第一篇:2007年河北省公务员考试行测真题及答案:数量关系部分
河北站:http://hb.offcn.com/
承德站:http://chengde.offcn.com/ 石家庄:http://shijiazhuang.offcn.com/
邯郸站:http://handan.offcn.com/ 保定站:http://baoding.offcn.com/
沧州站:http://cangzhou.offcn.com/ 唐山站:http://tangshan.offcn.com/
秦皇岛:http://qinhuangdao.offcn.com/
数量关系
(共25题)
本部分包括两种类型的试题:
一、数字推理:给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补空缺项,使之符合原数列的排列规律。
1. 2 5 3 6 3 8 5 17()A.2 B.12 C.6 D.8 2. 2 3 8 19 46()
A.96 B.82 C.111 D.67 3. 13 14 16 20()38 A.23 B.35 C.27 D.22 4、2 3 5 13 62()
A.97 B.806 C.802 D.800 5、2 3 7 46()A.2112 B.2100 C.64 D.586、1 3 4 6 11 19()
A.57 B.34 C.22 D.27 7、1 2 2 6 3 15 3 21 4()A.46 B.20 C.12 D.44
8、-1 64 27 343()A.1331 B.512 C.729 D.1000 9、3 8 24 63 143()A.203 B.255 C.288 D.195 10、3 2 3 7 18()A.47 B.24 C.36 D.70
二、数学运算:你可以在草稿纸上运算。遇到难题,可以跳过暂时不做,待你有时间再返回解决它。
例题:
甲、乙两地相距42公里,A、B两人分别从甲乙两地步行出发,A的步行速度为3公里/河北公务员考试网:http://hb.offcn.com/
河北站:http://hb.offcn.com/
承德站:http://chengde.offcn.com/ 石家庄:http://shijiazhuang.offcn.com/
邯郸站:http://handan.offcn.com/ 保定站:http://baoding.offcn.com/
沧州站:http://cangzhou.offcn.com/ 唐山站:http://tangshan.offcn.com/
秦皇岛:http://qinhuangdao.offcn.com/
小时,B的步行速度为4公里/小时,问A、B两人步行几小时后相遇? A.3 B.4 C.5 D.6 解析:正确答案为D。你只要把A、B两人的步行速度相加,然后被甲、乙两地间距离相除即可得出答案。
12、的值是:
A.4 B.9/2 C.5 D.7 13、423×1087-423×24-423×62的值是: A.418777 B.423423 C.423233 D.427033 14.四个连续自然数的积为1680,它们的和为: A.22 B.52 C.20 D.26 15.某人工作一年的报酬是8400元和一台电冰箱,他干了7个月不干了,得到3900元和一台电冰箱。这台电冰箱价值多少元?
A.400元 B.2000元 C.2400元 D.3500元
16、甲、乙两人共储蓄1000元,甲取出240元,乙又存入80元,这时甲的储蓄正好是乙的3倍,原来甲比乙多储蓄多少元?
A.620元 B.740元 C.700元 D.660元
17、甲、乙两队从两端向中间修一条330米的公路,甲队每天修15米,修2天后,乙队也来修,共同修了10天后,两队还相距30米,乙队每天修多少米?
A.16 B.10 C.15 D.12
18、某种商品按定价卖出可得利润960元,如果按定价的80%销售,则亏损832元。该商品购入价是多少元?
A.8000 B.6000 C.10000 D.7000
19、一辆车从甲地开往乙地,如果提速20%,可以比原定时间提前一小时到达。如果以原速走120千米后,再将速度提高25%,则可提前40分钟到。那么甲、乙两地相距多少千米?
A、240 B、270 C、250 D、300 20.红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到排头,然后立即返回队尾,共用10分钟。求队伍的长度。
A.630米 B.750米 C.900米 D.1500米
21.全班46人去划船,共剩12只船,其中大船每船均坐5人,小船每船均坐3人,其中大船有几只。
A.5只 B.6只 C.7只 D.8只
河北公务员考试网:http://hb.offcn.com/
河北站:http://hb.offcn.com/
承德站:http://chengde.offcn.com/ 石家庄:http://shijiazhuang.offcn.com/
邯郸站:http://handan.offcn.com/ 保定站:http://baoding.offcn.com/
沧州站:http://cangzhou.offcn.com/ 唐山站:http://tangshan.offcn.com/
秦皇岛:http://qinhuangdao.offcn.com/
22.商店购进甲、乙两种不同的糖所用的钱数相等,已知甲种糖每千克6元,乙种糖每千克4元。如果把这两种糖混在一起成为什锦糖,那么这种什锦糖每千克的成本是多少元?
A.3.5 B.4.2 C.4.8 D.5
23、某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?
A、赚5元 B、赚10元 C、不赚不亏 D、亏5元
24、师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,师傅加工零件多少个?
A、108 B、60 C、100 D、68 25.一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶。已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1。某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时。问:甲、乙两港相距多少千米?
A.24 B.20 C.16 D.32
河北公务员考试网:http://hb.offcn.com/
第二篇:2007年河北省公务员考试行测数量关系
http://v.huatu.com/hebei/
2007年河北省公务员考试行测数量关系
一.数字推理。
给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补空缺项,使之符合原数列的排列规律。
1. 2 5 3 6 3 8 5 17()
A.2
B.12
C.6
D.8 2. 2 3 8 19 46()
A.96
B.82
C.111
D.67 3. 13 14 16 20()38
A.23
B.35 C.27
D.22 4、2 3 5 13 62()
A.97
B.806 C.802 D.800 5、2 3 7 46()
A.2112
B.2100 C.64
D.586、1 3 4 6 11 19()
A.57
B.34 C.22
D.27 7、1 2 2 6 3 15 3 21 4()
A.46
B.20
C.12
D.44
8、-1 64 27 343()
A.1331 B.512 C.729 D.1000 9、3 8 24 63 143()
http://v.huatu.com/hebei/
A.203 B.255 C.288 D.195 10、3 2 3 7 18()
A.47 B.24 C.36 D.70
二、数学运算:你可以在草稿纸上运算。遇到难题,可以跳过暂时不做,待你有时间再返回解决它。
例题:
甲、乙两地相距42公里,A、B两人分别从甲乙两地步行出发,A的步行速度为3公里/小时,B的步行速度为4公里/小时,问A、B两人步行几小时后相遇?
A.3 B.4 C.5 D.6
解析:正确答案为D。你只要把A、B两人的步行速度相加,然后被甲、乙两地间距离相除即可得出答案。
12、的值是:
A.4 B.9/2 C.5 D.7 13、423×1087-423×24-423×62的值是:
A.418777 B.423423 C.423233 D.427033 14.四个连续自然数的积为1680,它们的和为:
A.22 B.52 C.20 D.26
15.某人工作一年的报酬是8400元和一台电冰箱,他干了7个月不干了,得到3900元和一台电冰箱。这台电冰箱价值多少元?
A.400元 B.2000元 C.2400元 D.3500元
16、甲、乙两人共储蓄1000元,甲取出240元,乙又存入80元,这时甲的储
http://v.huatu.com/hebei/
蓄正好是乙的3倍,原来甲比乙多储蓄多少元?
A.620元
B.740元
C.700元
D.660元
17、甲、乙两队从两端向中间修一条330米的公路,甲队每天修15米,修2天后,乙队也来修,共同修了10天后,两队还相距30米,乙队每天修多少米?
A.16
B.10
C.15
D.12
18、某种商品按定价卖出可得利润960元,如果按定价的80%销售,则亏损832元。该商品购入价是多少元?
A.8000
B.6000
C.10000
D.7000
19、一辆车从甲地开往乙地,如果提速20%,可以比原定时间提前一小时到达。如果以原速走120千米后,再将速度提高25%,则可提前40分钟到。那么甲、乙两地相距多少千米?
A、240
B、270
C、250
D、300
20.红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到排头,然后立即返回队尾,共用10分钟。求队伍的长度。
A.630米 B.750米 C.900米 D.1500米
21.全班46人去划船,共剩12只船,其中大船每船均坐5人,小船每船均坐3人,其中大船有几只。
A.5只 B.6只 C.7只 D.8只
22.商店购进甲、乙两种不同的糖所用的钱数相等,已知甲种糖每千克6元,乙种糖每千克4元。如果把这两种糖混在一起成为什锦糖,那么这种什锦糖每千克的成本是多少元?
http://v.huatu.com/hebei/
A.3.5 B.4.2 C.4.8 D.5
23、某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?
A、赚5元
B、赚10元
C、不赚不亏
D、亏5元
24、师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,师傅加工零件多少个?
A、108
B、60
C、100
D、68
25.一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶。已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1。某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时。问:甲、乙两港相距多少千米?
A.24
B.20 C.16 D.32
第三篇:2018下半年四川公务员考试行测数量关系题及答案(3.22)
2018下半年四川公务员考试行测数量关系题及答案(3.22)四川公务员考试行测考试内容包括言语理解与表达、常识判断、数量关系、判断推理、资料分析等。
四川公务员考试行测,数量关系之数学运算主要测查考生理解、把握数量事物间量化关系和解决数量关系问题的技能技巧,主要涉及数字和数据关系的分析、推理、判断、运算等方面。
[行测数量关系之数学运算题] 1.某批农产品在流通过程中经历了多次价格变化。甲从农户手中收购后,加价40% 转给乙;后来,乙因为货物积压太多担心变质,便削价5%倒手给批发商丙;丙又加价20% 批发给零售店;零售店加价20%销售。问农户手中价值100 元的该种农产品,到达消费者手中需要多少元?(结果四舍五入)()A.175 B.183 C.192 D.201 2.一本书,小静第一天读了12.5%,第二天读了37.5%,第二天比第一天多读了32页,这本书共多少页?()A.98 B.108 C.118 D.128 3.募捐晚会售出500元、400元、300元的门票共2600张,门票收入99万元整,400元与500元的门票张数相等。400元的门票售出多少张?()A.850 B.800 C.750 D.700 4.甲、乙两人进行五子棋比赛,必须要经过A、B、C三场比赛的角逐,甲对乙每局获胜的概率为60%,乙对甲每局获胜的概率为40%,则甲胜出的可能性为
()。
A.小于15% B.介于15%一40%内 C.介于40%一60%内 D.大于60% 5.一艘轮船在离港口20海里处船底破损,每分钟进水1.4吨,这艘轮船进水70吨后就会沉没。问:这艘轮船要在沉没前返回港口,它的时速至少要达到多少海里?()A.0.4海里 B.20海里 C.24海里 D.35海里
6.往一个空的正方体鱼缸里装水,装完第一次水后,水面的高度为5厘米,之后每次的装水量都是上一次的两倍。当装完第四次水后,水面距离鱼缸顶部还有15厘米,则该鱼缸的高度是()厘米。
A.50 B.75 C.90 D.105 7.某城市出租费实行分段计费,10公里内3元,超出10公里部分每公里在3元基础上以1元每公里的幅度递增,不足公里时以整公里计算。甲乙两人分别付费75元和102元,则乙比甲多乘()公里。
A.2 B.4 C.6 D.8 8.李明从图书馆借来一批图书,他先给了甲5本和剩下的1/5,然后给了乙4本和剩下的1/4,又给了丙3本和剩下的1/3,又给了丁2本和剩下的1/2,最后自己还剩2本。李明共借了()本书。
A.30 B.40 C.50 D.60 9.某单位举办围棋联赛,所有选手的排名都没有出现并列名次。小周发现除自己以外,其他所有人排名数字之和正好是70。问小周排名第几?()A.7 B.8 C.9 D.10 10.一对夫妇把一年纯收入的25%用于吃,13.5%则用于娱乐,20%交房租,8%用于汽车开支,其余的存起来,存款与用于娱乐的钱的比率为()。
A.19∶27 B.6∶5 C.67∶27 D.19∶9 【参考解析】 1.【答案】C 解析:根据已知,所求钱数为100×(1+40%)×(1-5%)×(1+20%)×(1+20%)=100×1.4×0.95×1.2×1.2=7×(2×9.5)×1.44=133+133×0.4+133×0.04=133+53.2+5.32≈192,故正确答案为C。
2.【答案】D 解析:设书的总页数为a,由题意第二天比第一天多读了32页,第二天比第一天多读了书总页数的25%,37.5%-12.5%=25%,因此a×25%=32,a=128(页),故正确答案为D。
3.【答案】D 解析1:假定400元门票有x张,300元门票有y张,则根据题意可得:(400+500)x+300y=990000,2x+y=2600,联立解得x=700,y=1200,故选择D选项。
解析2:由“400元与500元的门票张数相等”可知,可以用与两门票总张数相等数量的450元门票代替两种门票,此时450元门票张数恰为400元门票张数的2倍,即原问题变为有450元、300元的门票共2600张,门票收入99万元整,假设2600张都是450元,收入为:450×2600=1170000元=117万元;假设2600张都是300元,则收入为:300×2600=780000元=78万元,此时可用十字交叉法,450元门票数与300元门票数之比为:(99-78):(117-99)=21:18=7:6,因此400元门票数为:2600×7/(7+6)÷2=700张,故选择D选项。
4.【答案】D 解析: 本题考查了分步计数原理和分类计数原理。甲胜出的可能情况有两种:甲胜两场和甲胜三场。甲胜两场的概率为×0.6×0.6×0.4=43.2%;甲胜三场的概率为0.6×0.6×0.6=21.6%。故甲胜出的概率为43.2%+21.6%=64.8%。答案为D。
5.【答案】C 解析:船在沉没之前到达海口,每分钟需要行驶 20÷(70÷1.4)=20×1.4÷70=0.4海里,则每小时速度为0.4×60=24海里/小时,故正确答案为C。
6.【答案】C 解析:因为水缸的底面积相同,所以每次加水会因为水面高度不同而水的体积不同,第一次的水面高度为5cm,根据题意可知第二次的水面高度为10cm,第三次的水面高度为20cm,第四次的水面高度为40cm,距离顶部还有15cm,所以鱼缸的高度是90cm。
7.【答案】A 解析:超过10公里的部分计费数构成等差数列,甲乙超出10公里部分各收费72元和99元。设甲乙两人超过10公里后分别乘坐x公里和y公里,则
解得x=9,y=11。因此乙比甲多乘2公里,答案为A。8.【答案】A 解析:逆向考虑,李明最后还剩2本,则给丁之前有2×2+2=6本,给丙之前
有6÷2/3+3=12本,给乙之前有12÷3/4+4=20本,给甲之前有20÷4/5+5=30本,故正确答案为A。
9.【答案】B 解析:(1)等差数列求和,所有选手的名次成首项为1,公差为1的等差数列,设总的人数为N,小周排名为a,有a(2)代入排除法。排名成等差数列,则70+小周的排名=N*(N+1)/2。10.【答案】C 解析:存款在纯收入的比重为1-25%-13.5%-20%-8%=33.5%,存款与用于娱乐的钱比率为33.5%与13.5%之比,67∶27,即C选项。
第四篇:银行笔试行测数量关系真题及答案
http://www.xiexiebang.com/
银行笔试行测数量关系真题及答案
单选题
1.-3,3,6,30,240,()A.480 B.1200 C.1200 D.2640 2.从1,2,3,„,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?()A.7 B.8 C.8 D.10 3.某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。则成绩排名第十的人最低考了()分。A.89 B.82 C.82 D.85 4.甲、乙丙三人同乘飞机,甲、乙二人未携带行李,而丙的行李重150公斤,需另付行李费500元。如果甲、乙、丙三人各携带50公斤行李,则三人共只需支付250元行李费,问每名乘客可以免费携带多少公斤的行李? A.20 B.25 C.30 D.35 5.公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人。问今年男员工有多少人? A.329 B.350 C.371 D.504 6.一条公路两旁均匀的种有树。。求两边一共有多少棵树? A、8 B、9 C、16 D、18 7.哥哥5年后的年龄和弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍。哥哥今年()岁。
A.10 B.12 C.15 D.18
http://www.xiexiebang.com/
8.某单位有员工540人,如果男员工增加30人就是女员工的2倍,那么原来男员工比女员工多几人? A.13 B.31 C.160 D.27 9.甲、乙、丙、丁四个数的和是43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减4,都相等。问这四个数各是多少?()A、14,12,8,9 B、16,12,9,6 C、11,10,8,14 D、14,12,9,8 10.一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是多少?()A、12525 B、13527 C、17535 D、22545 11.有甲、乙两种不同浓度的食盐水。若从甲中取12克,乙中取48克混合,溶液浓度变为11%,若从甲中取21克,乙中取14克混合,溶液浓度为9%,则甲、乙两种食盐水的浓度分别为()A、7%,12% B、7%,11% C、9%,12% D、8%,11% 12.公司四名促销员某月共推销新产品100件,甲与丁共推销64件,甲与乙推销量的比例为5:3,丙与丁推销量的比例为1:2,则甲该月推销了()件。A.20 B.28 C.38 D.40 13.游乐场的溜冰滑道,溜冰车上坡时每分钟行驶400米,下坡时每分钟行驶600米,已知溜冰车从A点到B点需要3.7分钟,从B点到A点只需要2.5分钟。AC比BC长多少米? A.1200 B.1440 C.1600 D.1800
参考答案:
http://www.xiexiebang.com/
1.D 解析:数列起伏较大,并无幂次规律,但相邻两项之间均为倍数关系,考虑做商。做商后得到新数列为:-1、2、5、8、(),为公差为3的等差数列,则下一项应为8+3=11,题干所求应为240×11=2640,故正确答案为D。2.B 解析:将1-12中存在2倍关系的数分成一组,则第一组:1,2,4,8中最多能选2个;第二组:3,6,12中最多能选2个;第三组:5,10中最多选1个;第四组:7,9,11均不存在2倍关系,可以都选,最多能选3个。综上,最多能选2+2+1+3=8个数。3.A 解析:不及格的人数为20×(1-95%)=1,把这20人的成绩分为3组,{前9名}、{10~19名}、{第20名}。要求成绩排名第十的人成绩最低,则{前9名}和{第20名}都尽量高。{前9名}总得分最高为100+99+„+92=864分,不及格的最高分为59分,{10~19名}最低为20×88-864-59=837分。代入A选项:当第10名成绩是89分时,剩余10人总分数最多的是89+88+„+80=845分>837分,符合题意。而当第10名分数是88分时,剩余10人总分最多是88+87+„+79=835分<837分,已不能满足题意。因此答案选A。4.C 解析:该题是用代入尝试法,由丙一个人带150公斤,多少钱;由甲乙丙三人各携带50公斤,多少钱;可知求出是30.5.A 这是一道银行考试数学运算真题,下面我将为大家从分析怎么解这道题目: 设去年有男员工x人,则去年女员工(830-x)人;则:今年员工总数为x*(1-6%)+(830-x)*(1+5%)=833
http://www.xiexiebang.com/
整理化简可得:94%x+105%(830-x)=833,解出x=350;求解:今年有男员工=94%x =329 6.D 该题是考察倍数关系:C是A的两倍,D是B的两倍,由于两边种相同的数,故可以猜测两倍选项,答案可以猜测是C和D,从树木棵树=段数+1来看,可以尝试选择D。7.C 根据题目条件“哥哥5年后和弟弟3年前的年龄和为29岁”,可得哥哥和弟弟现在的年龄和是29-5+3=27岁,27是奇数,两个人的年龄和为奇数,则两人年龄必然一奇一偶;同时,“弟弟的年龄是年龄差的4倍”,也就是说弟弟的年龄一定是一个偶数,所以哥哥的年龄一定是一个奇数,观察答案,只有C选项是奇数。故选C。8.C 根据“某单位有员工540人”,可以得出男工与女工的人数和为偶数,结合“两个数的和为偶数,则差一定为偶数”,可知男工比女工多的数也一定是偶数,观察选项,只有C选项是偶数。故选C。9.D 解析:数学基础较好的人一拿到这个题就想用方程来做,将甲乙丙丁分别设为x,y,z,w然后列方程解方程。这样当然是可以做出来,但并不是最优的办法。既然这是一个选择题,当然可以直接将选项代入检验,符合题意的就是正确选项,不符合题意的选项就排除。将A,B,C三个选项的数值代入建议发现不符合题意,因此排除掉。将D选项代入检验发现符合题意,因此答案选D。10.A 解析:题目说的较复杂,但只需将选项代入,按照题意计算一下即可。A选项12525,符合 http://www.xiexiebang.com/
题目的左边三位数是右边两位数的5倍,将右边的两位数移到前面则新的五位数为25125,经计算,25125是12525的2倍还多75.符合题目的条件,故答案选A。确定A为正确答案后就不用再检验B,C,D了。11.A 解析:这是一道浓度问题,但其实也可以用代入检验的思想快速选出答案。如果一个溶液的浓度为A,另一个溶液的浓度为B,(A第五篇:公务员考试行测数量关系总结(辛苦总结)
同余问题的口诀“公倍数作周期,余同取余,和同加和,差同减差”。
所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。
1、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。
2、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。
3、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
4、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。
加减法——同奇同偶则为偶,一奇一偶则为奇;乘法——乘数有偶则为偶,乘数无偶则为奇。
【例题1】某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?
A.33 B.39 C.17 D.16
解析:此题答案为D。依题意可知,答对题数+答错题数=50。“加减法,同奇同偶则为偶”,50为偶数,则答对题数与答错题数同为奇数或同为偶数,二者之差也应是偶数,选项中只有D是偶数。
【例题2】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。问甲教室当月共举办了多少次这项培训?
A.8 B.10 C.12 D.15
解析:此题答案为D。根据题干可知,甲教室可坐50人,乙教室可坐45人,当月共培训1290人次,设甲教室举办了x次培训,乙教室举办了y次,则可列方程组如下:
x+y=27 ①50x+45y=1290 ② 利用数的奇偶性确定方程组的解。再由①式可推出奇偶性不同,则x是奇数,选项中只有D是奇数。
概率问题
【原题】有三个骰子,其中红色骰子上2、4、9点各两面;绿色骰子上3、5、7点各两面;蓝色骰子上1、6、8点各两面。两个人玩掷骰子的游戏,游戏规则是两人先各选一个骰子,然后同时掷,谁的点数大谁获胜。那么,以下说法正确的是?
A.先选骰子的人获胜的概率比后选的骰子的人高
B.选红色骰子的人比选绿色骰子的人获胜概率高
C.获胜概率的高低于选哪种颜色的骰子没有关系
D.没有任何一种骰子的获胜概率能同时比其他两个高
【解析】首先:捋顺题干信息。三个骰子:红色骰子(2、4、9);绿色骰子(3、5、7);蓝色骰子(1、6、8)。问那种颜色的骰子获胜的概率大。
其次:任选两种骰子进行比较。例如红色骰子(2、4、9)与绿色骰子(3、5、7)比较。
2<3;2<5;2<7; 4>3;4<5;4<7; 9>3;9>5;9>7
通过比较可以得出:红色骰子胜出的概率是4/9,绿色骰子胜出的概率是5/9。因此绿色骰子的获胜概率大于红色骰子。
同理将红色骰子(2、4、9)与蓝色骰子(1、6、8)比较,绿色骰子(3、5、7)与蓝色骰子(1、6、8)比较,可以得出:红色骰子的获胜概率大于蓝色骰子;蓝色骰子的获胜概率大于绿色骰子。综上得出,绿色>红色;红色>蓝色;蓝色>绿色。
数学运算经典公式
第一:两次相遇公式:单岸型 :S=(3S1+S2)/2
两岸型
: S=3S1-S2
例1:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙 岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸 400 米处又重新相遇。问:该河的宽度是多少?()
A.1120 米 B.1280 米 C.1520 米 D.1760 米
解析:典型两次相遇问题,这题属于两岸型(距离较近的甲岸 720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3×720-400=1760选D;如果第一次相遇距离甲岸x米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是:一边岸还是两边岸。
甲乙两位同学在环形跑道上的同一地点同时开始跑步,如果两位同学反向而行,3分钟后相遇,甲比乙多跑50米,如果两位同学同向而行,18分钟后相遇。请问跑道的长度是多少米?
A.200米
B.250米
C.300米
D.400米
3分钟甲多走50 得出18分钟多走300 多走一圈才能相遇 刚好一圈
第二:十字交叉法:A/B=(r-b)/(a-r)?????????
例2:某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()
(2007国考)
解析:设女生人数为5人·那么男生人数就是5(1+80%)=9人
某班的总分就是75x(5+9)=1050(分)设男生的平均成绩为X分。(1.2x)5+9 x=1050 x=70。那么女生的平均成绩就是70x(1+20%)=84(分)
第三:往返运动问题公式:
V均=(2v1×v2)/(v1+v2)
例3:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()
A.24 B.24.5 C.25 D.25.5 解:代入公式得2×30×20/(30+20)=24,选A。
第四:过河问题:
M个人过河,船能载N个人。需A个人划船,共需过河(M-A)/(N-A)次.例4:有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()A.7 B.8 C.9 D.10
解:(37-1)/(5-1)=9
第五:牛吃草问题:草场原有草量=(牛数-每天长草量)×天数
例5:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?()
A.16 B.20
C.24 D.28
解:(10-X)×8=(8-X)×12 求得X=4.(10-4)×8=(6-4)×Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来。第六:N人传接球M次公式:次数=(N-1)的M次方/ N,最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数。
例6: 四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。A.60种
B.65种
C.70种
D.75种
公式解题:(4-1)5/4=60.75 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数。
一、代入排除法
代入排除法广泛运用于多位数问题、不定方程问题、剩余问题、年龄问题、复杂行测问题、和差倍比问题等等。【例题1】
甲乙两个工程队,甲队的人数是乙队人数的70%。根据工程需要,现从乙队抽出40人到甲队,此时乙队比甲队多136人,则甲队原有人数是()。
A.504人
B.620人
C.630人
D.720人
解析:此题答案为A。甲队人数是乙队的70%,则甲队人数一定是7的倍数,这样可以排除B、D,缩小判断范围。代入C项,甲队人数是10的倍数,甲队是乙队人数的70%,则乙队人数也是10的倍数,从乙队抽出40人之后,甲乙两队相差的人数必然是10的倍数,这与题中条件不符,排除C,选择A。
二、特殊值法
把未知数设为便于计算的特殊值能够极大简化计算过程,几乎所有与方程有关的题目都可通过设特殊值来解决。【例题2】 一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少。问船在静水中开足动力桨行驶的速度是人工划船速度的多少倍?
A.2
B.3
C.4
D.5
解析:题中只出现相关量的倍数关系,要求的也是两个量的倍数关系,所以相关量的具体值不影响最后结果,可用特殊值法,便于计算。
设水速为1,则人工划船顺流而下的速度是3,人工划船在静水中的速度是3-1=2。开动力桨逆水行驶与人工划船顺水行驶的时间比为3∶5,则二者速度比为5∶3,开动力桨逆水行驶的速度为5,在静水中的速度为5+1=6。因此船在静水中开足动力桨行驶的速度是人工划船速度的6÷2=3倍,选B。
三、方程法
方程法是解决大部分算术应用题的工具,方程法未必是最好的方法,却是最适合普罗大众的方法。不定方程是近年来政法干警的重点,解决不定方程主要用到的是整数的奇偶性、质合性与尾数性质。
【例题3】 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?
A.3
B.4
C.7
D.13 解析:设大包装盒用了x个,小包装盒用了y个。依题意,12x+5y=99。12x是偶数,则5y是奇数,5y的尾数是5。因此12x的尾数是4,x的尾数为2或7。当x=2时,y=15,两者之差为13,选D。当x=7时,y=3,题干条件说用了十多个盒子,排除。
四、图解法
图示有助于理解,很多题目用到了线段图,函数图则使得线性规划问题变得直观。图解法对揭示抽象条件有很大优势。【例题4】 草地上插了若干根旗杆,已知旗杆的高度在1至5米之间,且任意两根旗杆的距离都不超过他们高度差的10倍。如果用一根绳子将所有旗杆都围进去,在不知旗杆数量和位置的情况下,最少需要准备多少米长的绳子? A.40
B.60
C.80
D.100 解析:旗杆最高为5米,最矮为1米。因此任意两旗杆间的距离不超过(5-1)×10=40米。以最矮的旗杆为原点,最矮的旗杆与最高的旗杆连线为x轴建立直角坐标系。
当这两个旗杆间距最大时,如下左图所示。设其余任意旗杆高度为a。要满足与1米旗杆间距离不超过它们高度差的10倍,应在下图左边的圆范围内。要满足与5米旗杆间距离不超过它们高度差的10倍,应在下图右边的圆范围内。同时满足条件的旗杆只能位于两个旗杆的连线上。此时需要40×2=80米可把它们都围进去。
若两个旗杆间距小于40米,如右图所示,其余旗杆应该在两圆相交的阴影范围内分布,此时需要2×[10(a-1)+10(5-a)]=80米。因此不论旗杆怎样分布,都需要至少80米长的绳子来保证把全部旗杆围进去。五、十字交叉法
十字交叉法是加权平均数的简便算法,在平均数一节已经反复强调,通过下面这道题可知用这种方法求加权平均数的问法在不断变化。
【例题5】 某市气象局观测发现,今年第一、二季度本市降水量分别比去年同期增加了11%和9%,而两个季度降水量的绝对增量刚好相同。那么今年上半年该市降水量同比增长多少? A.9.5%
B.10%
C.9.9%
D.10.5% 解析:利用十字交叉法,设该市上半年降水量总体增长为x%
因此,去年一二季度降水量之比为(x-9)∶(11-x)。根据绝对增量相等可得,(x-9)×11%=(11-x)×9%,解得x%=9.9%,选C。例2:(广东2008)
某年级有4个班,不算甲班其余三个班的总人数有131人,不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人? A.177 B.176 C.266 D.265
解析:根据“乙、丙两班的总人数比甲、丁两班的总人数少1人”这句话可知,乙丙班人数的总和、甲丁班人数的总和一个是奇数一个是偶数,则总人数肯定是奇数,所以排除B、C。答案D,265=131+134,但这是六个班的人数,题目要求的是4个班的人数,所以选择答案A。
例3:(2011国考)某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?
A.329 B.350 C.371 D.504
解析:该题具有两个百分数:6%、5%,其中6%与问题相关,则考虑用数字整除特性解题。今年男员工与去年男员工之比是94:100,化简得47:50,所以只要观察答案选项哪个能被47整除就可以了。
例4:(江苏2011B)
《参考消息》、《青年能考》全年订价分别为292元,156元,全室人员都订阅这两种报纸中的一种,用去2084元,如果他们换订另一品种,需要1948元。该室有多少人?()
A.7 B.9 C.11 D.15
解析:该题属于经济类问题,可以列方程组求解,但是比较耗时间。可以换一种思维,假设全室人员两种报纸都订阅了,则每个人共用去292+156=448元,实际总共用去2084+1948=4032,所以总共有4032/448=9,选择答案B
一个快中每小时比标准时间快1分钟,一个满钟每小时比标准时间慢3分钟,若将2个钟表同时调到标准时间,结果在24小时内,快钟显示9点整,慢钟显示8点整,此时标准时间是多少??
1.员工对奖酬分配的公平感(或不平感)是影响巨大而又十分敏感的因素。强烈的不平感不仅会使员工士气低落,工作消极,还会造成离心倾向,阻碍长期的组织归属感的养成,进而造成企业内部人际关系恶化,影响员工在工作和生活各方面的情绪和态度,成为不安定因素。
由此可以推出()。
A.员工缺乏组织归属感,是因为其它员工工作消极
B.员工产生离心倾向,是因为社会资源分配不公正
C.员工情绪和态度不良,是因为员工士气低落
D.员工人际关系良好,是因为员工有良好的组织归属感