第一篇:污水处理厂自控系统工艺介绍
污水处理厂自控系统工艺介绍
污水处理厂位于市区或市郊,出水排入河流,水质达到国家一级排放标准。
工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池。水解池出水自流入AICS进行好氧处理,出水达标提升排入河流。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:
污水处理厂自控系统设计的原则
从污水处理厂的工艺流程可以看出,主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。
为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。
自控系统的构建
污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。
1、基本系统的选择
目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。
基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。
DCS系统适用于模拟量多,闭环控制多的系统。而现场总线系统的主要优势是适用用于控制点相当较少而且特别分散的系统。从施工和维护的角度来看,传统的DCS系统布线的工作量要远远大于现场总线系统。此外,现场总线系统与DCS系统相比,还有最为重要的一点是开发性好,扩展方便。
本工程的控制点在700点左右,模拟量只占20%左右,属于规模比较小的类型,而且这些控制点是以工艺处理单元为界线分散在厂区各处,因此本工程采用现场总线作为基本控制系统。
2、通讯网络选择
现场总线系统最主要的特点就是依赖网络通讯,分散控制和信号采集,最大程度的减少布线,节省安装和维护费用。现场总线主要是指从现场控制器或IO模块到监控系统的通讯网络。目前现场总线,根据通讯协议的不同可以分为很多种,比如,ProfiBus、CAN、ControlNet、DeviceNet FF Lon总线等。目前现场总线技术还没有统一的标准,各自的功能特点基本一致,因此本工程设计时选用在中小型控制系统应用非常广泛的ProfiBus总线。其在性价比较高,且在国内推广的时间长,稳定性较高。
ProfiBus总线有三种形式DP、PA和FMS。PA总线是与智能仪表结合在一起安全性非常高的一种ProfiBus总线形式,造价比较高,常用于石油化工冶金等行业;FMS总线适用于大范围和复杂的通讯系统,旨在解决通用性通讯任务,传速速度中等;DP总线是用于传感器和执行器级的高速数据传速网络,不需要智能仪表配合,安全性略低于PA总线。本工程是污水处理工程,对通讯安全性的要求并不太高,通信的任务比较简单,对系统的传输速度有一定要求。因此本工程的采用ProfiBUS-DP网络,即用西门子S7系列PLC搭建整个系统。总线采用普通双绞作为传输介质,通讯速率可以达到12MBP。
3、现场站设备配置的选择
对于ProfiBus-DP网络来说只是提供了一个从现场到监控层的信息通道,但信号的采集和执行命令的下达仍然需要由控制器和现场的IO模块组成的站来完成。ProfiBus-DP网络是一种主从站的网络结构。整个网络上最多可以有128个从站,但只有一个作为主站,所有的通讯事务都由主站来管理。主站必须要有控制器(CPU),同时也可以安装IO采集模块。从站有两种方式:CPU+IO模块和通讯模块+IO模块。第一种方式每个从站都由CPU,每个站的控制事务都由本站完成,与主站之间的通讯量比较少。第二种方式是所有的从站都没有CPU,所有的控制事务都由主站CPU来完成,通过总线网络把命令结果传输到从站完成,从站只是远程IO。
前述这两种从站组成方式各有自己的特点。第一种方式,控制比较分散,通讯事务较小,对网络的依赖不强,但每个站都有CPU,造价高。第二种方式,控制集中,控制事务对网络依赖性强,需要可靠的网络来支撑,同时对主站CPU的性能要求高,在软件编程和调试方面具有很大的优势。这两种方式对工程的现场安装布线施工影响比较少。
本工程控制点的规模施工调试工期比较短,选用了性价比比较高的第二种方式作为从站的组成方式即由西门子IM153通讯模块和S7 300系列IO模块组成,主站CPU选用S7 315-2DP系列。
4、人机界面设备的选择
人机界面设备是直接与操作管理人员进行交流的监控视备,一般由两部分组成,即现场监视设备和中控室监视设备。现场监视设备可以是PC机或是触摸屏,中控室监视设备一般由工控机、模拟屏或投影仪等组成。监视设备应在兼顾投资的情况下,保证操作管理人员可以对整个污水处理厂全面直观的监视与控制。
现场监视设备一般在比较重要的单元或控制事务比较大的从站中设置,以便操作人员及时对现场情况进行处理。本工程的从站的规模比较少,厂区大小从操作距离来看并不大,同时现场操作间内均设有有线电话,因此可在不设不设现场监视系统的情况下保证现场与中控室的联络畅通。
中控室监视设备是全厂的指挥和信息处理中心,其作用不言而喻。中控室监视设备比较传统的做法是模拟屏加工控机的方式,这种方式造价比较高且复杂。随着多屏卡功能的不断完善,现场又出现了工控机多屏显示加投影仪的模式。多屏卡的安装使得一台工控机可以同时拖动多台显示器,并显示不同画面,不同的工段可以同时显示,保证了操作人员监视的全面性。投影仪可以把所需要的任何画面进行放大显示,也可以供人参观。第二种方式的造价要远低于传统做法。
5、其它
成套设备的耦合
本工程中鼓风机为高速离心风机,脱水机为2000mm带宽脱水机,均为大型设备。这些大型设备是由许多辅助电动部分与主机共同工作完成鼓风机和脱水机的正常工作。本工程设计要求大型设备都单独配有自己小型的控制器,由供应商根据自己的经验编制相关程序并预留ProfiBus-DP接口,最终成为整个自控系统的一个从站。这样就其它大型设备自控系统与整个自控系统无缝连接,减少了不同供应商之间任务的交叉重叠。
监控软件的选择
监控软件是人机交流的桥梁和翻译,是保证整个自动控制系统易操作、易维护最重要的部分。应选用成熟、先进并应用广泛的知名监控软件,本项目选用亚控kingview组态软件。
自控控制系统与管理层的衔接
自控系统操作与污水处理厂管理层的衔接主要是把自动控制系统收集到的全厂信息可以顺利传输到管理层计算机,管理人员可以在线查看污水处理厂的运行状况并调用相关的运行数据。随着监控软件的供应商对INTERNET技术的不断应用开发,监控软件都可以通过局域网或INTERNET广域网进行信息发布,管理层或授权用户在任何可以上INTERNET网的地方便可浏览运行状况。而所使用MS IE浏览器的安全性问题已经得到解决。
冗余问题
由于本工程为污水处理厂工程,其安全性和可靠性要求并不严格,本设计没有对通讯网络和控制器进行冗余配置,只对上位工控机采用了双机热备配置。笔者认为在资金允许的情况下,应对主控制器进行冗余配置。
自控系统的站点划分
根据污水处理工艺的工作原理以空间分别特点,在布线最小、功能完整的情况下对全厂的站点进行了划分,子站为泵房站、水解池站、1号改进SBR站、2号改进SBR站、脱水机房站和鼓风机房站。泵房子站负责提升泵房、粗格栅、细格栅和沉砂池的数据处理,脱水机房站除负责脱水机房外,集泥池、浓缩池也归在该站内,其余子站负责各自的工艺单元。主站为变电所站,设在变电所内。
自控特点:
1、低投资:投资少
本工程除一些精度要求高的在线监测仪表(污泥浓度计、溶解氧仪和液位计)为进口仪表外,其余部分在线仪表实现国产化,节省了一部分投资费用。
另外,从工艺控制角度看,省去了一些不影响工艺运行要求的在线仪表,如ORP计、气体流量计等。不设现场监视设备的也是降低投资的重要原因之一。
在自控系统的总线技术选取上、现场I/O控制设备和上位监控设备的选取上,均采用了性价比较高的产品。如PLC采用西门子S7-300系列等。
本自控系统从以上几点节约了大量的费用。
2、低费用:运行费用低
在占全厂能耗90%的原水提升和鼓风曝气这两个环节上,依托自动控制系统,进水段实现恒液位、变流量控制,由大功率变频装置拖动大流量潜污泵,完全涵盖了500-3000m3/h的流量范围,克服了多台泵切换启停,流量突变对后续工艺的水力冲击,也达到节能的目的,立式潜污泵的提水电耗为4.75kwh/km3。
占全厂能耗75%以上的鼓风机选用单级高速离心风机,通过控制进口导叶开度调节风量,从而降低能耗,具体的作法是在夜间小水量和过渡工序时自动减小供气量。
鼓风曝气控制画面:
鼓风曝气控制画面:
本自控工程在上位软件二次开发过程从人性化角度出发,提高自控系统的可操作性,使管理者在任意时间和地点可对工艺系统进行全方面的监控,及时了解到处理系统运行的优劣状态。
投资
本工程自控系统的预算费用约占污水处理厂总投资的5%左右。与其它污水处理厂相比,本工程的自控系统投资是中等偏下,性价比较高。
结束语
污水处理厂自控系统是根据工艺要求在确定的设计原则下进行设计,既保证污水处理系统的正常运行,又尽可能的降低了工程的造价投资。
污水处理厂自控系统是整个污水处理工程的重要组成部分,其设计好坏与控制设备选择是否适当,不仅关系着自控系统的性价比的高低而且对以后整个污水处理厂运行维护的难易有着重要影响。
第二篇:污水处理厂自控系统方案
天水工业园区
污水处理厂自控系统
技
术
方
案
北京华联电子科技发展有限公司
2014年9月29 天水工业园区污水厂自控系统方案及相关技术说明
一、系统概述:
天水工业园区污水处理厂的自控系统由PLC站与监控操作站控制管理系统组成的自控系统和仪表检测系统两大部分组成。前者遵循“集中管理、分散控制、资源共享”的原则;后者遵循“工艺必需、先进实用、维护简便”的原则。
为了满足武威工业园区污水处理厂工程实现上述要求,必须保证控制系统的先进性和可靠性,才能保证本厂设备的安全、正常、可靠运行。
本方案本着质量可靠、技术先进、性价比高的原则,结合我公司在实施其它类似项目中的设计、实施和组织的成功经验,充分考虑技术进步和系统的扩展,采用分层分布式控制技术,发挥智能控制单元的优势,降低并分散系统的故障率,保证系统较高的可靠性、经济性和扩展性,从而实现对各现场控制设备的操作、控制、监视和数据通讯。1.1 系统基本要求
工控通讯网络为光纤冗余环型工业以太网,通讯波特率≥100Mbps,系统自适应恢复时间<300ms,通讯距离(无中继器)≥1Km,网络介质要求使用可直埋的光缆, 在出现故障时, 可在线增加或删除任意一个节点, 都不会影响到其他设备的运行和通讯。本系统采用先进的监控操作站控制系统,即系统采用全开放式、关系型、面向对象系统结构,支持不同计算厂家的硬件在同一网络中运行,并支持实时多任务,多用户的操作系统。
主要用于污水厂的生产控制、运行操作、监视管理。控制系统不仅有可靠的硬件设备,还应有功能强大,运行可靠,界面友好的系统软件、应用软件、编程软件和控制软件。1.2系统可靠性的要求
控制系统在严格的工业环境下能够长期、稳定地运行。系统组件的设计符合真正的工业等级,满足国内、国际的安全标准。并且易配置、易接线、易维护、隔离性好,结构坚固,抗腐蚀,适应较宽的温度变化范围。系统具备良好的电磁兼容性,支持I/O模板在系统运行过程中进行带电热插拔。能够承受工业环境的严格要求。1.3系统的先进性
系统的设计以实现“现场无人职守,分站少人值班”为目的。设备装置的启、停及联动运转均可由中央控制室远程操纵与调度。1.4系统的故障诊断
控制系统有一套完整的自诊断功能,可以在运行中自动地诊断出系统的任何一个部件是否出现故障,并且在监控软件中及时、准确地反映出故障状态、故障时间、故障地点、及相关信息。在系统发生故障后,I/O的状态应返回到系统根据工艺要求预设置的状态上。1.5系统扩展性和兼容性
为了保证武威工业园区污水处理厂扩建或改造时满足工厂的控制要求,控制系统具有较强扩展能力。
控制系统主要用于污水处理厂的生产控制、运行操作、监视管理。不仅有可靠的硬件设备,还有功能强大,运行可靠,界面友好的系统软件、应用软件、编程软件和控制软件。
监控系统的数据库结构为面向对象的,实时式,关系型数据库。操作系统和监控软件具有冗余和容错及灾难性恢复等功能。
二、系统结构及特点:
2.1控制系统结构
天水工业园区污水处理厂自控系统采用分层分布式结构网络控制方式。该控制系统共分为主控级(中控室)和现地控制层(分控站)。实现相应控制层设备的监视、操作、控制和网络通讯连接。网络结构图如下:
2.2 中控室
拟设于综合楼内。中央控制室的监控管理操作站系统完成全厂的自动控制。包括两套互为热备的监控工作站、印机、UPS电源。中央控制系统通过工业以太网,采用光缆与各现场控制PLC站连接。这两套工作站为热冗余配备,可以分别侧重监测或组态功能,故障时互为备用,具有灵活的运行方式。
为观显示全厂工艺过程全貌,方便管理,在中控制室设立了电动投影屏幕和投影仪,显示全厂工艺流程图和主要参数及设备运行状态。
通过大容量的UPS 为中央控制室的所有设备提供了高质量的电源。2.3分控站
每个分控站配置一套PLC控制柜。柜内包括可编程序控制器、操作员界面HMI、24VDC电源装置、冗余光纤交换机、电源防雷过电压保护装置、小型断路器、接线端子、小型继电器,安装连接缆线和附件等。
根据污水厂工艺特点,构筑物的布置和现场控制的分布情况,设置四个PLC现场子站,PLC现场子站选用可编程序控制器(PLC),PLC为模块化结构,硬件配置较灵活,易于扩展,软件编程方便。并且PLC子站与相应的MCC置于同一地点,节省其间电缆。当中控室监控工作站故障退出运行或通道故障使分控站控制单元和主控级监控工作站通讯中断时,各现地控制单元能独立运行,进行控制和监视,提高运行可靠性。
1#现场控制站位于污泥浓缩脱水机房内。
负责监控:粗格栅及进水泵房、细格栅及曝气沉砂池、撇水池、污泥浓缩脱水机房。
控制对象为:1#、2#回转式细格栅除污机;无轴螺旋压榨机;桁车;吸砂机;中心传动浓缩机10WF1、10WF2、10WF3轴流风机。
IO点数统计:数字量输入DI:83;数字量输出DO:34;模拟量输入AI:17;模拟量输出AO:1。2#现场控制站位于鼓风机房及变配电间内。负责监控:加药间、鼓风机房和变配电间。
控制对象为:7GB2、7GB3、7GB5、7GB6鼓风机、7GV2、7GV3、7GV5、7GV6电动蝶阀;7ZF11、7ZF12、7ZF13、7ZF14、7ZF21、7ZF22、7ZF23、7ZF24、7ZF31、7ZF32、7ZF33、7ZF34轴流风机; 8WF1、8WF2、8WF3轴流风机; 2GV电动调节阀。
IO点数统计:数字量输入DI:113;数字量输出DO:40;模拟量输入AI:8;模拟量输出AO:6。
3#现场控制站位出水泵房内。
负责监控:消毒池、清水池、出水泵房。
控制对象为:1#、2#、3#、4#离心泵;6FM1、6FM2、6FM3轴流风机;12XHB1、12XHB2循环泵;12BJB1、12BJB2补水泵。
IO点数统计:数字量输入DI:26;数字量输出DO:9;模拟量输入AI:10;模拟量输出AO:0。
4#现场控制站位于A2/O+MBR池附属建筑内。
负责监控:A2/O+MBR池。(此站控制系统供应商已集成,具备以太网通讯接口,配置触摸屏和不间断电源。)2.4 控制系统特点
2.4.1 由于控制设备的分布特点及控制的独立性,采用现地元件层实现自动化仪表的数据采集,采用现地控制单元实现了相对独立设备的本体控制;从而大大减轻了操作员工作站监控操作站的负荷,有利于各级控制设备监控功能的合理分配和利用;
2.4.2由于各现地控制单元相对独立,并且能够脱网独立运行,特别是在集控层总线网络瘫痪时,能够保证现地单元可靠地运行,大大提高了控制系统的可靠性; 2.4.3采用分层分布式控制方式,使得总线网络的通讯负荷减少、通讯误码率大大降低,解决了数据通讯的瓶径问题,同时使网络结构更清晰、检修维护更方便; 采用分层分布式控制方式,该控制系统具有更好的扩展性,若需对系统扩展,只要将接入相应的网络层中即可,不会影响到集控层网络的运行和操作。
三、系统控制方式及功能描述:
3.1 系统控制方式:
现场手动模式:设备的现场控制箱或MCC 控制柜上的“就地/远程”开关选择“就地”方式时,通过现场控制箱或MCC 控制柜上的按钮实现对设备的启/停、开/关操作。
遥控模式:即远程手动控制方式。现场控制箱或MCC 控制柜上的“就地/远程” 开关选择“远程”方式时,操作人员通过操作面板或中控系统操作站的监控画面用鼠标器或键盘选择“遥控”方式并对设备进行启/停、开/关操作。
自动模式:现场控制箱或MCC 控制柜上的“就地/远程”开关选择“远程”方式,且现场控制站的“自动/遥控”设定为“自动”方式时,设备的运行完全由各PLC 根据污水处理厂的工况及生产要求来完成对设备的运行或开/关控制,而不需要人工干预。
控制方式设计为:就地手动控制优先,在此基础上,设置远程遥控和自动控制。控制级别由高到低为:现场手动控制、遥控控制、自动控制。
3.2 主控级设备:
天水工业园区污水处理厂自控系统主控工作作站接收全厂设备的运行状况,同时也对现地控制设备发送各种控制命令。主控级工作站由两套互为热备的台湾研华公司生产的IPC-610H型工控机作为主要控制设备,采用Microsoft公司的Windows XP 操作系统和德国西门子的自动化监控组态软件WINCC开发版工业组态软件,完成数据的采集、设备的控制和监视以及与各分控站的通讯功能等。
主控级设备功能: 3.2.1 数据采集
实时采集各个终端站传送的各类数据和信号,通过在彩色监视器(TFT)显示总工艺流程图,分段工艺流程图,供电系统图,工艺参数,电气参数,电气设备运行状态等。
操作站以“人—机”对话方式指导操作,自动状态下,可用键盘或鼠标器设定工艺参数、控制电气设备。3.2.2 数据处理
对来自各现地控制单元的实时数据和相关设备状态信息进行数据校验检测; 实现系统的故障检测和诊断功能,如总线网络中途断线、站的失电、站地址的冲突、模块配置不对应等常见故障;
汇总各现地控制单元的所有上送数据和状态信息。
数据查询功能:对系统中存储的相关设备数据能够按照时间、时段、设备、报警等各种方式进行查询;
数据检测功能:对现地控制单元上送数据进行实时性、可靠性等验证,保证数据的正确性;
根据采集的实时数据生成相应的各类生产报表、形成历史数据记录、趋势曲线记录等;
完成语音报警等功能; 3.2.3 控制和监视
实现全厂各个现地控制单元的实时监视;
通过人机终端,实时显示各现地控制单元的状态信息和实时控制。3.2.4 数据通讯
通过光纤总线网络实现主控级计算机与分控站PLC和智能通讯装置的实时数据通讯; 3.2.5 画面显示
根据系统采集的各分控站控制单元设备的实时数据和状态信息,实时刷新系统的相关画面;
实时显示系统的总工艺流程图,分段工艺流程图,供电系统图,工艺参数,电气参数,电气设备运行状态等;
系统画面中设置导航画面,通过导航画面可方便实现画面的快速切换; 在每个画面设置画面帮助,可为操作员提供快速操作帮助; 3.2.6 存储和打印
实时记录和存储系统中各分控控制单元中相关设备的实时数据,并形成历史数据文件。实时存储和打印的数据主要有: 各类操作记录; 各类事故和故障记录; 各类报表记录等。3.2.7 事故、故障报警
系统可实现系统中各分控控制单元所有设备的事故、故障等的报警、记录以及相应的报警画面弹出显示、语音报警等功能,并且能够按照报警发生的时间、次序、设备名称、事故和故障名称等等进行查询等。3.2.8 保护功能
系统具有多种安全设备、操作员操作权限设置、操作命令确认、操作口令确认、设备联锁等功能,可实现系统的安全、可靠、正常运行。
系统设置有操作员操作权限等级设置,可根据操作要求,进行相应权限的登录操作;
操作员在操作过程中设置有操作口令和操作命令确认,有效地避免了设备的误动; 3.2.9 自诊断功能 系统能够提供完善的硬件和软件自诊断功能,主要包括: 计算机硬件设备及接口设备的自检; 系统通讯网络连接的自检;
系统相关设备的自检、故障提示等功能。软件
3.2.10 系统软件
选用具有开放式软件接口的实时多任务、多用户系统的Microsoft Windows Xp中文版网络操作系统。3.2.11 数据库软件
采用实时分布式关系型数据库系统,通过对监控对象的组态,实时监测和控制各监控对象,并自动生成操作记录、遥信变位、事故记录等实时数据。
历史数据库能够通过DDL、DDE及OLE等与其它应用软件交换数据,并带有标准的SQL接口和ODBC接口,为系统维护、管理提供技术基础。3.2.12 应用软件
包括工业实时监控组态软件、现场总线组态软件、数据库软件、标准工业控制和专用水处理过程控制图形库等。工业实时监控组态软件配置有开发版(无限点)、运行版和监控版。其主要功能是:
(1)运行监控
采用图控软件组态设计中控室的运行监控软件,具有中文界面、操作提示和帮助系统。操作界面主要以流程图方式表示,从总体流程图直到每个单体的局部流程图,在流程图上显示的设备,均可点击进入该设备的进一步细节数据或对其进行控制。工艺过程、运行数据和设备状态均以图形方式直观表示。运行参数和目标控制参数,可以点击进入其属性或进行设定修改。
(2)数据库的生成及管理
提供整个监控系统运行的各种数据参数、各机械电气设备状态、以及各接口设备状态的实时数据库及历史数据库,并能根据信息分类生成各种专用数据库,且具有在线查询、修改、处理、打印等数据库管理软件,可进行日常的操作及维护,同时还具有ODBC功能,与其它数据库建立共享关系。
保存在内存中的实时数据库应存贮由各种监控对象的动态数据,数据刷新周期应可调,以保证关键数据的实时响应速度。短期历史数据库应能够保存7天的实时数据和组合数据,并不断地予与刷新(其数据来自于实时数据库)。历史数据库中能够存入各设备的运行参数、报警记录、事故记录、调度指令等。并具有存贮3年运行数据的能力。
(3)组态
通信组态:生成各种通信关系。明确节点间的通信关系,可实现现场仪表与PLC之间、PLC与监控计算机之间,以及计算机与计算机之间的数据通信。
控制系统组态:生成各种控制回路。明确系统的控制功能,各控制回路组成结构、控制方式与策略。
(4)图形生成及查询
应用软件具有强力而有效的图形组态显示功能。能画出总平面图、工艺流程图、设备平立面布置图、电气主接线图等。在确定监控画面后,可对监控对象进行形象图符设计、组态、连接、生成完整的实时监控画面,使用户能够在显示器上查询到各种监控对象的动态信息及故障,其形式可以是图像、报表、曲线、以及直方图等,并在投影屏上有动态显示数据。
同时,还具有友好的中文人机接口界面,采用图形、图标方式,使管理人员方便地使用鼠标器或键盘对系统进行管理、控制。通过监控画面的切换,进行数据查询、状态查询、数据存贮、控制管理等各种操作。
(5)日常管理
日常的数据管理是对采集到的各种数据进行计算、处理、分类,自动生成各种数据库及报表,供实时监控、查询、修改、打印,生成后的报表文件的修改或重组。
软件系统的可靠性能够保证数据的绝对安全,防止对数据的非法访问,特别是对原始数据的修改。按操作等级进行管理,一般情况下,至少设置三级操作级,即观察级、控制操作级、维护即,每一级都设有访问控制。
具有日常的网络管理功能,维持整个局域网的运行,定时对各接口设备进行自检、异常时发出报警信号。
(6)设备管理
对组成系统的所有硬件设备及运行状态进行在线监测及自诊断;对实时监控的所有对象的运行状态进行监测及自诊断;对各类设备运行情况(如工作累计时间、最后保养日起)进行在线监控,并存入相应文档,以备维护保养;对设备故障提出参考处理意见。
(7)能耗管理 软件系统能够对系统的设备运行记录及控制模式进行综合考虑,使系统能在最低的能耗下发挥最大的效益。
(8)工控组态软件
系统监控组态软件是一个精心设计开发的实时系统工作平台。软件本身及相关文档均为中文版本,为国际或国内知名组态软件。具有全图形化界面、全集成、面向对象的开发方式,使得系统开发人员使用方便、简单易学。功能覆盖广,软件组合灵活,高效性、内在结构和机制的先进性应该确保用户可快速开发出实用而有效的自动化监控系统。
数据采集方面,同时支持多种PLC的通讯,如施耐德、西门子、AB等多家产品的数据通讯,具有很强的兼容性;支持同时采集各种PLC、仪表、变频器、板卡、RTU等设备的数据;支持电话拨号、电台、GPRS、VPN等远程多种通讯方式;具备相位采集功能。
工作站应可对整个系统设置安全管理。支持使用用户,权限,优先级,安全区的方式为用户提供安全验证。
工作站监控、组态必须的软件均基于Windows XP操作系统。
系统可以在各种语言版本的操作系统上运行,可以在画面中同时使用汉字及其他多国文字和符号;具备全中文的开发和运行环境。
组态软件能支持OPC标准,同时具备OPC Server和OPC Client功能,可以快速、可靠地与众多不同生产商制造的硬件设备实现可靠的通讯。
支持变量的快速搜索,并且为方便用户二次开发,组态软件必须支持全中文变量名和函数名及结构变量和引用变量;支持变量的批量生成、合并、导入、导出;支持自定义函数。
具备设备模型和图形模型功能,通过设备模型快速创建变量和关于该变量的逻辑计算处理。通过图形模型可以快速部署已经制作好的图形动画.支持类C语言等作为内置编程语言,支持系统事件,变量改变事件,报警事件,热键事件,条件事件,自定义函数、定时脚本和调度脚本等多种脚本类型,为用户提供方便的开发平台。
组态软件支持各种运算函数,包括:事件驱动的算术和逻辑运算、逻辑关系运算、报警状态处理、定时器、对数和指数运算、三角函数、按位运算、字符串处理、数制转换、取平均值、最大值、最小值、取中间值、记录历史值、统计操作次数和操作持续时间等功能在内的统计运算。软件画面支持在开发和运行时的无极缩放,画面可以按比例缩放;支持图层的操作,可以把不同的图素分配到不同的图层上去,进行开发和管理,图层可以控制显示和隐藏;支持GDI+,支持过渡色和透明色;
组态软件具备多样图库,含有污水处理工程基本图库元素,节省绘图开发时间。采用项目树使得程序生成灵活,程序组织清晰明了。Windows下的在线帮助功能;项目文件备份功能;工程支持口令保护;能支持Web Server 功能。远程客户可透过网络,配合服务器及浏览器取得与现场一致之运作画面。
提供分布式报警,操作员可同时从多个远程位置浏览及确认警报信息。为满足江南污水处理厂自控系统要求,实现软件界面人性化、实物化、动态化,同时考虑其安全性、通用性及易扩展性,监控软件选用德国西门子的自动化监控组态软件WINCC。
自动化监控软件的基本技术要求如下:
·基于Windows Xp或vista平台;
·基于实时的客户/服务器结构及组件(COM)内核; ·全面支持ActiveX控件及控件安全容器技术;
·内置微软标准编程语言,嵌入式Visual Basic for Application; ·支持OPC客户及OPC服务器模式;
·标准SQL/ODBC接口, 易于与关系数据库集成;
·丰富的图符图形工具,动画向导,功能键可以预定义,标签组编辑功能,给予时间和事件调度处理功能;
·报警和信息管理,报警过滤,和远程报警管理; ·支持Windows Xp或vista用户级安全系统; ·支持SOA功能;
·图表对象和趋势显示,历史数据采集;
·有与上层管理信息系统接口,可以同时连接多种下位控制器,易于系统扩充。
a.监控计算机软件功能要求 ·组态软件
--通信组态:生成各种通信关系。可实现现场仪表与PLC之间、PLC与监控计算机之间,以及计算机与计算机之间的数据通信。
--控制系统组态:生成各种控制回路。各控制回路组成结构、控制方式与策略。
·维护软件:对现场控制系统软硬件的运行状态进行监视、故障诊断,以及软件的测试维护等。
·仿真软件:对控制系统的部件(通信节点、网段、功能模块等)进行仿真运行。可对系统进行组态、调试、研究。
·设备管理软件:对现场设备进行维护管理。配置专门的设备管理软件。·监控软件
--实时数据采集:将现场的实时数据送入计算机,并置入实时数据库的相应位置。
--常规控制计算与数据处理:标准PID,积分分离,超前滞后,比例,一阶、二阶惯性滤波,高选、低选,输出限位等
--优化控制:根据数学模型,完成监控层的各种先进控制功能:专家系统、预测控制、模糊控制等
--逻辑控制:时间程序控制,如完成开、停车的顺序启停过程。
--报警监视:监视生产过程的参数变化,并对信号越限进行相应的处理,如声光报警等。
--运行参数的画面显示:带有实时数据的流程图、棒图显示,历史趋势显示等。
--报表输出:生产报表的打印输出。
--操作与参数修改:实现操作人员对生产过程的人工干预,修改给定值,控制参数、报警设定等。
·文件管理
--数据库管理:在线与历史数据管理、综合利用、保存等。
--统计控制软件:按照数理统计方法分析现场采集的工艺变量数据,监视和评判系统的控制与运行状态,指导操作人员全面掌握生产情况,排除故障。以科学方法评估生产过程能力,指导系统改进。包括:在线与历史数据预处理、各种统计控制图、直方图、事件触发采样、在线报警、过程能力分析、分析记录等。
3.3 分控站设备:
武威工业园区污水处理厂自控系统分控站由四个PLC站等组成,每个控制站选用一套用德国西门子S7-300系列PLC,并配备一台北京昆仑通态触摸屏,实现全厂自控仪表及其他设备的监视和控制,同时各分控站与主控级操作站进行数据交换,各分控站接收主控级操作站发来的各种控制命令,最终实现全厂所有设备的监控,保证了全厂设备安全、稳定运行。
3.3.1 分控站设备控制功能:
按控制程序对所辖工段内的工艺过程、电气设备进行自动控制,同时采集工艺参数及电气设备运行状态。
通过通信总线与中央控制室的监控管理系统进行通信。向监控管理系统传送数据,并接受监控管理系统发出的部分开停机命令。
在操作屏上显示所辖工段的工艺流程图,工艺参数,电气参数,及设备运行状态。通过功能键盘设定工艺参数,控制电气设备。
就地控制:在设备调试、维修阶段提供现场操作的手段,在意外情况下可以以最快的方式进行现场紧急停车。
分站控制对象包括:粗格栅及进水泵房、细格栅间及曝气沉砂池、A2/O+MBR生化池、紫外线消毒池、清水池、出水泵房、污泥撇水池、污泥浓缩脱水机房、锅炉房。
粗格栅及进水泵房:
1、粗格栅
(1)功能:去除污水中较大悬浮物,并拦截直径大于20mm的杂质,确保水泵正常运行。
(2)主要设备:旋转式格栅2台。
(3)运行方式:格栅采用自动控制。根据栅前栅后水位差或格栅工作周期(时间可调)控制,栅格前后的液位差由PLC自动控制清污,同时设手动控制,格栅设工况指示和故障报警系统,与皮带输送机联动工作、延时停机。栅渣通过带轮的垃圾小斗车收集。
2、进水泵房
(1)功能:将污水一次提升至细格栅,以便后续构筑物的正常运行。
(2)主要设备:近期配备潜污泵4台,3用1备。
(3)运行方式:水泵自动控制运行,根据水位控制水泵轮流工作,设高、低水位报警系统和水泵工况指示及报警系统,低水位时全部水泵停机。
细格栅:
(1)功能:去除污水中较大漂浮物,并拦截直径大于6mm的固体物,以保证生物处理及污泥处理系统正常运行。
(2)、主要设备:设回转式细格栅2台;无轴螺旋压榨机一台。(3)运行方式:格栅自动控制根据细格栅前后水位差或格栅工作周期(时间可调)实现,细格栅前后的液位差由PLC自动控制清污动作,同时设手动控制。细格栅设置工况指示和故障报警系统。两台格栅共用一台无轴螺旋压榨机,将栅渣送至落渣斗,下滑至带轮的垃圾小斗车中。
曝气沉砂池:
(1)功能:去除污水中比重大于2.65,粒径大于0.2mm的砂粒,保护后续水处理设备,防止管道淤塞。曝气的功能是使附着在砂粒表面的污泥分离,使沉砂易于脱水,同时避免细小的有机悬浮物沉淀,确保沉砂质量。
(2)主要设备:一台桥式单槽刮砂机(带撇渣装置);吸砂泵1台。(3)运行方式:桥式单槽刮砂机(带撇渣装置)连续运转,吸砂泵按程序控制定时运转,砂水分离器与吸砂泵同步运转。
A2/O+MBR生化池:
该设备间控制系统已有厂家提供,此方案控制不于考虑,只需要厂家提供数据采集点即可。紫外线消毒池:
(1)功能:进行尾水消毒,避免尾水中细菌对水体及水生物的影响。(2)主要设备: 1套紫外线消毒模块。
(3)运行方式:通过安装在模块前后的水位差仪器监控紫外线模块的安全运作。
清水池;
清水池设2座
(1)功能:储存并调节出水量。
出水泵房:
(1)功能:用于再生水提升至再生水用水点。(2)主要设备:设卧式离心泵4台(3用1备)。
(3)运行方式:水泵自动控制运行,根据吸水井水位控制水泵工作,设高、低水位报警系统和水泵工况指示及报警系统,低水位时全部水泵停机。
鼓风机房及变配电间:
(1)功能:为A/O+MBR池和曝气沉砂池供氧,保证生物系统正常运行。(2)主要设备:
生化区供氧设备:罗茨鼓风机3台(2用1备)变频 膜区供氧设备:罗茨鼓风机3台(2用1备)变频 同时配套空气过滤器和起重设备。
2(3)运行控制:鼓风机通过生化区的DO及膜区的运行情况进行风量调节。加药间:
(1)功能:在好氧区前端进行加药除磷。
(2)主要设备:计量泵2台,整套溶药加药设备,(3)运行方式:根据实际出水水质状况手动控制运行。
污泥撇水池:
(1)功能:污泥撇水池用于调蓄剩余污泥,同时为了避免剩余污泥中的磷在厌氧条件下重新释放,控制停留时间在4h以内。
(2)主要设备:中心传动浓缩机2台。
(3)运行控制:与A2/O+MBR池排泥阀门及污泥脱水机协调运行。
污泥浓缩脱水机房:
(1)功能:对剩余污泥进行浓缩压滤脱水,使污泥含水率降低到尽可能低的程度,以减少污泥体积并便于装卸作业。
(2)主要设备:带宽2.0m带式浓缩脱水一体机2套;每台脱水机配备污泥螺杆泵、加药泵、冲洗泵1套,絮凝剂调配装置共用1套。
(3)运行方式:与A2/O+MBR池排泥、剩余污泥泵及撇水池协调运行。锅炉房:
(1)功能:污水厂建筑物室内采暖。
(2)主要设备:循环水泵两台(一备一用)、补水泵两台(一备一用)。(3)运行方式:采用变频定压补水。
3.4 网络通讯设备:
中央控制室与各现场PLC控制站之间采用工业以太网通信方式,主干网通信速率为100Mbps,各连接站点通信速率为10/100Mbps自适应,通信介质为光纤,由于光纤为非导体的石英构成,由雷电产生的电荷不会耦合至光纤上,从而增强通信网络安全性能。光纤冗余交换机选用烟台正维科技WISE6000系列交换机,网络结构为冗余环网,以大大提高通信网络的可靠性。
WISE6000系列是一种工业级、非管型、冗余以太网交换机。其独特的FAR-Ring冗余环网技术为您的以太网络带来智能冗余;标准的工业4级设计,能够满足各种工业现场的要求;所有器件选用工业级的器件,实现了较高的可靠性。采用业内优秀的网络方案,提供2.0G无阻塞交换带宽。
特点:
WISE6000-2S(M)-6T-R------8口即插即用冗余工业以太网交换机专为工业应用设计,提供2个冗余光口和6个自适应以太网电口,适用于恶劣的工业环境,具备良好的电磁抗干扰性能。
特性:
-25℃~70℃的工作温度
支持FAR-Ring环网冗余协议(自愈时间<50ms)
冗余双直流电源输入
电源故障,可由继电器输出报警
铝制机箱高效散热,无风扇设计
IP40防护等级
DIN导轨式安装方式
通过CE、FCC、国电认证
产品规格:
端口:百兆光口:2个冗余100Base-F(X)光口
百兆电口:6个10/100Base-T(X)自适应以太网接口(RJ45电口)
技术:IEEE802.3, 802.3u, 802.3x,存储转发处理方式
MAC地址表大小:8K
组网:环型、星型、链型、相切环网
线缆:双绞线:
0~100米
多模光纤:0~5km,1310nm
单模光纤:0~20km/40km/80km,1310nm/1550nm
电源:输入电压:DC12/24/48V双电源或DC/AC110V/220V单电源
产品功耗:<8W或12W(满负荷)
环境:工作温度:-25℃~70℃
存储温度:-40℃~80℃
相对湿度:5%~95%(无凝结)
机械结构:外壳:IP40保护标准,铝制外壳
尺寸(WⅹHⅹD):55.5mmⅹ138mmⅹ121.5mm
安装方式:DIN导轨安装
通过认证:IEC61000-4-2防静电(ESD):±8KV接触放电,±15KV空气放电
IEC61000-4-3电磁场:10V/M(80-1000MHz)
IEC61000-4-4瞬时高压(brust):±4KV电源线,±4KV数据线
IEC61000-4-5浪涌电压:±4KV(line/earth),±4KV(line/line)电源
线,±2KV数据线
IEC61000-4-6防传导:10V(150KHz~80KHz FAR-Ring环网专利技术:
FAR-Ring环网专利技术能使工业以太网交换机实现了智能冗余,允许您很简单很方便地建立起冗余的以太网络,能够让自动化系统的任意网段与网络断开连接的时候极快速地恢复正常。
第三篇:关于污水处理厂自控系统设计方案
关于污水处理厂自控系统设计方案
【摘要】本文首先介绍了系统简述,然后分析了系统设置,最后介绍了设备选型。
【关键词】污水处理厂,自控,自控系统,设计
一、前言
随着城市建设的发展及城市容量的扩大,城市生活污水和工业废水排放量逐年增多,污水处理厂成为了重要的解决污水的地方。
二、系统简述
全厂的整个处理系统包括格栅池、提升泵池、水解酸化池、沉砂池、一体化曝气池、人工湿地配水系统和消毒池等结构。各个设备厂家仅配套各自电气控制柜进行控制,采用的是纯电气控制方式且各个工艺段是完全分裂的,工艺参数只能采用人工记录的方式,有些需要取样实验才能得到数据。操作人员的劳动强度大,也不便于对水质参数进行分析。建自动化控制系统就是集中监视整个污水厂的各个工艺环节,实现对生产过程的自动控制、报警、自动操作以及在线实时反映各工艺流程中设备运行状况与需要参数,提高企业管理水平。
三、系统设置
1、系统组成
全厂自动化控制系统遵循“分散控制、集中监控、危险分散、数据共享”,由水质在线自动化检测和控制系统,以及过程数据处理系统三大部分组成。
2、系统要求
控制系统采用全开放式,支持不同计算厂家的硬件在同一网络中运行,并支持实时多任务,多用户的操作系统;网络介质要求使用可直埋的光缆,在出现故障时,可在线增加或删除任意一个节点,都不会影响到其他设备的运行和通讯。
3、系统功能
(一)、数据采集与控制功能
(1)各种仪表的模拟量采集,各种设备开关信号采集,在线仪表数据收集。
(2)值班人员在中控室通过计算机的键盘或鼠标,根据工艺条件和控制要求,按规定时间周期设定的逻辑顺序等自动地启动或停止某些设备,或进行交替运行,或设定控制调节参数。
(二)、自动检测功能
设计时是采用PLC来实现整个系统各个工艺设施的监控。该系统可以自动、连续地检测并记录和显示出污水处理过程的水质参数(SS、DO、COD、PH等),过程参数(温度、压力、水位、流量等),电气参数等数据,以及设备的运行状况(自动、手动、运行、停止、故障、本次运行时间、累计运行时间、阀门开关及开度等)。实行每天24h不间断地循环检测采集到的数据,进行处理、归类并以原始数据文件形式存入服务器。
(三)、故障报警及处理功能
控制系统有一套完整的自诊断功能,可以在运行中自动地诊断出系统的任何一个部件是否出现故障,并且在监控软件中及时、准确地反映出故障状态、故障时间、故障地点、及相关信息。
(四)、数据输出功能
根据监控采集到的数据,生成全厂的生产工艺流程实时动态图,给操作人员提供清晰、友善的人机界面,反映生产工艺流程的实时数据,完成报警、历史数据、历史趋势曲线的显示和查询。同时可以生成各类生产运行管理报表、日报表、月报表和年报表。
4、上位机系统
在综合楼二楼中央控制室内设2台监控计算机,一台作为工程师站(做编程、操作、记录用),另外一台作为操作员站(仅作操作、记录用),两站均作数据备份。为保证监控计算机能稳定运行,并在掉电后能保存工艺参数数据,减少掉电对电脑的危害,设立一套UPS系统,容量为5KVA,掉电后能至少保持30分钟工作时间。另外设一套数据服务器及两台打印机。室内还设置大型DLP无缝拼接大屏幕显示系统(显示面积2×2×70寸),用以直观显示全厂工艺流程、设备工况及主要参数值。大屏幕显示系统通过与摄像监控管理计算机相连,实时监视全厂生产区域工况、主要生产设施的运行状态。监控计算机主要实现以下功能。
人机界面:在显示器上动态显示全厂各工艺设备的实时运行工况,过程控制的运行趋势,各处理环节的生产数据指标,使生产管理人员一目了然当前全厂生产运行情况。
故障登记表:监控管理计算机的显示器,无论显示何种画面及操作人员在执行何种操作,均在画面的下栏处显示故障登记表,并实时弹出新生故障警示框,使得操作人员随时随地都能了解污水厂的故障实况,计算机会自动把现场发生的故障登记入“故障登记表”中的记录。故障分一般故障和紧急故障,如水泵过载报警等属于一般故障,液位达到高位而未有水泵启动、进水水质参数超过进水标准等属于紧急故障。故障时,显示器上警示框红闪,并伴有5秒时长间隔报警声。要求操作人员在3分钟内作出响应,3分钟后均改为1秒时长间隔报警声,报警在操作人员响应后解除。
系统控制:系统的控制方式,一般分“自动”、“手动”,“自动”还分为“自控”和“中控”。“手动”、“自动”由操作人员在现场控制箱上选择,“手动”由操作人员在现场控制箱上启动和停止设备。“自控”由现场PLC站根据事先设定的逻辑程序依据工艺参数状况决定设备的启停。“中控”由中控室内操作人员在上位机上实现对设备的启停。在上位机单体构筑物界面图上,设置设备“启动”和“停止”按钮,并设置“自控”、“中控”选择按钮,并在设备图案旁显示设备控制方式状态。
工艺参数设定:功能参数设定有两大类,第一类是连续回路控制中的控制值设定,如进水泵池液位值、生物池溶氧值、药剂投加量等;第二类是报警极限设定,如泵池的高、低液位报警、主要设备的高电流报警等。可以利用计算机的先进功能,优化出污水处理的工艺参数,提供给厂长指挥调度生产。
生成各类报表:如设备编号登记、故障次数记录、设备运行累计时间记录、大修周期的倒计时,开启次数记录等。对污水厂进、出水流量、大功率电机的用电量、总用电量等主要参数进行累计。同时可生成班报表、日报表、月报表、年报表等,自动记录生产设备及工艺控制过程中出现的故障现象和发生的时间、排除的时间,并能自动打印报表。
生成历史曲线:历史趋势曲线包括全部模拟量曲线(工艺参数、电力参数、及大功率电机的电流等),趋势曲线不少于20条。对于液位参数显示和报警用棒图方式,以便精确查阅某个时间内的趋势。趋势曲线可单条显示,也可组合显示,并用不同颜色表示。
第四篇:污水处理厂工艺流程图
污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
污水处理工艺流程图
污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水 生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运
主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。
污水处理
sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等.现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理.一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理.污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD物质).去除率可达90%以上.使有机污染物达到排放标准.三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等.整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用.各个处理构筑物的能耗分析 1.污水提升泵房
进入污水处理厂的污水经过粗格删进入污水提升泵房.之后被污水泵提升至沉砂池的前池.水泵运行要消耗大量的能量.占污水厂运行总能耗相当大的比例.这与污水流量和要提升的扬程有关.2.沉砂池 污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
沉砂池的功能是去除比重较大的无机颗粒.沉砂池一般设于泵站前.倒虹管前.以便减轻无机颗粒对水泵.管道的磨损,也可设于初沉池前.以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池.多尔沉砂池和钟式沉砂池.沉砂池中需要能量供应的主要是砂水分离器和吸砂机.以及曝气沉砂池的曝气系统.多尔沉砂池和钟式沉砂池的动力系统.3.初次沉淀池
初次沉淀池是一级污水处理厂的主题处理构筑物.或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面.处理的对象是SS和部分BOD5.可改善生物处理构筑物的运行条件并降低其BOD5负荷.初沉池包括平流沉淀池.辐流沉淀池和竖流沉淀池.初沉池的主要能耗设备是排泥装臵.比如链带式刮泥机.刮泥撇渣机.吸泥泵等.但由于排泥周期的影响.初沉池的能耗是比较低的.4.生物处理构筑物
污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例.它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上.活性污泥法的曝气系统的曝气要消耗大量的电能.其基本上是联系运行的.且功率较大.否则达不到较好的曝气效果.处理效果也不好.氧化沟处理工艺安装的曝气机也是能耗很大的设备.生物膜法处理设备和活性污泥法相比能耗较低.但目前应用较少.是以后需要大力推广的处理工艺.5.二次沉淀池 污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上.能耗比较低.6.污泥处理
污泥处理工艺中的浓缩池.污泥脱水.干燥都要消耗大量的电能.污泥处理单元的能量消耗是相当大的.这些设备的电耗功率都很大.针对各个处理构筑物的节能途径 1.污水提升泵房
污水提升泵房要节省能耗.主要是考虑污水提升泵如何进行电能节约.正确科学的选泵.让水泵工作在高效段是有效的手段.合理利用地形.减少污水的提升高度来降低水泵轴功率N也是有效的办法.定期对水泵进行维护.减少摩擦也可以降低电耗.2.沉砂池
采用平流沉砂.避免采用需要动力设备的沉砂池.如平流沉砂池.采用重力排砂.避免使用机械排砂.这些措施都可大大节省能耗.3.初次沉淀池
初次沉淀池的能耗较低.主要能量消耗在排泥设备上.采用静水压力法无疑会明显降低能量的消耗.4.生物处理构筑物
国外的学者通过能耗和费用效益分析比较了生物处理工艺流程.他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上.因而节能应从提高全厂功率因数.选择高效机电设备及减少高峰用电要污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
求等方面入手.他们提出的节能措施既包括改善电机的电气性能.也包括解决运转的工艺问题.还包括污水厂产物中的能量回收(Energy Recovery).曝气系统的能耗相当大.对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新.新型的曝气设备虽然层出不穷.但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法.第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法.微孔曝气.曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施.在传统活性污泥处理厂曝气池中辟出前端厌氧区.用淹没式搅拌器混合的节能.生物除磷方案.这一简单的改造可以节省近20%的曝气能耗.如果算上混合用能.节能也达到12%.自动控制系统的应用于污水处理节能.曝气系统进行阶段曝气.溶解氧存在浓度梯度.既减少了能耗.又可以改善处理效果.减少污泥量.生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗.5.二次沉淀池
二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法.6.污泥处理
污泥处理系统节能研究主要集中于污泥处理的能量回收.从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践.但能源危机之前一直不受重视.目前有两种回收途径:一是污泥厌氧消化气利用.一是污泥焚烧热的利用.污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
消化气性质稳定.易于贮存.它可通过内燃机或燃料电池转化为机械能或电能.废热还可回收于消化污泥加热.因此利用消化气能解决污水厂不同程度的能量自给问题.林荣忱等人比较了沼气发电机和燃料电池两种利用形式.认为燃料电池能量利用率高.具有很好的发展前途.对消化气的最大化利用是提高能效的主要方式.沼气发电机组并网发电的研究和应用在国内已有应用实例.是大型污水处理厂的沼气综合利用的可行途径.另外一种能量回收方式是将城市固体废物焚烧场建在污水处理厂旁.将固废与污水污泥一起焚烧.获得的电能用于处理厂的运转.城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步.由于污水处理能量平衡分析方法研究的欠缺.节能措施的制订和实施常常超前.而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出.具有经验性和个别性.不一定能适用于其他污水厂甚至是工艺相似的污水厂,另一方面.从广义上说.污水处理学科领域的技术创新.新材料和新设备的使用都蕴涵着节能增效的潜力.因而节能的途径和手段往往是很宽泛的.结论
污水处理是能源密集(energy intensity)型的综合技术.一段时期以来.能耗大.运行费用高一定程度上阻碍了我国城市污水处理厂的建设.建成的一些处理厂也因能耗原因处于停产和半停产状态.在今后相当长的一段时期内.能耗问题将成为城市污水处理的瓶颈.能否解决耗污水厂的能耗问题.合理进行能源分配.已经成为决定污水处理污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
厂运行效益好坏的关键因素.能耗是否较低.也是未来新的污水处理厂可行性分析的决定性因素.开发能效较高的污水处理技术.合理设计及运行污水处理厂.必将是未来污水处理厂设计和运行的必由之路.?
污水处理厂的工作岗位
1.有哪些岗位? 主要职能是负责污水泵站、污水处理、污泥处理的安全、正常运行,确保进厂的污水经处理后全部达标排放。
职能部门一般有厂长、副厂长、生产、技术、办公室等。主要是生产技术,动力,设备人员,化验员,设备维修,设备操作人员等.一是中控室? 二是机修班 三是管网班。中控是上的小班制度,上班时间是白班是早上8点到晚上8点? 夜班是晚上8点到早上8点,上一个白班一个夜班就可以休息两天。机修和管网都是双休,上班时间是早上8.30到下午5点。2.处理工艺:
一般是传统活性污泥法工艺,将污水中的污染物分离出来或转化为无害的物质,从而使污水得到净化。污水处理方法分类:
(1).物理处理法。如过滤法、沉淀法。污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
(2).物理化学法。如混凝沉淀法。
(3).生物处理法。利用微生物来吸附、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。活性污泥法是生物处理法的一种。
?
?
秦皇岛污水处理厂实习报告
一.实习目的:生产实习是学生大学学习很重要的实践环节。实习是每一个大学毕业生必的必修课,它不仅让我们学到了很多在课堂上根本就学不到的知识,还使我们开阔了视野,增长了见识,为我们以后更好把所学的知识运用到实际工作中打下坚实的基础。通过生产实习使我更深入地接触专业知识,进一步了解环境保护工作的实际,了解环境治理过程中存在的问题和理论和实际相冲突的难点问题,并通过撰写实习报告,使我学会综合应用所学知识,提高分析和解决专业问题的能力。
二.实习具体内容:实习地点:秦皇岛污水治理厂.实习时间:*****.污水厂概况;秦皇岛污水处理厂污水主要来源于城市污水收集的城市生活污水和部分工业废水,所有污水经过活性污泥法A/O工艺处理后,采用秦皇岛淹没排放方式排入长江,日排放量计划为64万吨(雨季),年平均为58万吨。该项目加氯间为密封式,加氯量按5mg/l考虑60万吨/日污水总投氯量125kg/h,设臵真空加氯系统一套,59 kg/h加污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
氯机2用1备。加氯间安装有自控报警系统。在城市发生较大范围疫情时,经防疫部门要求,环保部门批准,该厂对生化处理后的水进行加氯处理排入长江,平时处理水不加氯直接排放。该项目一期工程地面噪声源主要有格栅机、鼓风机、污泥脱水机和排放泵等。高噪声设备设有减振降噪部件,远离厂界。水下噪声源有污水潜水泵、曝气机等。该污水处理厂固体废弃物主要来自格栅沉渣和剩余污泥脱水后的泥饼。根据工艺的设计参数推算,污泥量为55.8吨/天(含水率为75%),其中格栅沉渣为20吨/天(含水率60%)。此污泥运到秦皇岛电厂焚烧发电。2.工艺流程:进水泵房—机械格栅槽—暴气沉砂池—配水井—辅流沉淀池—生物池—配水井—二沉池—提升泵房—排放泵房—水体。3.处理工艺秦皇岛污水处理厂采用A/O活性污泥法工艺。污水处理采用各种方法,将污水中的污染物分离出来或转化为无害的物质,从而使污水得到净化。污水处理方法分类:(1).物理处理法。如过滤法、沉淀法。(2).物理化学法。如混凝沉淀法。(3).生物处理法。利用微生物来吸附、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。活性污泥法是生物处理法的一种。4.主要构筑物及其作用(1)预处理阶段a.格栅间格栅间用于去处污水中粗大漂浮或悬浮杂物,以保护后续处理设施不被磨损或堵塞。所以说在预处理过程中,格栅间是尤其重要的构筑物。秦皇岛污水处理厂共有两组十台,垂直放臵,钢丝绳牵引。b.曝气沉砂池暴气沉砂池一共有六组,利用水与无机颗粒物的比重不同从而达到沉淀目的。里面的水比较脏,有漂浮物和水泡。污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
格栅间有四台格栅。初沉池里的水也比较脏,漂着好多黑色的水泡,有一直径刮泥机。高压鼓风机也非常重要,直接影响到处理效果。二沉池采取的是一为周边进水中间出水,也有中间进水周边出水c.配水井其作用是将曝气沉砂池流过来的污水进行均衡分配和缓冲,确保两套工艺的过水两相同,且稳定的进行污水处理。d.初沉池是一个幅流式的沉淀池以除去污水中的大部分泥渣,其刮泥采用的是半桥式周边传动刮泥机,泥渣经刮泥机推入池底中心处的污泥斗再输送到贮泥间。(2)生化处理阶段a.A/O生化池它是缺氧——好氧活性污泥除磷工艺的主要组成部分,分为五个廊道,两段(A级、B级)。污水和活性污泥混合进入A/O生化池,首先进入A级缺氧段,活性污泥中的微生物在这儿先释放磷,并且繁殖。当进入B级好氧段时,由于氧气充足,微生物大量吸收水中的磷和有机物,达到处理的目的。b.二沉池主要将A/O生化池的水和泥沉淀分开,底部的泥渣由刮吸泥机吸入后由污泥泵打到污泥泵池,处理后的污水经溢流堰流出到排水井直接排到水体。c.鼓风机房A/O生化池的供气最重要的部分,对活性污呢的培养有重要作用(3)水的排放和污泥处理系统a.水的排放系统经二沉池出来的水进入提升泵房后再由排放泵房直接排入长江。b.污泥处理系统污泥投配池—污泥浓缩及控制间—污泥消化池—沼气锅炉房—脱硫塔—沼气火炬—贮气罐—污泥脱水机房—回流污泥泵房。控制间加的絮凝剂PAM,消化池采用的是中温缺氧处理(31-35度), 投加消化污泥,易产生甲烷。在污泥脱水时分别采用离心和带式脱水机,加入PAM絮凝剂溶液。出厂污泥如黑炭色,含水75%,运往秦皇污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
岛电厂焚烧发电。5秦皇岛污水出理厂平面图 6.实习总结此次在秦皇岛污水处理厂的实习,使我在学生阶段能够最大程度深入学习活性污呢法的处理工艺.活性污泥法是目前处理城市和工业污水普遍采用的好氧生化处理技术.其工艺流程较为简单,处理成本低,而处理效果好,BOD/COD去除率高,因而能得到广泛的青睐.另外,这次实习也让我对污水处理厂的流程及基本操作有了一个大致了解.?
南京江心洲污水处理厂的实习报告一篇
一.实习目的: 生产实习是学生大学学习很重要的实践环节。实习是每一个大学毕业生必的必修课,它不仅让我们学到了很多在课堂上根本就学不到的知识,还使我们开阔了视野,增长了见识,为我们以后更好把所学的知识运用到实际工作中打下坚实的基础。通过生产实习使我更深入地接触专业知识,进一步了解环境保护工作的实际,了解环境治理过程中存在的问题和理论和实际相冲突的难点问题,并通过撰写实习报告,使我学会综合应用所学知识,提高分析和解决专业问题的能力。二.实习具体内容: 实习地点:南京江心洲污水治理厂 实习时间:2008-5-22 1.污水厂概况;南京江心洲污水处理厂污水主要来源于城市污水收集的城市生活污水和部分工业废水,所有污水经过活性污泥法A/O工艺处理后,采用污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
江心淹没排放方式排入长江,日排放量计划为64万吨(雨季),年平均为58万吨。该项目加氯间为密封式,加氯量按5mg/l考虑60万吨/日污水总投氯量125kg/h,设臵真空加氯系统一套,59 kg/h加氯机2用1备。加氯间安装有自控报警系统。在城市发生较大范围疫情时,经防疫部门要求,环保部门批准,该厂对生化处理后的水进行加氯处理排入长江,平时处理水不加氯直接排放。该项目一期工程地面噪声源主要有格栅机、鼓风机、污泥脱水机和排放泵等。高噪声设备设有减振降噪部件,远离厂界。水下噪声源有污水潜水泵、曝气机等。该污水处理厂固体废弃物主要来自格栅沉渣和剩余污泥脱水后的泥饼。根据工艺的设计参数推算,污泥量为55.8吨/天(含水率为75%),其中格栅沉渣为20吨/天(含水率60%)。此污泥运到江宁协鑫电厂焚烧发电。2.工艺流程:
进水泵房—机械格栅槽—暴气沉砂池—配水井—辅流沉淀池—生物池—配水井—二沉池—提升泵房—排放泵房—水体。3.处理工艺
江心洲污水处理厂采用A/O活性污泥法工艺。污水处理采用各种方法,将污水中的污染物分离出来或转化为无害的物质,从而使污水得到净化。污水处理方法分类:
(1).物理处理法。如过滤法、沉淀法。污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
(2).物理化学法。如混凝沉淀法。
(3).生物处理法。利用微生物来吸附、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。活性污泥法是生物处理法的一种。4.主要构筑物及其作用(1)预处理阶段 a.格栅间
格栅间用于去处污水中粗大漂浮或悬浮杂物,以保护后续处理设施不被磨损或堵塞。所以说在预处理过程中,格栅间是尤其重要的构筑物。江心洲污水处理厂共有两组十台,垂直放臵,钢丝绳牵引。b.曝气沉砂池
暴气沉砂池一共有六组,利用水与无机颗粒物的比重不同从而达到沉淀目的。里面的水比较脏,有漂浮物和水泡。格栅间有四台格栅。初沉池里的水也比较脏,漂着好多黑色的水泡,有一直径刮泥机。高压鼓风机也非常重要,直接影响到处理效果。二沉池采取的是一为周边进水中间出水,也有中间进水周边出水 c.配水井
其作用是将曝气沉砂池流过来的污水进行均衡分配和缓冲,确保两套工艺的过水两相同,且稳定的进行污水处理。d.初沉池
是一个幅流式的沉淀池以除去污水中的大部分泥渣,其刮泥采用的是污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
半桥式周边传动刮泥机,泥渣经刮泥机推入池底中心处的污泥斗再输送到贮泥间。(2)生化处理阶段 a.A/O生化池
它是缺氧——好氧活性污泥除磷工艺的主要组成部分,分为五个廊道,两段(A级、B级)。污水和活性污泥混合进入A/O生化池,首先进入A级缺氧段,活性污泥中的微生物在这儿先释放磷,并且繁殖。当进入B级好氧段时,由于氧气充足,微生物大量吸收水中的磷和有机物,达到处理的目的。b.二沉池
主要将A/O生化池的水和泥沉淀分开,底部的泥渣由刮吸泥机吸入后由污泥泵打到污泥泵池,处理后的污水经溢流堰流出到排水井直接排到水体。c.鼓风机房
A/O生化池的供气最重要的部分,对活性污呢的培养有重要作用(3)水的排放和污泥处理系统 a.水的排放系统
经二沉池出来的水进入提升泵房后再由排放泵房直接排入长江。b.污泥处理系统
污泥投配池—污泥浓缩及控制间—污泥消化池—沼气锅炉房—脱硫塔—沼气火炬—贮气罐—污泥脱水机房—回流污泥泵房。
控制间加的絮凝剂PAM,消化池采用的是中温缺氧处理(31-35度), 污泥减量微生物制剂招商 http://blog.sina.com.cn/wunijianliang
投加消化污泥,易产生甲烷。在污泥脱水时分别采用离心和带式脱水机,加入PAM絮凝剂溶液。出厂污泥如黑炭色,含水75%,运往协鑫电厂焚烧发电。
5江心洲污水出理厂平面图
6.实习总结
此次在江心洲污水处理厂的实习,使我在学生阶段能够最大程度深入学习活性污呢法的处理工艺.活性污泥法是目前处理城市和工业污水普遍采用的好氧生化处理技术.其工艺流程较为简单,处理成本低,而处理效果好,BOD/COD去除率高,因而能得到广泛的青睐.另外,这次实习也让我对污水处理厂的流程及基本操作有了一个大致了解.
第五篇:污水处理厂工艺设计
污水厂设计计算书
3.1污水处理构筑物设计计算 3.1.1中格栅
3.1.1.1设计参数:
3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=1.0m/s 栅条宽度s=0.01m,格栅间隙e=25mm 栅前部分长度0.5m,格栅倾角α=60°
333单位栅渣量ω1=0.06m栅渣/10m污水
3.1.1.2设计计算
(1)设过栅流速v=1.0m/s,格栅安装倾角为60度则:栅前槽宽B12Qmax20.91.01.34m 栅前水深hB121.3420.67m
v2(2)栅条间隙数nQmaxehvsin20.9sin600.0250.671.055.6(取n=58)(3)栅槽有效宽度B=s(n-1)+en=0.01(58-1)+0.025×58=2m(4)进水渠道渐宽部分长度L1角)
(5)栅槽与出水渠道连接处的渐窄部分长度L2(6)过栅水头损失(h1)
因栅条边为矩形截面,取k=3,则h1kh0kv22gsin32.42(0.010.0254BB12tan121.342tan200.9m(其中α1为进水渠展开
L120.45m)31229.81sin600.094m
(0.08~0.15)
4/3其中ε=β(s/e)
h0:计算水头损失
k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42(7)栅后槽总高度(H)
取栅前渠道超高h2=4.3m,则栅前槽总高度H1=h+h2=0.67+4.3=4.97m 栅后槽总高度H=h+h1+h2=0.67+0.094+4.3=5.06m(8)格栅总长度L=L1+L2+0.5+1.0+1.1/tan=0.9+0.45+0.5+1.0+1.1*4.97/tan60°=6m(9)每日栅渣量ω=Q平均日ω1=
3600000.061000
3=3.6m/d>0.2m/d 所以宜采用机械格栅清渣(10)计算草图如下:
图2 中格栅设计简图
3.1.1.1设计参数:
3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=0.8m/s 栅条宽度s=0.01m,格栅间隙e=10mm 栅前部分长度0.5m,格栅倾角α=60°
333单位栅渣量ω1=0.06m栅渣/10m污水
3.1.1.2设计计算
(1)设过栅流速v=0.8m/s,格栅安装倾角为60度则:栅前槽宽B12Qmax20.90.81.5m 栅前水深hB121.520.75m
v2(2)栅条间隙数nQmaxehvsin20.9sin600.010.750.8139.6(取n=140)设计两组格栅,每组格栅间隙数n=70条
(3)栅槽有效宽度B=s(n-1)+en=0.01(70-1)+0.01×70=1.39m 所以总槽宽为B=1.39×2+0.15=2.93m(考虑中间隔墙厚0.15m)
L1BB12tan12.930.752tan202.99m3m(4)进水渠道渐宽部分长度(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度L2(6)过栅水头损失(h1)
因栅条边为矩形截面,取k=3,则h1kh0kv22gsin32.42(0.010.014L121.5m)30.81229.81sin600.21m
其中ε=β(s/e)
h0:计算水头损失
k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42(7)栅后槽总高度(H)
取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.75+0.3=1.05m 栅后槽总高度H=h+h1+h2=1.05+0.21+0.3=1.26m(8)格栅总长度L=L1+L2+0.5+1.0+1.1/tan=3+1.5+0.5+1.0+1.1*1.05/tan60°=6.67m(9)每日栅渣量ω=Q平均日ω1=
34/3
600000.0810003
=4.8m/d>0.2m/d 所以宜采用机械格栅清渣 3.1.2污水提升泵房
本设计采用干式矩形半地下式合建式泵房,它具有布置紧凑、占地少、结构较省的特点。集水池和机器间由隔水墙分开,只有吸水管和叶轮浸没在水中,机器间经常保持干燥,以利于对泵房的检修和保养,也可避免对轴承、管件、仪表的腐蚀。
在自动化程度较高的泵站,较重要地区的雨水泵站、开启频繁的污水泵站中,应尽量采用自灌式泵房。自灌式泵房的优点是启动及时可靠,不需引水的辅助设备,操作简便;缺点是泵房较深,增加工程造价。采用自灌式泵房时水泵叶轮(或泵轴)低于集水池的最低水位,在高、中、低三种水位情况下都能直接启动。泵房剖面图如图2所示。
图3 污水提升泵房设计简图
3.1.2.1设计概述
选择水池与机器间合建式的方形泵站,用6台泵(2台备用),每台水泵设计流量:Q=1390L/s,泵房工程结构按远期流量设计
采用AAO工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、缺氧池、曝气池、二沉池及计量堰,最后由出水管道排入受纳水体。
各构筑物的水面标高和池底埋深见高程计算。
3.1.2.2集水间计算
选择水池与机器间合建的半地下式方形泵站,用6台泵(2台备用)每台泵流量为:Q0=1390/4=347.5L/s 集水间容积,相当与1台泵5分钟容量
3W=0.35560=105m
2有效水深采用h=2m,则集水池面积为F=105/2=52.5m 3.1.2.3水泵总扬程估算
(1)集水池最低工作水位与所需提升最高水位之前的高差为:
21.8(13.910.60.12.0)9.4m
(2)出水管线水头损失
每台泵单用一根出水管,共流量为Q0=1390/4=347.5L/s选用管径为600mm的铸铁管,查表得v=1.66m,1000i=5.75m,设管总厂为30m,局部损失占沿程的30%,则总损失为:
30(10.3)5.7510000.20m
(3)泵站内的管线水头损失假设为1.5m,考虑自由水头为1.0m(4)水头总扬程为H21.8-13.90.21.51.010.3m取11m 3.1.2.4校核总扬程
泵站平面布置后对水泵总扬程进行校核计算(1)吸水管路的水头损失 每根吸水管的流量为350L/s,每根吸水管管径为600mm,流速v=1.66m/s,只管长度为1.65m。
沿
1.655.751000i0.01m
直管部分长度1.65m,进口闸阀一个(0.609)Dg600350偏心管一个(0.2)局部损失
2(0.5+0.609)1.66/2g+0.24.88/2g=0.41m 吸水管路总损失为:0.01+0.41=0.42m(2)出水管路的水头损失:管路总长度取25m,渐扩管1个(0.609)90度弯头四个(1.01)
沿程损失 255.75/1000i=0.14m
22局部损失(0.3+0.609+41.01)1.7/2g+0.24.88/2g=0.94m 出水管路总损失为 0.14+0.94=1.08m(3)水泵所需总扬程为
21.8-13.9+1.5+0.42+1.08=10.9m。
取11m。采用6台长沙水泵厂制造的56LKSB-10立式斜流泵,两台备用。该泵单台提升流量340L/s,扬程11.3m,转速370r/min,功率500kW
2污水泵房设计占地面积120m(12*10)高10m,地下埋深5米。
3.1.3、沉砂池
采用平流式沉砂池 3.1.3.1 设计参数
设计流量:Q=1157L/s(设计1组,分为2格)设计流速:v=0.25m/s 水力停留时间:t=40s 3.1.3.2设计计算
(1)沉砂池长度: L=vt=0.25×40=10.0m(2)水流断面积:
22A=Qmax/v=1.39/0.25=5.56m 取5.6m。(3)池总宽度:
设计n=2格,每格宽取b=3.5m>0.6m,池总宽B=2b=7m(4)有效水深:
h2=A/B=5.6/7=0.8m(介于0.25~1m之间)
(5)贮泥区所需容积:设计T=2d,即考虑排泥间隔天数为2天,则每个沉砂斗容积
V1Q1TX2K1015110523521.2102.5m
3(每格沉砂池设两个沉砂斗,两格共有四个沉砂斗)
353其中X1:城市污水沉砂量3m/10m,K:污水流量总变化系数1.2(6)沉砂斗各部分尺寸及容积:
设计斗底宽a1=2m,斗壁与水平面的倾角为60°,斗高hd=0.5m,则沉砂斗上口宽:
a2hdtan60a120.5tan6022..6m
沉砂斗容积:
Vhd6(2a22aa12a1)20.56(22.6222.6222)2.66m(略大于
23V1=2.6m3,符合要求)
(7)沉砂池高度:采用重力排砂,设计池底坡度为0.06,坡向沉砂斗长度为L2L2a210.021.123.9m
则沉泥区高度为
h3=hd+0.06L2 =0.5+0.06×3.9=0.734m 池总高度H :设超高h1=0.3m,H=h1+h2+h3=0.3+0.5+0.73=1.46m(8)进水渐宽部分长度: L1BB12tan2073.52tan205.4m
(9)出水渐窄部分长度: L3=L1=5.4m(10)校核最小流量时的流速:
最小流量即平均日流量:Q平均日=Q/K=1390/1.2=1157L/s 则vmin=Q平均日/A=1.157/5.6=0.21>0.15m/s,符合要求(11)计算草图如下:
进水出水
图3平流式沉沙池设计计算草图
图4 平流式沉砂池计算草图3.1.4、初沉池
3.1.4.1.设计概述
3本设计中采用中央进水幅流式沉淀池两座。则每座设计进水量:Q=25000m/d采用周边传动刮泥机。
3232表面负荷:qb范围为1.5-3.0m/ m.h,取q=2/mh 水力停留时间(沉淀时间):T=2h 3.1.4.2.设计计算
(1)沉淀池面积: 按表面负荷计算:AQ2qb10000022241042m
2(2)沉淀池直径:D4A410423.1436m16m
有效水深为:h1=qbT=2.02=4m Dh1302.512(介于6~12)
(3)贮泥斗容积:
本污水处理厂设计服务人口数为80万人。贮泥时间采用Tw=4h,初沉池污泥区所需存泥容积:
VwSNT1000n0.50801044100022433.33m
3设池边坡度为0.05,进水头部直径为2m,则: h2=(R-r)×0.05=(18-1)×0.05=0.85m 锥体部分容积为:
V13h(R2Rrr)2130.85(1821811)96.9m333.33m3(4)
二沉池总高度:
取二沉池缓冲层高度h3=0.4m,超高为h4=0.3m 则二沉池总高度
H=h1+h2+h3+h4=4+0.85+0.4+0.3=5.55m 则池边总高度为
h=h1+h3+h4=4+0.4+0.3=4.7m(5)校核堰负荷:
径深比
Dh1h53040.46.8
介于6-12之间,符合要求。堰负荷
QnD11573.143625.12L/(s.m)2L/(s.m)
要设双边进水的集水槽。
(6)辐流式初沉池计算草图如下:
出水进水排泥图6 辐流式沉淀池出水55004700进水850
图4 幅流式初沉池设计计算草图
3.1.5、厌氧池
3.1.5.1.设计参数
3设计流量:最大日平均时流量Q=1.39m=1390L/s 水力停留时间:T=1h 3.1.5.2.设计计算
(1)厌氧池容积:
3V= Q′T=1.39×1×3600=5004m
(2)厌氧池尺寸:水深取为h=4.5m。则厌氧池面积:
2A=V/h=5004/4.5=1112m
池宽取50m,则池长L=F/B=1112/50=22.24。取23m。设双廊道式厌氧池。
考虑0.5m的超高,故池总高为H=h+0.3=4.5+0.5=5.0m。3.1.6、缺氧池计算
3.1.6.1.设计参数
3设计流量:最大日平均时流量Q=1.39m=1390L/s 水力停留时间:T=1h 3.1.6.2.设计计算
(1)缺氧池容积: V=Q′T=1.39×1×3600=5004m
(2)缺氧池尺寸:水深取为h=4.5m。则缺氧池面积:
2A=V/h=5004/4.5=1112m
池宽取50m,则池长L=F/B=1112/50=22.24。取23m。考虑0.5m的超高,故池总高为H=h+0.3=4.5+0.5=5.0m。
33.1.7、曝气池设计计算
本设计采用传统推流式曝气池。3.1.7.1、污水处理程度的计算
取原污水BOD5值(S0)为250mg/L,经初次沉淀池及缺氧池、厌氧段处理,按降低25%*10考虑,则进入曝气池的污水,其BOD5值(S)为: S=250(1-25%)=187.5mg/L 计算去除率,对此,首先按式BOD5=5(1.42bXCe)=7.1XCe计算处理水中的非溶解性BOD5值,上式中
Ce——处理水中悬浮固体浓度,取用综合排放一级标准20mg/L;b-----微生物自身氧化率,一般介于0.05-0.1之间,取0.09; X---活性微生物在处理水中所占比例,取值0.4 得BOD5=7.10.090.420=5.1mg/L.处理水中溶解性BOD5值为:20-5.1=14.9mg/L 去除率=187.514.9187.50.92
3.1.7.2、曝气池的计算与各部位尺寸的确定
曝气池按BOD污泥负荷率确定
拟定采用的BOD-污泥负荷率为0.25BOD5/(kgMLSS·kg)但为稳妥计,需加以校核,校核公式:
Ns=k2Sef
MLVSSMLSSK2值取0.0200,Se=14.9mg/L,=0.92,f=代入各值,Ns0..75
0.020014.90.750.920.242BOD5/(kgMLSS·kg)计算结果确证,Ns取0.25是适宜的。
(2)确定混合液污泥浓度(X)
*11根据已确定的Ns值,查图得相应的SVI值为120-140,取值140 根据式 X=106SVIR1Rr
X----曝气池混合液污泥浓度 R----污泥回流比
取r=1.2,R=100%,代入得: X=106SVIR1Rr=10614011.2114286mg/L 取4300mg/L。
(3)确定曝气池容积,由公式VV100000187.50.25430017500m
3QSNsX代入各值得:
根据活性污泥的凝聚性能,混合液污泥浓度(X)不可能高于回流污泥浓度(Xr)。
106rSVIr1061401.28571.4mg/L X 按污泥龄进行计算,则曝气池容积为: VQCY(SSe)XV(1Kdc)105140.5(187.514.9)4300(10.0714)0.7518900m 3其中 3Q----曝气池设计流量(m/s) c----设计污泥龄(d)高负荷0.2-2.5,中5-15,低20-30 Xr---混合液挥发性悬浮固体平均浓度(mgVSS/L)Xv=fx=0.75*4300mg/L 3根据以上计算,取曝气池容积V=18000m(4)确定曝气池各部位尺寸 名义水力停留时间 tmvQ18000241054.32h 实际水力停留时间 tsv(1R)Q1800024(11)103 52.16h 设两组曝气池,每组容积为18000/2=9000m池深H=4.5m,则每组面积 F=9000/4.5=2000m池宽取B=8m,则B/H=8/4.5=1.8,介于1-2之间,符合要求。池长 L=F/B=2000/8=250m 设五廊道式曝气池,则每廊道长: L1=L/5=250/5=50m 取超高0.5m,则池总高为 H=4.5+0.5=5.0m 3.1.7.3、曝气系统的计算与设计 本设计采用鼓风曝气系统(1)、需气量计算 每日去除的BOD值: BOD5100000(87.520)10001.6810kg/d 4理论上,将1gNO3-N还原为N2需碳源有机物(BOD5表示)2.86g.一般认为,BOD5/TKN比*11值大于4-6时,认为碳源充足。 原污水中BOD5含量为150-250mg/L,总氮含量为45-55mg/L,取BOD5为200mg/L,氮为50mg/L,则碳氮比为4,认为碳源充足。 +-AAO法脱氮除磷的需氧量:2g/(gBOD5),3.43g/(gNH3-N),1.14g/(gNO2-N),分解1gCOD--*12需NO2-N0.58g或需NO3-N0.35g。 +-++因处理NH4-N需氧量大于NO2-N,需氧量计算均按NH4-N计算。原水中NH3-N含量为+35-45 mg/L,出水NH4-N含量为25mg/L。 +平均每日去除NOD值,取原水NH4-N含量为40 mg/L,则: NOD=100000(4025)=1500kg/L 1000100000(4525)=2000kg/L 1000日最大去除NOD值: NOD=日平均需氧量: 7O2=BOD+COD=2×1.68×1000+4.57×1500×1000=4.0455×10㎏/d 4取4.1×10㎏/d,即1710㎏/h。日最大需氧量: 7O2max=BOD+COD=2×1.2×1.68×1000+4.57×2000×1000=4.946×10㎏/d 即2060㎏/h。 最大时需氧量与平均时需氧量之比: O2(max)O2206017101.2 3.1.7.4、供气量的计算 本设计采用网状膜型中微孔空气扩散器,敷设于距池底0.3米处,淹没水深4.2米,计算温度定为30摄氏度。 *14选用Wm-180型网状膜空气扩散装置。 其特点不易堵塞,布气均匀,构造简单,便于维护和管理,氧的利用率较高。每扩散器服务面积0.5㎡,动力效率2.7-3.7㎏O2/KWh,氧利用率12%-15%。查表*得: 水中溶解氧饱和度 Cs(20)=9.17mg/L, Cs(30)=7.63mg/L.(1)空气扩散器出口的绝对压力(Pb): 3Pb=P+9.8×10H 5其中:P---大气压力 1.013×10Pa H---空气扩散装置的安装深度,m 533Pb=1.013×10Pa+9.8×10×4.2=1.425×10Pa(2)空气离开曝气池面时,氧的百分比: Ot21(1EA)7921(1EA0)0 其中,EA---空气扩散装置的氧转移效率,一般6%-12% 对于网状膜中微孔空气扩散器,EA取12%,代入得: Ot21(10.12)7921(10.12)0018.43% (3)曝气池混合液中平均氧饱和度(按最不利温度条件30摄氏度),即: Csb(T)CS(Pb2.026105Ot42) 其中,CS---大气压力下,氧的饱和度mg/L 得Csb(30)7.63(1.425102.026105518.4342)7.63(0.70340.4388)8.71mg/L(4)换算为在20摄氏度的条件下,脱氧轻水的充氧量,即: R0RCS(20)T-20[CSB(T)-C]1.024 取值а=0.85,β=0.95,C=1.875,ρ=1.0;代入各值,得: R01.7109.170.85[0.951.08.71-1.875]1.02430-202236.9kg/h 取2250kg/h。 相应的最大时需氧量为: R0(max)20609.170.85[0.951.08.71-1.875]1.02430-202694.kg/h 取2700kg/h。 (5)曝气池的平均时供氧量: GSR0A0.3E10022500.3121006.2510m/h 43(6)曝气池最大时供氧量: GS(max) 3RmaxA0.3E10027000.3121007.510m43/h (7)每m污水供气量: 6.251010000042415m空气/ m污水 333.1.7.5、空气管系统计算 选择一条从鼓风机房开始最长的管路作为计算管路,在空气流量变化处设设计节点,统一编号列表计算。 按曝气池平面图铺设空气管。空气管计算见图见图5。在相邻的两廊道的隔墙上设一根干管,共5根干管,在每根干管上设5对配气竖管,共10条配气竖管,全曝气池共设50根曝气竖管,每根竖管供气量为: 362500501250m3/h 曝气池总平面面积为4000m。 3每个空气扩散装置的服务面积按0.49m计,则所需空气扩散装置的总数为: 40000.499000508164个 为安全计,本设计采用9000个空气扩散装置,则每个竖管上的空气扩散装置数目为: 180个 6250090006.95m3每个空气扩散装置的配气量为:/h 将已布置的空气管路及布设的空气扩散器绘制成空气管路计算图进行计算。根据表4计算,得空气管道系统的总压力损失为: (h1h2)61.609.8603.68Pa 网状膜空气扩散器的压力损失为5.88kPa,则总压力损失为:5880+603.68=6483.68Pa 为安全计,设计取值9.8kPa。 空气扩散装置安装在距曝气池底0.3米处,因此,鼓风机所需压力为: P(4.50.31.0)9.850.96kPa 鼓风机供气量: 最大时供气量:7.1×10m/h,平均时供气量:6.25×10 m/h。 根据所需压力和供气量,决定采用RG-400型鼓风机8台,5用3备,根据以上数据设计鼓风机房。 3.1.7.6、回流污泥泵房 取回流比R=1,设三台回流污泥泵,备用一台,则每台污泥流量为 Q0*1 343 43115712578.5L/s 选用螺旋泵的型号为LXB-1000。据此设计回流污泥泵房。 3.1.8、二沉池 3.1.8.1.设计概述 3本设计中采用中央进水幅流式沉淀池六座。则每座设计进水量:Q=25000m/d采用周边传动刮泥机。 3232表面负荷:qb范围为1.0—1.5 m/ m.h,取q=1/mh 水力停留时间(沉淀时间):T=2.5h 3.1.8.2.设计计算 (1)沉淀池面积: 按表面负荷计算:AQ4qb1000001624694m 2(2)沉淀池直径:D4A46943.1430m16m 有效水深为:h1=qbT=1.02.5=2.5m<4m Dh1302.512(介于6~12) (3)贮泥斗容积: 为了防止磷在池中发生厌氧释放,故贮泥时间采用Tw=2h,二沉池污泥区所需存泥容积: Vw2Tw(1R)QR(12R)n22(11)11571(12)6514m 3设池边坡度为0.05,进水头部直径为2m,则: h4 (R-r)×0.05=(15-1)×0.05=0.7m 锥体部分容积为: V13h(R2Rrr)2130.7(1521511)56.23m3 另需一段柱体装泥,设其高为h3,则: h351456.231520.65m (4)二沉池总高度: 取二沉池缓冲层高度h5=0.4m,超高为h2=0.3m 则二沉池总高度 H=h1+h2+h3+h4+h5=2.5+0.3+0.65+0.7+0.4=4.55m 则池边总高度为 h=h1+h2+h3+h5=2.5+0.3+0.65+0.4=3.85m(5)校核堰负荷: 径深比 Dh1h5Dh1h3h5302.50.4302.50.650.410.34 8.45 均在6-12之间,符合要求。堰负荷 QnD11573.143062.05L/(s.m)2.9L/(s.m) 符合要求,单边进水即可。 (6)辐流式二沉池计算草图如下: 出水进水排泥 图6 辐流式沉淀池出水45503850进水700650 图6 幅流式二沉池设计计算简图 3.1.9计量堰设计计算 本设计采用巴氏计量槽,主要部分尺寸: L10.5b1.2(m) L2=0.6m L3=0.9m B1=1.2b+0.48(m)B2=b+0.3(m)应设计在渠道直线段上,直线段长度不小于渠道宽度的8-10倍,计量槽上游直线段不小于渠宽2-3倍,下游不小于4-5倍,喉宽b一般采用上游渠道水面宽的1/2-1/3。 当W=0.25-0.3时,HH10.70为自由流,大于为潜没流,矩形堰流量公式为QM0bH(2gH)1/2 *16其中m0取0.45,H为渠顶水深,b为堰宽,Q为流量。查表得; Q=1389L/s 则 H1=0.70m,b=1m 则 L10.5b1.2(m)=0.5×1+1.2=1.7m L2=0.6m L3=0.9m B1=1.2b+0.48(m)=1.2×1+0.48=1.68m B2=b+0.3(m)=1.3m 取H2=0.45m,则HH10.450.70.640.7为自由流。 计算简图如图7: 图7 巴氏计量堰设计计算简图 3.2 污泥处理部分构筑物计算 3.2.1污泥浓缩池设计计算: 污泥含水率高,体积大,从而对污泥的处理、利用及输送都造成困难,所以对污泥进行浓缩。重力浓缩法是利用自然的重力沉降作用,使固体中的间隙水得以分离。重力浓缩池可分为间歇式和连续式两种,我们选用间歇式重力浓缩池。如图8所示: 图8 污泥浓缩池设计简图 3.2.1.1浓缩污泥量的计算 XY(SaSe)QKdVXV 其中,X— 每日增长(排放)的挥发性污泥量(VSS),㎏/d; Q(Sa-Se)— 每日的有机污染物降解量,㎏/d; Y— 污泥产率,生活污水0.5-0.65,城市污水0.4-0.5; VXV----曝气池内,混合液中挥发性悬浮固体总量,㎏,XV=MLVSS; Kd——衰减系数,生活污水0.05-0.1,城市污水0.07左右 4343取Y=0.5,Kd=0.07,Sa=187.5mg/L,Se=20mg/L,Q=12.01×10m/d,V=2×10m,则: XV=f×MLSS=0.75×4300/1000=3.225㎏/L XY(SaSe)QKdVX0.5187.520100043V41050.072103.225 0.3910m/d剩余污泥量:QSXfXr 1RRXfXrXrX111390043008600mg/L QS0.758.6 3604.65m3/d 采用间歇式排泥,剩余污泥量为604.65m/d,含水率P1=99.2%,污泥浓度为8.6㎏/ 3m;浓缩后的污泥浓度为31.2g/L,含水率P2=97%。3.2.1.2浓缩池各部分尺寸计算 (1)浓缩池的直径 采用两个圆形间歇式污泥浓缩池。有效水深h2取2m,浓缩时间取16h。则浓缩池面积 ATQ24H16604.65242201.42m3 则其污泥固体负荷为: MQCA604.658600201.4225.8kg/md 3浓缩池污泥负荷取20-30之间,故以上设计符合要求。采用两个污泥浓缩池,则每个浓缩池面积为: A0=201.42/2=100.71㎡ 则污泥池直径: D4A04100.713.1411.33m 取D=12m。(2)、浓缩污泥体积的计算 VQ(1P1)1P2604.65(199.2%)197% 3161.24m/d 3则排泥斗所需体积为161.24×16/24=107.5m(3)、排泥斗计算,如图,其上口半径r2D26m 其下口半径为0.5,污泥斗倾角取45度,则其高h1=2.5m。则污泥斗容积 V13h1(r1r1r2r2)184.7m>107.5m 2233(4)、浓缩池高度计算: H=h1+h2+h3=2.5+2+0.3=4.8m 排泥管、进泥管采用D=300mm,排上清液管采用三跟D=100mm铸铁管。浓缩池后设储泥罐一座,贮存来自除尘池的新污泥和浓缩池浓缩后的剩余活性污泥。贮存来自初沉池污泥333400m/d,来自浓缩池污泥161.24 m/d。总污泥量取600 m/d。设计污泥停留时间为16小时,池深取3m,超高0.3m,缓冲层高度0.3m。直径6.5m。 3.2.2 储泥灌与污泥脱水机房设计计算 采用带式压滤机将污泥脱水。选用两台 机房按照污泥流程分为前后两部分,前部分为投配池,用泵将絮凝剂加入污泥。后面部分选用7D—75型皮带运输机两台,带宽800毫米。采用带式压滤机将污泥脱水,设计选用两台带式压滤机,则每台处理污泥流量为: Q60024212.5m3/h 选用DY—2000型带式压滤机两台,工作参数如下: 滤带有效宽度2000毫米; 滤带运行速度0.4-4m/min 进料污泥含水率95-98%,滤饼含水率70-80% 产泥量50-500kg/h·㎡ 用电功率2.2kW 重量5.5吨 外形尺寸(厂×宽×高):4970×2725×1895 根据以上数据设计污泥脱水机房。