此时应用坐标反算里程得出该点的里程。计算出该点距中线的距离,从而控制隧道两边墙的走向,最终控制隧道走向。

控制而成厚度:控制二衬厚度在整个隧道施工中都是核心,二衬承载者整个隧道的受力,保证隧道的正常通行,所以二衬厚度必须保证,按照设计要求,给二衬提前预留空间,这就要控制好开挖,必能出现欠挖这样才能保证二衬厚度,同样二衬台车定位也要做到准确,而二衬台车定位依据就是隧道中线点,从而对准确放样隧道中线点要求极高。

隧道标高控制:隧道标高控制主要是根据路线设计中线高程,控制隧道标高。通过对路面的标高控制来决定隧道底部的开挖。在四级以上围岩级别带仰拱的开挖,要根据路面高度和仰拱设计高度准确控制仰拱的开挖轮廓线。

隧道是一个三维的立体结构,从而要想控制隧道施工符合设计要求,必须从三维来控制,从而达到设计贯通误差要求。

参考文献

《测量学》 人民交通出版社 《公路与城市道路、桥梁、隧道工程专用

人民交通出版社 》

第三篇:隧道的测量控制

6.1 施工测量控制 6.1.1 组织机构设置

为了保证施工测量准确无误,又快又好地建好沪昆铁路客运专线,我分部成立测量班,专职负责管段内的控制和施工测量,分部测量班受中交集团沪昆指的领导。测量班设在分部总部,测量班设班长1人、副班长1人、测量工程师2人、测量工2人,三山隧道所在工区设主测1人,测工2人,负责对隧道进行施工放样。6.1.2 施工准备

沪昆客专线对线路、隧道工程测量和施工中的变形监测均有较高要求,尤其是无碴轨道铺设测量有更高的专业要求及特殊要求,并直接影响到无碴轨道施工质量的成败。因此需要加紧专业测量人员培训,增强测量仪器装备,学习铁道部颁布的测量新规范,保证与施工要求相适应的专业测量工作正常开展。6.1.3 基本测量及精度要求

水准控制按二等水准要求,采用S1级水准仪或标称精度不低于0.8mm/km的水准仪,分别配以2M铟钢尺,进行测段往返观测。有关技术作业要求,严格按规范执行。测量结果,按测段往返不符值计算的每公里偶然中误差,不大于1mm。复测结果与设计单位测量成果是否相符,按相关测量规范的规定量。当复测结果与设计单位提供的测量成果不符时,须再次复测进行确认。

当确认设计单位测量资料有误或精度不符合规定要求时,主动向设计单位提供复测成果资料,进行核定和确认。6.1.4平面控制测量

控制点选在便于施工放样,稳固可靠并且在施工影响范围以外的地方,图形可形成三角形、导线网。首级为CPⅠ和CPⅡ线路控制导线网,线路控制加密导线点采用GPS静态观测进行施测,测量的精度为C等。

6.1.5 高程控制测量

隧道施工时,在复测设计院二等水准的基础上,视工程一般分布及需要加密二等水准,本段内加密的水准点均设在所有CPⅠ和CPⅡ单号点上。仪器配置和作业要求按规范执行,复测和加密均应往返观测。测量结果,按测段往返高差不符值计算的每公里水准测量的偶然中误差,应不超过1.0mm/km。

本段线路为无碴轨道工程铁路,从全线和全过程需求看,高程测量精度要求最高是在线下工程结束,铺设无碴轨道时的要求,这时需在全段和全线施测精密水准,即水准测量每公里偶然中误差为≤1mm,全中误差为≤2mm。而线下施工中,普遍不需要这样高的精度。

精密水准测量

在线下工程完工,铺设无碴轨道前,全段范围施测。水准线沿线路附近布设,水准点密度以500~1000m为宜。标石应按规范标准埋设,水准点以两点为一组更好,便于每次使用检测。仪器采用不低于DSI的常规水准仪或标称精度不低于0.8mm的水准仪,按测段往返观测。观测作业顺、最大视距、前后视距差及累积差,按规范要求执行。测量结果按测段往返观测不符值计算的每公里水准测量偶然中误差,不超过2.0mm/km。若在二等水准点间施测附合水准路线,则按闭合差计算的每公里中误差,不超过4.0mm/km。

以上建立的水准控制点即为进行无碴轨道工程铺设测量的基础控制。6.2 沉降控制 6.2.1 组织机构设置

为了保证我分部施工的隧道工后沉降达到设计和规范要求,我分部成立沉降观测班,专职负责管段内的沉降观测,分部沉降观班受中交集团沪昆指的领导。测量班设在分部总部,其下设班长1人、副班长1人、测量工2人。6.2.2 沉降观测断面设置及埋设

三山隧道沉降观测断面分别设置在进、出洞口,明暗交界处,偏压式路堑明洞与倒斜切式缓冲结构交界处,隧道暗洞中心各设置一个观察断面。

在遂底填充完成后,每个观察断面设置两个沉降观测点名为别布置在隧道中线两侧各6.24m处;明暗交界处,偏压式路堑明洞与倒斜切式缓冲结构交界处设置4个沉降观测点,分别布置在隧道中线两侧各6.24m和变形缝前后各0.5m处。6.2.3 沉降观测方法

隧道的沉降观测在隧道放炮开挖施工完成后即测好初始数据,作好记录,正常情况下每周观测一次,当其上增加荷载时需要测一次,观测时间不少于3个月;在无碴轨道铺设完成后14天观测一次,观测时间不少于3个月。

6.2.4 沉降动态观测数据整理、分析和工后沉降量推算

由专职工程师将逐日沉降观测结果整理汇编成表格,并绘制荷载-时间-沉降量关系图。在无碴轨道铺设完成和荷载-时间-沉降量关系图呈现沉降趋势稳定后,由观测数据验证设计计算的沉降量,采用多种曲线法对沉降数据进行回归分析和推算最终沉降量,曲线回归的相关系数不应低于0.92。

经过动态观测和沉降值分析,向业主、咨询单位和设计单位、监理单位上报沉降分析报告。6.2.5 隧道收敛变形监控

6.2.5.1 监控点埋设要求与量测器具:

隧道队测量组在围岩初衬后应立即安装水平收敛计挂钩或带有球头的膨胀螺栓,在分台阶开挖时上台阶初衬后应立即安装三个测点,中台阶开挖后在两侧安装两个测点,下台阶开挖后在两侧再安装两个测点,在全断面开挖段初衬后应立即安装7个测点共组成7条量测线,测点布置必须在同一个断面,Ⅴ级围岩每5m安装一个量测断面,测点安装必须牢固,不允许有松动或脱落,在测点安装完毕后应立即通知项目部测量队进行初测。量测器具由液显收敛计完成。

6.2.5.2 监测频率:

观测断面距开挖断面0~5m:2次/天; 观测断面距开挖断面5~20m:1次/天; 观测断面距开挖断面20~60m:1次/2天; 观测断面距开挖断面大于60m:1次/1周。6.2.5.3 量测数据的分析与整理:

当隧道水平位移收敛速度为0.1~0.2mm/天,拱顶下沉位移速度为0.1mm/天,可以认为围岩已基本稳定,如在监测过程中若发现净空位移量过大(大于15mm时)或收敛速度无稳定趋势时,应立即停止开挖,及时提供分析信息,以便对结构采取补强措施。

(1)、绘制位移量随时间变化的曲线;(2)、绘制位移速度随时间变化的曲线;(3)、绘制位移量与开挖面距离关系曲线。

第四篇:隧道测量总结

[转帖]隧道测量总结

上中隧道工程南线隧道经过几个月紧锣密鼓的施工已经顺利穿越黄浦江,正朝着接收井挺进。为了能使隧道顺利贯通还有许多障碍及难关,如穿越多层民房、地下管线及准确进洞都是对我们考验。

测量工作的重要性是不可忽视的。从工程开始的围挡,地面基础设施的施工,盾构的出洞进洞,直至工程的竣工验收都有着测量工作人员的汗水结晶,更是智慧与科学的体现。

隧道测量的误差主要由地面控制、联系测量、地下控制及盾构仪的精度四方面构成。为了减少误差确保贯通,我们做了大量的工作。现对前期测量工作进行回顾总结,以更好地做好下一步工作。一控制测量

隧道施工在公路、铁路施工中都是一个重点。对于长隧道或曲线隧道,确保盾构推进能沿着设计轴线推进及全线贯通,主要取决于控制测量、联系测量和地下控制测量。

1. 地面控制测量

地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终点横向点位误差即终点的横向位移。这是盾构机能否顺利进洞的关键因素之一。终点的横向点误差是由测角误差和边长误差的共同影响所产生。开工前由业主提供地面控制网。我们严格按照要求对控制点进行3个月一次的复测,保证其点位的稳定。平面控制我们选用了Leica的TCR1201进行观测,此仪器为一秒级,其相对精度均符合规范。在盾构推进前项经部还委托有专业资质的第三方采用二等GPS测量,对平面控制点进行复测以确保精度。

高程控制我们也按规范进行联测,选用Leica的NA2水准仪加平行玻璃板,使精度达到0.1毫米。同样在盾构推进前项经部还委托有专业资质的第三方采用二等水准及跨河水准测量,对高程控制点进行复测以确保精度来有效地控制隧道高程贯通误差。

2.联系测量

在隧道施工中为了保证隧道正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下。这个传递工作称为竖井联系测量,是联系测量中常用地一种。坐标与方向地传递又称为定向测量,通过定向测量,使地下平面控制网与地面上有统一地坐标系统。而高程传递则使地下高程系统获得与地面统一地起算数据。提高测量精度及分析测量误差通常我们可采用附和或闭合路线来完成这项工作。定向工作可分为几何和物理方法。但隧道测量是工程测量中很特殊的一个部分,由于受条件的限制无法按常规的方法。我们公司在高级工程师(教授级)的主持下,经过无数次的深化,确立了运用几何法进行定向测量(联系三角形测量)的方法将地面控制点传递到地下。实践证明,几何法定向成本低、收敛快、可靠性强、不受施工影响,施工企业在经济上容易承受。根据几何学原理通常情况下在竖井内投放两根钢丝与井上测站沿轴线布置成狭长三角形,钢丝下挂重锤,使其构成铅垂。建立竖直面,在该面上两垂线间任意两点连线的方位角均相等,同一垂线上任意点的坐标也都相等。测量是一份责任心相当重的工作,每个测量人员对自己都是严格要求,考虑问题相当的严密谨慎,顾由唐工倡议由原有悬挂两根钢丝的基础上增加一根。使之组成两个联系三角形,以提高精度又能校核成果。对于三跟钢丝的布置也有相当的讲究两根钢丝与仪器的夹角不能超过2度,这样在平差过程中可以减少计算角的误差。定向悬挂高强度的钢丝(0.3mm),并吊以重锤拉直钢丝,由于定向测量有4-5个方向、9个测回且需井上井下同时进行,将地面和地下连成一个整体,形成一个系统。难度较高,故重锤需置于油桶中,是其更为稳定不易晃动同时又可减轻钢丝的压力。根据现有设备及隧道长度及施工要求,我们我们已经将传统定向中用钢尺人工量边改为全站仪无棱镜测距。使每条边的精度达到0.1mm,大大高于限差≤2mm的规范要求。同时我们准备每条隧道施工期间安排三次定向测量。定向测量由总公司唐震华高级工程师把关,并有多名技师现场参与,现已完成了二次。结果比较满意。各方面的误差均小于规范要求。

高程控制点我们采用高程传递的方法将地面控制点传递至地下,这也就是所说的高程导入法。在进行高程传递前,必须对地面上的起始水准点的高程进行核对。在井上井下设置两架水准仪,钢尺悬挂在固定支架上,下端悬挂重量为10kg的重锤。由地面上的水准仪在起始水准点的水准尺上读书a,钢尺的读数为β1。井下水准仪的钢尺读数为β2,而井下水准点的读数为b。井下水准点的高程HB可用一下公式计算:

HB=HA+a-[(β1-β2)+△t+△l]-b 式中:△t为钢尺的温度改正

△l为尺长改正

HA为井上水准点的高程 在经过3次同样的高程传递后,才可以确定井下水准点是否稳定,有没有受到竖井和隧道自身沉降的影响。同时不同仪器所求得的井下水准点高程不同,一般高程的不符值不应超过2mm.3.地下控制

地下控制测量包括导线及高程测量。地下导线测量的目的是以必要的精度,按照与地面控制测量统一的坐标系统。建立足以确保盾构顺利进洞的井下控制系统,为盾够姿态的测定提供依据。由于隧道内没有足够的空间无法随意布设导线,只能以支导线形式向前延伸。然而支导线精度较差,势必造成较大的误差,所以我们采用工作量较大的双导线测量,以提高精度,是保证隧道的贯通的较佳方法。导线点通常设在隧道衬砌的上弦位置,其位置相对稳定不易受到外来因素的影响。但是由于上中路隧道目前是世界第一大直径隧道,考虑到安全及施工问题,我们将导线点设在腰部,仅保留靠近井口的两个观测台。用以定向后的数据比较。井下导线复测不少于三次。测角、测距选用的仪器为一秒级的全站仪,用全圆法测角、用往返正倒镜测距,测回数不少于4次。

地下水准测量的目的同样也是为了建立一个与地面统一的高程系统,作为隧道施工中路面铺设、中板放样之用,当然主要目的也是为了隧道贯通做好保障。高程测量均为支水准线路,因而需要用往返观测及多次观测进行检核。由于坡度较大使测站增加,故工作量比较大。为确保盾构测量使用数据的准确,我们几乎每二天要测一次水准。大直径隧道增加了空间,但也给我们测量增加了难度,习惯的测量位置都在隧道顶部,自动测量系统又限制我们只能在车架上完成一系列测量工作,导线及高程都需要在车架的行架上进行空中接力。我们使用Leica NA2水准仪,采用悬挂钢尺的方法将控制点高程连接至仪器台面上,保证了盾构高程沿着设计轴线掘进。二.盾构仪安装 所谓盾够仪就是盾够测量的标志。盾够在掘进时,在土层中的姿态必须通过测量的方法来测定。不管是我们传统的人工测量还是先进的自动测量系统都需要在盾构机上作一个标记,使我们的仪器可以清楚的看到它。自动测量系统的标志安装在盾构中心的上方,其标志有一个棱镜及一个光靶组成,稍后在自动测量系统中将结合其他功能做详细的介绍。虽然我们所用是当今世界最大的,设备最为齐全的TBM。有利必有弊,对于我们测量可以利用的空间并不宽敞。理论上说盾构仪的前靶后靶的距离应尽量的拉长,这样就提高了反算到切口和盾尾的精度。同时前靶后靶的位置尽量应该靠近盾构的中心,这样收到盾构旋转的影响较小。进行盾构机内标志的安装,对盾构起始姿态的测量十分重要。贯通测量影响精度的误差一部分来自于标志安装是否正确。所以在掘进前测量的头等大事就是正确地测好盾构机的起始姿态。当盾构机主体结构完全焊接安装完成,静止在基座上时,通过垂吊麻线求出盾构切口及盾尾的外壳两端地象限点,实测其坐标。然后将切口两端象限点坐标与盾尾两端象限点坐标的平均线作为盾构机的平面中心线,同时求出盾构机的转角。然后实测切口与盾尾顶和底的高程求出盾构的高程中心线,以及盾构静止状态的坡度。在盾构机内选择合适的位置安装姿态测量标志,由于盾构机中心部位已被自动测量系统占据,因此我们只能安装在尽可能靠近中心线的位置,与此同时只能将后靶加长至千斤顶顶块的后部,使前后靶距离增加至两米。为了避免标志被破坏或变动,同时也可以进行校核,安装了三个标志,通常情况下使用两个,一个备用。接着按实测的静止盾构坡度及转角安装坡度板(如图)

坡度板的垂线距离同样要求尽可能的放长,以消除坡度板的制作误差。同时我们打破常规,淘汰了原有通过环号累积来求得盾构里程的做法,在标志上安装棱镜(如图)通过实测坐标反算切口及盾尾的里程,同时通过这一里程更为准确的判断盾构的偏离值。但是,随着精度的提高,井下测量人员的素质也需要相应的提高。采用这种新的标志后,人工测量必须能够熟练操作全站仪,所以对测量人员又是一种挑战。三.盾构及管片姿态的测定 在隧道施工过程中,测量人员的主要任务是随时确定盾构的掘进方向。虽然现在我们有自动测量系统,人工测量还是一种让人较为放心的方法,毕竟在我们隧道施工过程中得到了广泛和长久的使用,而且效果显著。人工测量还是每天担当着复合自动系统的重任。利用安放在控制台上的仪器测量盾构前后靶的坐标。特别要提的是控制台上所使用的是可以消除对中误差的强制对中盘,以前的强制对中盘是通过插入铜螺丝来固定,但是随着现在仪器摩擦制动运用的增多,铜螺丝与孔之间存在间隙,所以使用铜螺丝固定并不理想。因此我们采用了螺纹式的强制对中盘,将螺丝焊接在对中盘上,基本消除了对中误差。在得到切口盾尾坐标后,反算盾构的位置也就是求出里程。对于盾构平面来说通常都会经过直线-缓和曲线-圆曲线-缓和曲线-直线这一过程,因此里程的判断相当重要。直线段中计算偏离值公式:(aX+bY+c)÷√(a2+b2)

缓和曲线段中计算偏离值公式: L3÷(6RL0)-L7÷(336R3LO3)圆曲线段中计算偏离值公式:R-√(△X2+△Y2)由于隧道的坡度盾构的直径较大,在盾构的长度上需要用坡度加以改正,这在以前的地铁盾构中是可以忽略不计的,同样转角改正也是不可忽视的,盾构标志高出盾构中心将近六米,盾构每旋转一分就会有Xmm差值。坡度、转角及盾构总长的改正使盾构姿态测定能有较高的精度(小于5mm)。有了正确的里程后,用实际坐标与设计坐标进行比较就可以得出盾构得偏差值。在直线、缓和曲线、圆曲线得计算方法都有所不同。高程偏离的测定,是利用观测台的高程加上盾构转角改正后的标高归算前靶处盾构的中心高程。然后通过盾构实际坡度归算切口中心标高及盾尾中心标高,同样通过里程算出设计高程与实际高程比较得出差值即偏离值。

管片中心偏值是实量管片成环后管片四周与盾壳的间隙加上根据测定的盾构姿态按几何尺寸与定分比数字公式导出推算管片拼装位置的偏离值。使用公式:(L-S)÷L×B+S÷L×A+X(Y)÷2 L-盾构总长

S-管片前沿至盾尾距离 A-实测盾构切口偏离值 B-实测盾构盾尾偏离值

X-为管片与盾壳左右两侧的间隙之差 Y-为管片与盾壳下上两侧的间隙之差

在测定盾构偏离值时需要运动大量的计算,为了不影响施工进度,我们使用携带方便的CASIC fx-4800,SHARP PC—E500计算机,运用Q-BASIC语言编写计算程序来完成,避免了人为的失误。五.自动测量系统

南线隧道大型盾构机的测量原先完全采用法国PYXIS系统。如何使PYXIS系统在我们上中路隧道工程中顺利应用,上中项经部领导着实花了大力气。丁志诚经理更是运筹帷幄,得知香港落马州地铁盾构运用的也是PYXIS系统,早在工程的初期就已经派测量人员赴香港地铁工地学习。虽然落马州地铁盾构已经拆除,不能进行实地的勘察,但还是在香港测量工程师那里了解到许多关于PYXIS系统情况,并对盾构推进过程中的使用与维护有了较为清晰的概念。结合后期法国人的说明和讲解,使盾构推进前PYXIS系统的安装调试进行的非常顺利。经过一段时间的实际运行及一系列PYXIS的界面操作,我们觉得这套系统能与瑞士(VMT)、英国(ZED)相媲美,给我们耳目一新的感觉,其功能强大,所有测量数据的采集、计算和反馈及一些盾构的参数设定、管片拼装选型等都能简便的操作于界面上。

针对这套测量系统方面,我们认为可以再增加适当的测量距离,频繁的转站会使系统不能发挥其最大功能,而我们的导线转站的累计误差也会相应增大。另一方面,激光器的选型应与全站仪配套,其功率要大型号的,尽量减少对其的调节使之增加使用寿命。

总之,地下测量的工作项目较多,每天都在进行。盾构姿态测量更是受到领导重视。的确,盾构的姿态直接关系到隧道施工的进度和质量。所以盾构姿态测量我们淘汰了以前一贯使用的普通经纬仪,而使用全站仪测量,使盾构里程的精度大大提高,那么偏差值的准确性也更高了。可以及时准确地反映出盾构机的趋势。为了更详细地了解隧道的变形情况,我们对管片的横径、管顶的沉降进行监测,横径通常是五环一点,每一点测三次(盾尾、一号车架后、二号车架后),如数据变化大,我们会在管片离开车架后运用对边测量进行监测,确保数据的准确及时和完整。与此同时管顶的沉降也是我们的一个重要工作,受车架的限制,测点只能布置在管片的顶部,5环一点,特殊时期会增至两环一点,测量次数有2—4次不等。当盾构穿越黄浦江底时,覆土不足九米,我们及时增加了测量次数。对于管顶的沉降相当的敏感,管顶的沉降并没有规律,有时上浮有时沉降。所以针对不同的情况我们会进行调节,满足各方面的需要。由于隧道施工采用错缝拼装,管片的旋转是行业中公认的难点。需要及时发现及时的纠正,我们每五环设一点测量,当旋转度过大时,就要及时的向有关人员反映,以帮助现场施工员和拼装工及时的纠正管片的位置,满足设计要求。

综合前期的测量工作,成绩是肯定的。主要是由于项经部领导管理有方,各部门通力合作。因为测量工作需要多方配合,如测量台的制作、焊接、灯光照明等。相信在今后的工作中能得到更好的支持,取得更大的进步!

第五篇:隧道测量总结

篇一:隧道测量总结

帖]隧道测量总结

上中隧道工程南线隧道经过几个月紧锣密鼓的施工已经顺利穿越黄浦

江,正朝着接收井挺进。为了能使隧道顺利贯通还有许多障碍及难关,如穿越多层民房、地下管线及准确进洞都是对我们考验。

测量工作的重要性是不可忽视的。从工程开始的围挡,地面基础设施的施工,盾构的出洞进洞,直至工程的竣工验收都有着测量工作人员的汗水结晶,更是智慧与科学的体现。隧道测量的误差主要由地面控制、联系测量、地下控制及盾构仪的精度四方面构成。为了减少误差确保贯通,我们做了大量的工作。现对前期测量工作进行回顾总结,以更好地做好下一步工作。

一控制测量

隧道施工在公路、铁路施工中都是一个重点。对于长隧道或曲线隧道,确保盾构推进能沿着设计轴线推进及全线贯通,主要取决于控制测量、联系测量和地下控制测量。

1. 地面控制测量

地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终点横向点位误差即终点的横向位移。这是盾构机能否顺利进洞的关键因素之一。终点的横向点误差是由测角误差和边长误差的共同影响所产生。开工前由业主提供地面控制网。我们严格按照要求对控制点进行3个月一次的复测,保证其点位的稳定。平面控制我们选用了leica的tcr1201进行观测,此仪器为一秒级,其相对精度均符合规范。在盾构推进前项经部还委托有专业资质的

首先组织学习了围岩观测测量规范、围岩量测实施细则、围岩量测作业指导书等,按照作业指导书上严格布设和测设,洞内测量严格按照120文件的布设距离和测量频率进行,此项工作的难点就是围岩量测观测点的埋设和保护,由于是双线隧道,隧道净空断面比较大,所以围岩量测观测点的埋设要和掌子面的进度保持一致,利用开挖台车进行布设,还需要现场施工人员密切配合,才能做好。洞内围岩量测观测点的保护是此项工作难中之难。洞内施工比较复杂,主要是掌子面放炮和各种机械作业经常破坏点位,其次是初喷污染观测点反光片,这些都会导致围岩量测的数据不准确、不及时。如果不能及时对其补设补测都会使得数据失真,使得测量数据没有可参考性。对其容易出现的问题我们也及时针对性的出了一些解决对策。例如,掌子面放炮容易损坏反光片的情况,我们就给埋设的钢筋头上焊接了一个大约3×3cm的铁片,埋设点位时使得反光观测点向下向外方向约60°夹角,这样能有效的减小破坏率。总之,在围岩量测工作中我们不断的总结经验,从而提高围岩量测数据的准确性。为隧道施工安全做好最重要的一道防线。

其次是按照规范及局指要求,对隧道内的开挖断面、初支断面、二衬净空断面进行测量,形成超欠挖断面资料及时反馈到现场技术人员手中,用以指导和控制开挖断面超欠。及时对欠挖部位进行处理,有效的减少日后返工。很大程度上保证了二衬施工厚度符合设计及规范要求,保证质量安全的前提下加快了施工进度。

另外还需要督促并配合施工队测量人员进行掌子面及二衬、仰拱等施工放样测量进行复核测量,以达到换手测量,相互复核的目的,以确保现场测量放样准确无误。

三、桥梁测量

勤练技能 服务一线

首先组织测量队人员对桥梁图纸上的基础数据进行了复核计算,并整理形成了桥梁细部尺寸极坐标计算书。其次通过5800计算器利用程序计算将桥梁的细部放样坐标等数据进行计算,将计算器计算出的结果与根据图纸手算的结果进行对比,达到对比复核的效果。最后进行桥梁测量的放样工作。

桥梁的放样准备工作主要包括熟悉图纸与测量前与现场技术员的技术交底,通过图纸与技术交底的对比校核确保数据的准确性。桥梁的测量工作主要有线路中线与特殊点坐标放样,工区采用线路偏距放样,放样内容包括线路中线点,模板的定位,以及施工后的复核等,根据图纸设计的里程和线路的偏距来测量具体位置。测量时,应尽量使望远镜瞄准棱镜的底部,减小因棱镜杆的歪曲产生的误差而影响测量的精度。测量放样工作的整个过程必须做到细心仔细,尽可能多的通过各种方法来对测量的结果进行校核,在确保正确测量的情况下尽量使测量误差达到规范最小值。同时为工程的安全施工提供服务。

四、内业资料的计算与编制

内业资料的计算也是一项细心而重要的工作,首先要收集所需的设计资料“曲直线要素表、纵断面图、线路中线逐桩坐标表等,按照设计图纸上要素逐个计算并复核设计参数,保证设计提供的数据准确无误。其次是编制测量放样资料。隧道施工各项工序都要有过程控制资料,要做到及时、准确。

五、测量日常管理

按照公司测量办法规定,我们实行的是测量队长负责制。因此测量队长首先要以身作则,要带领全体成员完成好各项测量任务,组织落实测量工作,实行“三检”制度,对计算成果要进行换人校核,组织好全体测量员的内业工作,不断提高测量员的内业资料计算水平和团队协作能力。

勤练技能 服务一线

六、工作中的不足之处

1、部分资料整理不及时、不准确。

2、围岩观测点的埋设与保护工作不到位。

3、测量制度落实与执行不到位。

4、测量人员的内业资料计算与整理的功底比较差。

5、团队协作精神还有待加强。

以上几点不足之处今后要加大督促和指导力度,使得全队的内业计算能力、制度的落实及执行力、团队协作精神得到更大的提高。

七、2013年工作计划

2013年我们将在项目部班子的领导下,保质保量的完成好各项测量任务。我们将通过以下几点来展开工作:

1、要全面提高测量队的整体素质,要牢固树立服务一线,顾全大局的意识。加强学习,务实工作。坚决做到:踏踏实实学做人,诚诚恳恳做工作。锻炼出一支“能吃苦,善思考,勤学习”的测量队伍。

2、继续完善各项内业资料,做到不拖欠资料,尽量避免错误或返工。

3、根据《**铁路5标一项目部2013年施工进度计划》的内容,进行合理安排现场测量工作。保证做到:只要现场需要,我们随叫随到。

测量队全体队员将始终如一为张唐铁路项目建设做好基础技术服务保障工作,为张唐铁路一项目部建设的顺利进行贡献一份力量。

下载浅谈长大隧道控制测量word格式文档
下载浅谈长大隧道控制测量.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    长大隧道应急预案

    西汉分公司 特长隧道、隧道群突发事故应急预案 第一条 为进一步加强西汉分公司(以下简称公司)隧道养护管理工作,有效应对隧道可能出现各类重大事故,促进我公司应急抢险工作规范......

    隧道测量程序(5篇范文)

    隧道测量是施工中必不可少的一项施工程序。现代的测量工程中有许许多多的测量方法都叫测量的组合,而每一种测量方法都能把测量工作完成,就算是同一个测量部位、同样的条件及其......

    隧道测量实习体会

    实习体会 自2010年9月份来贵公司九龙江北溪引水C3标二期工程实习,已经有三个月之久了,在实习的日子里,贵公司项目部团结向上的氛围、勇于钻研、不怕苦、不怕累的精神,对我的影响......

    隧道测量总结(精选5篇)

    测量工作总结 从工程开始的围挡,地面基础设施的施工,盾构的出洞进洞,直至工程的竣工验收都有着测量工作人员的汗水结晶,更是智慧与科学的体现。 隧道测量的误差主要由地面控制、......

    隧道斜井测量方案

    大连地铁一期工程215标 卫体区间测量方案 中铁隧道集团有限公司 大连地铁215标项目经理部 二0一0年十月二十七日 - 1 (二)、测量人员配备及分工 项目部工程部设测量班,两区间......

    隧道测量技术交底

    红军隧道测量技术交底1.洞内导线应根据洞口投点向洞内作引伸测量,由洞口投点传递进洞方向的联接角测角中误差,不应超过测量等级的要求。后视方向的长度不宜小于300m。导线点应......

    隧道工程测量教学

    隧道工程测量教学 第一节 隧道工程测量概述 隧道是线路工程穿越山体等障碍物的通道,或是为地下工程施工所做的地面与地下联系的通道。隧道施工是从地面开挖竖井或斜井、平响......

    长大隧道最佳通风方案

    长大隧道最佳通风方案 中铁隧道集团一处 周正华 随着我国经济建设的发展和西部大开发力度的进一步加大,各项相关的基础设施建设与此同时得到了迅猛发展;而在各项基础设施建设......