第一篇:电力电子运动控制
电力电子运动控制对应的岗位
·仿真应用工程师
·电气/电控工程师(步进电机控制网络)
机械工程师
·自动控制工程师/技术员(运动控制)
交直流调速运动控制的应用场合
运动控制是近些年的热门,精密定位、恒速控制、恒力矩控制等在各种装备中的应用越来越广泛,这对于控制器的要求也越来越高。
对于运动控制,大家比较常用的包括步进电机、伺服电机,除此之外伺服阀、数字液压等都属于同一类的控制方式。在这些运控系统中,我们又根据控制对象的不同分为位置控制、速度控制、力矩控制三大类。其中步进电机只能应用于位置控制,而伺服则可以应用于这三类中的任一种控制方式。
在运动控制系统中我们一般可以使用专用的运动控制器或者PLC来实现运动控制功能,一般来说专用的运动控制器如数控系统等会更为专业功能更强,对于插补、G指令的支持会更好。
比方说高档的数控系统可能会支持以下的功能:用户用CAD画完图后转换成G代码下载给控制器,控制器就可以执行对应的G代码完成整个控制过程。
而PLC相对而言是一个更为通用的控制平台,一般通过功能块来实现运动控制功能,V80增强系列(/S)对于两轴的位置控制有很强的支撑,可以满足绝大多数运动控制要求的环境,V80的速度控制和力矩控制一般使用E6MAD扩展模块来实现,在这里我们提到的运动控制是CPU模块本身的位置控制功能。
位置控制基础
在装备控制中有相当多的场合需要用到位置定位控制,如各种机床、收卷排线、纸张电缆管材的定长裁剪、包装、印刷等。位置控制的实现,通常是通过步进电机和伺服电机来达到的,下面我们统一以步进电机来描述。
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
PLC正是利用步进电机的这种特性来实现位置控制功能的,PLC与步进电机之间的接口为脉冲接口,我们称之为PTO。
液压挖掘机工作装置的运动控制
近几年来,国内挖掘机拥有量逐渐增大,以年均50%以上的速度快速增长,2005年我国的挖掘机产量突破4万台,预计今后5-10年,我国将成为世界上最大的挖掘机市场和产地。但在挖掘机施工过程中,存在的问题也是不容忽视的:(1)操作挖掘机作业的劳动强度大;(2)工作环境恶劣,有些环境甚至人类不便直接进入;(3)操作者必须进行长时间的培训才能完成高质量的作业。因此提高挖掘机的机电一体化程度,进而实现挖掘机的自动控制,无疑是解决上述问题最理想的方案。值得庆幸的是,相关科学和技术的发展为挖掘机的机电一体化乃至自动化展现了广阔的前景。近10年来,高新技术不断引入,特别是现代电子技术、计算机技术、自动控制技术和传感器技术的快速发展,使挖掘机在控制效果、作业精度、人机工程等方面具备了非常大的提高空间;实现挖掘机局部操作控制的自动化甚至整机的完全自动化、智能化已成为可能,同时实现挖掘机的自动化也是进一步提高挖掘机作业能力和效率的需要。因此,国内外的挖掘机制造商及有关科研院所竞相投入大量资金、人力和物力,进行挖掘机高新技术的研究和开发,尤其是在挖掘机工作装置的运动运动控制上,该项研究作为挖掘机自动化控制的基础性研究,已逐渐成为各国研究的焦点之一。同时,液压挖掘机工作装置系统属于一种典型的工程机械复杂机电液系统,其机械结构参数的多变性,液压系统的高度非线性,以及整个系统存在大量不确定量(不确定参数及不确定的非线性模型),都使得液压挖掘机工作装置的运动控制成为一项比较困难的工作。
变频调速技术的节能原理与负载关系
据统计,全国每年的发电量有一半消耗在电机上,其中绝大部份的电机为结构简单、方便实用、维修量很少的鼠笼式电机,例啤酒厂各种泵的电机、制冷压缩机电机、罐装线上传送带电机等,由于技术上的原因,在二十世纪八十年代前对较大功率的鼠笼式电机(几个KW以上)进行调速控制一直是人们梦想的事,在需要进行调速变换的场合往往采用直流电机或绕线式异步电机,对环境要求较高,并不适用于啤酒厂这种潮湿场所。最近二十年来,随着电力电子器件的发展与自动控制理论的进步,采用变频调速技术的通用型变频调速装置(VVVF)价格大幅下降,在大部分的工厂用变频调速装置对鼠笼式电机进行调速控制已成为现实。运动控制器已经从以单片机或微处理器作为核心的运动控制器和以专用芯片(ASIC)作为核心处理器的运动控制器,发展到了基于PC总线的以DSP和FPGA作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的先进运动控制技术。基于网络的开放式结构和嵌入式结构的通用运动控制器逐步成为自动化控制领域里的主导产品之一。高速、高精度始终是运动控制技术追求的目标。充分利用DSP的计算能力,进行复杂的运动规划、高速实时多轴插补、误差补偿和更复杂的运动学、动力学计算,使得运动控制精度更高、速度更快、运动更加平稳;充分利用DSP和FPGA技术,使系统的结构更加开放,根据用户的应用要求进行客制化的重组,设计出个性化的运动控制器将成为市场应用的两大方向。
通用运动控制技术的发展现状
运动控制起源于早期的伺服控制(Servomechanism)。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控(CNC)技术、机器人技术(Robotics)和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行(Stand-alone)的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC 方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。通用运动控制器的发展成为市场的必然需求。
点位运动控制
这种运动控制的特点是仅对终点位置有要求,与运动的中间过程即运动轨迹无关。相应的运动控制器要求具有快速的定位速度,在运动的加速段和减速段,采用不同的加减速控制策略。在加速运动时,为了使系统能够快速加速到设定速度,往往提高系统增益和加大加速度,在减速的末段采用S 曲线减速的控制策略。为了防止系统到位后震动,规划到位后,又会适当减小系统的增益。所以,点位运动控制器往往具有在线可变控制参数和可变加减速曲线的能力。
·连续轨迹运动控制
又称为轮廓控制,主要应用在传统的数控系统、切割系统的运动轮廓控制。相应的运动控制器要解决的问题是如何使系统在高速运动的情况下,既要保证系统加工的轮廓精度,还要保证刀具沿轮廓运动时的切向速度的恒定。对小线段加工时,有多段程序预处理功能。
·同步运动控制
是指多个轴之间的运动协调控制,可以是多个轴在运动全程中进行同步,也可以是在运动过程中的局部有速度同步,主要应用在需要有电子齿轮箱和电子凸轮功能的系统控制中。工业上有印染、印刷、造纸、轧钢、同步剪切等行业。相应的运动控制器的控制算法常采用自适应前馈控制,通过自动调节控制量的幅值和相位,来保证在输入端加一个与干扰幅值相等、相位相反的控制作用,以抑制周期干扰,保证系统的同步控制。
固高科技公司从开发应用的角度把其产品相应地分成三类,它们是点位运动控制器,连续轨迹运动控制器和同步运动控制器。从目前国内市场的应用情况反馈来看,按照不同的运动特点和行业应用进行产品开发和市场推广,具有一定的优势。
固高科技公司的通用运动控制器产品采用以DSP为核心,结合FPGA现场逻辑可编程器件的灵活性完成运动控制的硬件架构。运动控制过程中,由DSP实现运动规划,多轴插补、伺服控制滤波等数据运算和实时控制管理。FPGA逻辑可编程器件和其他相关器件组成伺服控制和位置反馈硬件接口。为了满足市场需求,使运动控制器具有真正面向对象的开放式控制结构和系统重构能力,固高科技公司的GT系列产品考虑了用户可以将自己设计的控制算法加载到运动控制器的内存中,而无需改变控制系统的结构设计就可以重新构造一个特殊用途的运动控制器。
通用控制器
实际上是形成运动的速度和位置的基准量。合适的基准量不但可以改善轨迹的精度,而且其影响作用还可以降低对传动系统以及机械传递元件的要求。通用运动控制器通常都提供基于对冲击(Jerk)、加速度和速度等这些可影响动态轨迹精度的量值加以限制的运动规划方法,用户可以直接调用相应的函数。对于加速度进行限制的运动规划产生梯形速度曲线;对于冲击进行限制的运动规划产生S 形速度曲线。一般说来,对于数控机床而言,采用加速度和速度基准量限制的运动规划方法,就足已获得一种优良的动态特性。对于高加速度、小行程运动的快速定位系统如PCB钻床、SMT 机,其定位时间和超调量都有严格的要求,往往需要高阶导数连续的运动规划方法。
·多轴插补、连续插补功能
通用运动控制器提供的多轴插补功能在数控机械行业获得了广泛的应用。近年来,由于雕刻机市场,特别是模具雕刻机市场的快速发展,推动了运动控制器的连续插补功能的发展。在模具雕刻中存在大量的短小线段加工,要求段间加工速度波动尽可能小,速度的变化的拐点要平滑过渡,这样要求运动控制器由速度前瞻(Look ahead)和连续插补的功能。固高科技公司推出了专门应用于小线段加工工艺的连续插补型运动控制器,该控制器在模具雕刻、激光雕刻、平面切割等领域获得了良好的应用。
·电子齿轮与电子凸轮功能
不但可以大大地简化机械设计,而且可以实现许多机械齿轮与凸轮难以实现的功能。电子齿轮可以实现多个运动轴按设定的齿轮比同步运动,这使得运动控制器在定长剪切(fixed-length cutting)和无轴传动的套色印刷方面有很好的应用。另外,电子齿轮功能还可以实现一个运动轴以设定的齿轮比跟随一个函数,而这个函数由其他的几个运动轴的运动决定; 一个轴也可以以设定的比例跟随其他两个轴的合成速度。如工业缝纫机和绗缝机的应用中,Z轴(缝线轴)可以跟随XY 轴(移动轴)的合成速度,从而使缝针脚距均匀。电子凸轮功能可以通过编程改变凸轮形状,无需修磨机械凸轮,极大地简化了加工工艺。这个功能使运动控制器在机械凸轮的淬火加工、异型玻璃切割和全电机驱动弹簧机等领域有良好的应用。
·比较输出功能
是指在运动过程中,位置到达设定的坐标点时,运动控制器输出一个或多个开关量,而运动过程不受影响。如在AOI的飞行检测(Flying inspection)中,运动控制器的比较输出功能使系统运行到设定的位置即启动CCD快速摄像,而运动并不受影响,这样极大地提高了效率,改善了图像质量。另外,在激光雕刻应用中,固高科技公司的通用运动控制器的这项功能也获得了很好的应用。
·探针信号锁存功能
可以锁存探针信号产生的时刻,各运动轴的位置,其精度只与硬件电路相关,不受软件和系统运动惯性的影响,在CMM测量行业有良好的应用。
另外,越来越多的OEM厂商希望将他们自己丰富的行业应用经验集成到运动控制中去,针对不同的应用场合和控制对象,个性化设计运动控制器的功能。固高科技公司已经开发了通用运动控制器应用开发平台,使通用运动控制器具有真正面向对象的开放式控制结构和系统重构能力,用户可以将自己设计的控制算法加载到运动控制器的内存中,而无需改变控制系统的结构设计就可以重新构造一个特殊用途的专用运动控制器。
基于计算机标准总线的运动控制器的优缺点
今后基于计算机标准总线的运动控制器仍然是市场的主流,但是,基于网络的嵌入式运动控制器会有较大的发展。基于计算机标准总线的通用运动控制器主要是板卡结构,采用的总线大都为ISA、PCI。由于它们的应用依附于通用PC计算机平台,从工业控制的角度分析,这种运动控制器的优缺点如下。
优点:
·硬件组成简单, 把运动控制器插入PC总线,连接信号线就可组成系统; ·可以使用PC机已经具有的丰富软件进行开发;
·运动控制软件的代码通用性和可移植性较好; ·可以进行开发工作的工程人员较多,不需要太多培训工作,就可以进行开发。
缺点:
·采用板卡结构的运动控制器采用金手指连接,单边固定,在多数环境较差的工业现场(振动,粉尘,油污严重),不适宜长期工作;
·PC资源浪费,由于PC的捆绑方式销售,用户实际上仅使用少部分PC资源,未使用的PC资源不但造成闲置和浪费,还带来维护上的麻烦;
·整体可靠性难以保证,由于PC的选择可以是工控机,也可以是商用机。系统集成后,可靠性差 异很大。并不是由运动控制器能保证的;
·难以突出行业特点, 不同行业、不同设备其控制面板均有不同的特色和个性。
嵌入式PC的运动控制器能够克服以上缺点。这种产品会有较好的市场前景。由于SOM(system on module)和SOC(system on chip)技术的快速发展,嵌入式PC运动控制器获得了良好的发展。嵌入式运动控制器产品可以很方便地将在PC上开发的应用系统,不加任何改动就可以很方便地移植过来。作为用户来讲,他们仅仅开发跟其具体项目有关、相对独立的人机界面就可以了。由于嵌入式PC的运动控制平台具有标准PC的接口功能,用户不需要再购买工业PC就能很方便的组成他们自己的系统。这种嵌入式运动控制器既提高了整个系统的可靠性,有时系统更加简洁和高度集成化。
随着工业现场网络总线技术的发展,基于网络的运动控制器获得了极大的发展,并已经开始应用于多轴同步控制中。越来越多的传统的以机械轴同步的系统开始采用网络运动控制器控制的电机轴控制,这样可以减少系统地维护和增加系统的柔性。
由于我国的特殊市场需求,一些其它的专用运动控制系统也会越来越多。例如图象伺服控制的专用运动控制器,力伺服的专用运动控制器等。根据用户的应用要求进行客制化的重构,设计出个性化的运动控制器将成为市场应用的一大方向。
一个典型的运动控制系统主要由运动部件、传动机构、执行机构、驱动器和运动控制器构成,整个系统的运动指令有运动控制器给出,因此运动控制器是整个运动控制系统的灵魂。用户必需使用通用运动控制器提供的标准功能进行二次开发,根据自己的应用系统的工艺条件,应用运动控制器的相关功能,开发出集成了自己的工艺特点和行业经验的应用系统。同时,用户还需要了解构成运动控制系统的其他部件,必须保证机械系统的完备,才能集成出高质量的运动控制系统。从我国的经济发展的情况来看,通用运动控制器的应用和市场仅仅是刚刚启动。与美国和欧洲发达国家相比,我国在运动控制器技术开发上政府的投入很少,在该领域没有形成统一的产品标准。高等院校的教育还没有跟上,没有培养出一大批能够开发和应用运动控制器的人才。在市场推广过程中碰到的最大困难就是国内的系统集成商和设备制造商缺乏应用工程师。使得运动控制器的应用工作受阻,售后技术支持难度加大。因此,快
速培养一大批运动控制器的开发应用人才是加快新的技术革命和新的产业革命的关键。
第二篇:电力电子系统在控制技术的运用
电力电子系统在控制技术的运用
摘要:现阶段,电力电子系统逐渐被应用到电气控制领域,使电气控制水平得到飞速发展。本文对电力电子技术本身的发展情况进行简单分析,提出电力电子系统在控制技术中的应用方式和应用建议,以期为我国相关领域的发展提供有力参考。
关键词:电力电子系统;控制技术;应用策略
电力电子技术作为现代科技高速发展下的产物,推动着电力系统的发展,将现代化的电子技术与电力行业紧密结合,对现代电力行业当中的新技术的应用和开发产生直接影响,更与人民群众的日常生活、社会的和谐稳定息息相关。
一、电力电子技术发展情况分析
(一)电力电子技术对电气控制技术的重要价值。现阶段,电力电子技术在电力系统中的应用范围不断扩大、应用水平也在逐渐提升,电力转化与可控系统当中的电子构件,能够有效提升电力系统工作质量与工作效率。同时,电力电子技术对于整个电器控制领域而言,也具有着直观决定的重要地位。电工原理、现代电子学以及智能化、自动化的控制技术,相互依托、相互作用的背景下,共同构成了先进的电力电子系统。这种系统能够有效控制各种各样的电气设施,精准检验电气系统当中海量的数据信息,在发生问题或故障的过程中,实现自动化的实时报警。并且,将电力电子技术应用于电气控制当中,还能达到对设备运行状态的动态化监督管理,大幅提升电气控制的整体质量。(二)电力电子技术发展情况分析。随着人类科技水平的不断提升,电力电子技术逐渐走进现代人视野,也成为相关学术领域重要研究课题。电力电子技术自诞生以来,大致经历了两个发展时期,即电子构件制造时期和将电力电子技术应用于电路当中的时期。在技术水平的不断推动下,电子构件制造与电路当中的有效应用均得以快速发展。在电子构件方面,具体分为三个主要阶段,即不可控、半可控以及全可控。现阶段,电力电子技术在电气控制中的应用不断深化,逐渐实现全自动,甚至智能化的控制。
二、电力电子系统在控制技术中的应用策略
电力电子技术在控制技术当中的使用,表现在以下几个主要方面,包括在电路保护中的应用、在开关控制中的应用等等。为高质量提升电力系统的稳定性和可靠性,我们可以充分利用电力电子系统对电路实施精准控制,也可以利用电力电子系统掌握电气设备各个构件的运转状态。(一)开关控制设备的运用。在电力系统复杂程度、功能性不断提升的作用下,其电磁兼容水平需求也在随之增加,对电力设备质量提出更高要求。传统模式下的电气系统,为达到节省空间的目的,普遍选择常规开关对变压器实控制。虽然这种方式能够有效提升空间利用率,然而其本身也会对电气系统造成一定程度的电磁干扰,不利于设备的正常使用。为解决电磁干扰问题,降低噪声现象,可以将电力电子系统为核心的软开关应用其中,在提升电气设备可靠性与稳定性的同时,进一步实现电气控制的科学化发展。(二)电路保护设备的应用。电路保护设备作为电气系统中的重要组成部分,对整个电气系统的正常运行产生直接影响。当电力电子电路出现问题期间,电路保护设备能够对其产生有效的保护作用,及时作出与之相应的保护措施。现阶段,常见的电路保护设备包括高效熔断器、继电器等等。然而,随着电子领域技术水平的不断提升,电力电子构件逐渐向更加轻便、小巧的方向发展,同时其功率也变得越来越大。因此,传统电路保护设备已经难以满足当下日益提升的要求。将电力电子系统应用于电路保护设备当中,有效结合电路检验设备相关信息,在检验到电路电流期间,能够快速完断电保护,大幅提升保护工作的质量和及时性。(三)静态无功设备的应用。随着我国经济社会的不断发展,人民群众的用电需求不断增加,对电网功率要求提出巨大挑战。主要表现在电网当中功率变化频率的提高,对电网可靠性、稳定性产生一定程度的负面影响,使电路当中的低频振荡难以控制。然而,将以电力电子技术为核心的静态无功补偿设备应用其中,能够大幅增加电力系统负荷水平,减少功率损耗,实现电路电压有效控制,全面提升电力系统的工作质量。(四)高压直流送电的应用。传统电厂送电类型普遍以交流电为主,然而在交流电的送电过程当中,会出现较为严重的电能消耗,与国家可持续发展战略、生态发展战略不符,并且不利于有效控制的实现。鉴于此,现代电厂通过高水平的直流送电技术,将交流电有效转化为直流电,实现超远程、高电压送电。然后,直流电在经过超远距离输送后,抵达变电站。通过变电站中相关设备的处理,再使直流电转化为交流电,为人民群众的用电提供坚实保障。
三、结语
综上所述,电力电子系统作为处理电力变换的新兴科学技术,能够有效实现电力功率的转化,其应用范围、应用领域不断扩大,成为影响这个电气行业发展的关键内容。虽然,现阶段电力电子系统的应用水平得到良好发展,其应用成果极为突出,但是其对其的应用仍然存在巨大研究空间。相关领域需要建立科学发展观,在完善现有应用方式的基础上,对其应用范围、应用质量进行不断探索。
参考文献
[1]刘进军.电能系统未来发展趋势及其对电力电子相关技术的挑战[j].南方电网技术,2016(3):78-81.[2]饶宏为,李凌飞,许树楷.2014年国际大电网会议学术动态系列报道高压直流输电和电力电子技术[j].电力系统自动化,2015,39(6):1-3.[3]汤广福,贺之渊,曹均正等.2012年国际大电网会议系列报道——高压直流输电和电力电子技术最新进展[j].电力系统自动化,2012(24):5-9.
第三篇:有关电力电子专业
国内电气工程学科,最强的四个大学: 清华大学,华中科技大学,西安交通大学,浙江大学.但说电力电子与电力传动学科,其实是两个学科的组合:工业电子学和电力拖动自动化两个老学科的组合.工业电子学 以浙江大学基础最扎实(是81年唯一的首批博士点)。其他的项清华大学(蔡宣三,等),华中科技大学(陈坚,贾正春等),西安交通大学(王兆安,黄俊等),南航(严仰光等)都实力非常雄厚.这其中被大部分学子认识的可能是西交大,因为西交有本《电力电子技术》本科生教材应用比较广泛。华中科技大学陈坚《电力电子学》(高教版)应用面也挺广,不过有点厚,相对难不少,科研上主要是军工项目多。南航的开关电源有特色。
电力拖动自动化,以华中科技大学基础最扎实(是81年唯一的首批博士点)。其他的项清华大学,浙江大学,中国矿业大学,西南理工大学等在拖动领域都有特色和实力。
把工业电子和拖动自动化合在一起,目前的电力电子与电力传动学科 的实力可大致分档如下:
第一档:浙江大学,华中科技大学,清华大学
第二档:西安交通大学,南京航空航天大学
第三挡:合肥工业大学,中国矿业大学,华南理工大学,西南交通大学等。合工大和矿大电力电子有二级国家重点学科。
电力电子与电力传动专业
排名学校名称等级排名学校名称等级排名学校名称等级
1清华大学A+7哈尔滨工业大学A13中国矿业大学A2西安交通大学A+8华北电力大学A14山东大学A
3华中科技大学A+9西北工业大学A15合肥工业大学A4浙江大学A+10上海交通大学A16天津大学A5南京航空航天大学A11西安理工大学A17北京交通大学 A6华南理工大学A12西南交通大学A
B+ 等(26 个): 武汉大学、上海海事大学、河北工业大学、大连交通大学、武汉理工大学、江苏大学、燕山大学、东南大学、湖南大学、南京理工大学、沈阳工业大学、上海大学、东北大学、辽宁工程技术大学、河海大学、江南大学、西华大学、大连海事大学、北京航空航天大学、兰州交通大学、西安电子科技大学、湖北工业大学、同济大学、中南大学、电子科技大学、东华大学
B 等(25 个): 哈尔滨理工大学、大庆石油学院、中国农业大学、北方工业大学、江苏科技大学、长春工业大学、东北电力大学、辽宁工学院、郑州大学、安徽理工大学、兰州理工大学、安徽工业大学、黑龙江科技学院、西安科技大学、南昌大学、湘潭大学、石家庄铁道学院、上海理工大学、贵州大学、哈尔滨工程大学、北华大学、广东工业大学、西安工程大学、广西大学、太原理工大学
第四篇:电力电子说课稿
黑龙江职业学院课程说案体例及说明
根据学院两次说课比赛的实际情况,针对2013年人才培养工作评估要求,现就课程说案的编写提出以下说明,供各单位撰写说案时参考:
1.说案重点要阐述授课者的教学思想、教学设计和理念依据。说案与教案不同,教案(讲稿)是教师对备课的复杂思维过程的总结,是教师进行教学的操作性方案,它主要设定教师在教学中的具体内容和行业;说案(说课稿)重要的是体现授课者的教学思想、教学设计和理念依据。其思维逻辑是:为什么开这门课程—本课稿讲授哪些内容—怎样开好本门课程—用什么保障本门课的教学效果—怎样考核与评价教学效果。
2.说案要保证每个二级学院(部)体例的一致性。学院开展了两次说课大赛,要求各二级学院(部)开展初赛,因此,各二级学院(部)对说案要做详细且具体的规定,要统一体例和格式,以此保证比赛的公共性,形成说案的标准范式。
3.说案的内容要完整。说案的内容应该包括课程设置、内容设计、教法设计、学法指导、教学过程、评价方式、课程特色等,具体参考《黑龙江职业学院首届教师说课比赛方案》。各二级院(部)可根据学院的要求做出具体的规定。
4.说案要有课程的基本信息和说课人的基本情况,应包括课程代码、课程名称、课程性质、课程类型、授课专业、授课年级,说课人的职称和学历等。具体说明参照人才培养工作状态数据采集说明。
5.说案的格式要求:一级标题为小三号黑体,二级标题为小三号楷体加粗,三级标题为小三号仿宋加粗,正文为小三号仿宋; 行距为固定值28;页面为A4 页边距为上3.0cm、下2.5cm、左3.0cm、右2.5cm。
附件:黑龙江职业学院说案参考体例
黑龙江职业学院
《电力电子技术》课程说案
二级院(部): 电气工程分院 教 学 团 队: 机电一体化 说 课 人: 鲍 敏
2013年5月
《电力电子技术》课程说案
040312 课程代码: 课程名称:
课程性质: 专业基础课 课程类型: 授课专业: 电气自动化及相关专业 授课年级: 说课人: 鲍敏 职称/学历:
电力电子技术
必修课 二年级 讲师/硕士
一、课程设置
电力电子技术课程是电气自动化及相关专业开设的。学生在入学后第一学年以基础课为主,包括电路分析、电子技术基础等,电力电子技术在第三学期与电机与拖动、工厂电气控制等课程一同开设,并为后续专业课自动控制系统、生产过程控制系统安装与调试打下坚实基础。1.课程性质:
电气自动化及相关专业的一门专业基础课、必修课。本课程面向电气产品安装、运行及维护职业岗位能力的培养。是电气自动化双证体系主干课。2.课程作用:
通过本门课程的学习使学生从理论上掌握各种电力电子装置的工作原理;从实践上熟悉电力电子装置的组成、应用。使学生能对简单电力控制电路进行设计、制作、调试和故障维修。并培养学生的分析问题和解决问题的能力。3.教学目标:
知识目标:掌握各类变流装置的电路结构、基本原理、控制方法、波形分析及设计计算,掌握电气绘图、识图要领。掌握电路焊接工艺。
能力目标:具备电力电子器件测试、选型能力;能正确使用示波器、万用表等仪器;能制定项目方案,具备设计、安装、调试和检修电气设备能力。
素质目标:掌握收集、分析、整理参考资料的技能;培养良好的团队合作精神,养成及时完成阶段性工作任务的习惯
4.课程设计的理念与思路:
课改小组通过整合优化多年本课程教育教学改革的研究成果,借鉴国内外先进教育理念,将CDIO工程教育理念与校企合作、国家维修电工职业标准深度融合,开发以职业能力培养为重点的CDIO教学模式。
二、内容设计
1.教学内容选取依据
教学内容的选取基于大量针对岗位的调研与分析,参考行业企业最前沿的新技术,选择生活中或行业企业典型的真实案例,并且这些案例适用于教学,能转化成学习性的工作任务。选取五大教学情境,以这些典型真实的教学情境为载体,构建教学做一体的电力电子技术课程。
2.教学内容组织与安排
众所周知,电流分为交流电和直流电两种形式。电力电子技术就是研究交-直电流的变换,根据电力变换的过程,将本课程教学内容整合设计为五大教学情境,包括我们生活中经常见到用到的可调亮度的调光台灯的设计制作与调试,可使电风扇实现无级变速的调速器的设计制作与调试,已经上市出售的新产品—可无线充电手机的微距无线充电器的设计制作与调试,还有直流电机调速系统的设计制作与调试,该系统在生产中可起重重物,驱动水泵,控制数控机床的加工动作等。变频器的用处更是广泛,包括变频空调、变频微波炉、变频电梯等。这些教学情境可涵盖本课程全部教学内容。再围绕这些主情境的完成开发出设计、安装、调试等子情境。3.课程内容的表现形式
课程教学资源丰富,包括:教材(主编,清华大学出版社出版)、课件(交互式)、教案、实验指导书(与实训设备配套,可完成本课程全部验证性实验)、试题库、习题库等。
交互式课件:交互课件可吸引学生注意力,提高兴趣。本课程教学重点、难点:电路计算、波形分析、比较。交互课件可引导学生观察、思考。解决重点、难点教学困难。
三、教法设计
本课程教学采用案例教学、讲练结合、多层次实训、情境教学等多种教学方法和手段。本课程在理实一体化教室授课,教室前面是桌椅黑板,后面是实训设备。理论学习和实践验证可同时进行,讲练结合。
实践分多个层次实行,学生先进行验证性实验,通过实验可直接观察到波形,加深印象。实验后学生要进行汇报,考察学生理论联系实际情况。最后,利用专业软件进行仿真实训,借助虚拟实训手段让学生更扎实的掌握知识的同时又多掌握一项技能。
情境教学:为学生创造真实的工作情境,使学生在教师的指引下模拟完成一项完整任务。学生全面参与信息收集、计划制定、做出决策、实施计划、反馈控制、结果评价等教学全过程。教学过程与工作过程融合,使学生通过自己的实践和行动提高职业能力。
四、学法指导 1.学情:
生源分数低、学习主动性差,学习过电路分析、电子技术等前导课程,有一定基础。本课程电路原理复杂、波形晦涩难懂,公式、计算较多,给学习带来困难。2.学法
学生为主 教师为辅,启发引导 咨询服务,性格不同 各有所长,因材施教 合理分工
五、教学过程
在CDIO教学模式下,每个教学情境都采用构思、设计、实施和运作4个阶段来实现。
1.构思阶段——提前下发任务书,学生要明确任务,进行任务准备。即要明白自己要做什么,并考虑怎样做。教师可引导学生查找资料、自主学习。
2.设计阶段——学生以小组为单位,讨论设计方案,制定实施计划。3.实施阶段——根据设计方案,学生自己动手完成项目。即进行电路焊制和调试。
4.运作阶段——即根据任务要求,对学生完成情况进行评价和反馈。
课改成果:无线充电器、电风扇无极调速器、直流电机拖动系统、调光灯。
六、评价方式
1.学习效果考核:
项目考核单+实验考核单(考核标准)2.教学评价:
项目考核+期末考试+平时表现=100%(多层次考核,3方面按一定权重)
教学效果评价方式包括:学生评教(学院每学期学生填评教单)+教师评教(院长、教研室主任、教师相互听课)+督导评教(督导听课打分)+社会、企业评价(参加大赛成绩优异、用人企业反馈)
七、课程特色
本课程突出特色为以下几点:
1.创新教学理念,采用CDIO工程教学模式 2.教学做一体化教学
3.学历证和国家电工职业资格证书双证融通
4.交互式课件、专业仿真软件等多种现代化教学手段广泛应用 5.多元化多层次考核评价机制,对学习效果、教学效果全面考察,评价更科学。
第五篇:电力电子实验报告
实验
一、直流斩波电路的性能研究
一、实验目的
1.熟悉降压斩波电路和升压斩波电路的工作原理。2.掌握这两种基本轿波电路的工作状态及波形情况。
二、实验项目
降压型(Buck)斩波电路性能研究。
三、实验原理 3.1 实验原理图
降压斩波电路
四、实验步骤及方法
1.熟悉各个模块的功能,检査控制电路和主电路的电源开关是否为关闭状态。2.按照实验原理图进行接线。
3.对 PWM 控制模块依次进行如下设置: a 调节“幅值调节”旋钮,向左旋转至最小。b“控制方式”开关拨为开环。c“载波频率”设置为 20K。d“输出模式”开关拨为模式 1。
4.打开底柜 24V 和 15V 电源,将 PWM 控制模块的开关拨为 ON,用示波器分别观察载波(三角波)和 PWM 信号的波形,记录其波形、频率和幅值。调节“幅 值调节”旋钮,观察 PWM 信号的变化情况。
5.斩波电路的输入直流电压 Ui 由底柜的可调直流源给出,观察 Ui 波形,记录其平均值。6.接通主电路和控制电路的电源。调节“幅值调节”旋钮,改变 PWM 波的占空 比,观测输出电压 U o 波形。分别记录几组 PWM 信号占空比α, U i、U o 的平均值。
五、实验结果
1.Vi=50V时,D=19.04%,输出电压波形如下图所示,由图知,Vo=8.8V,Vo理论值=Vi*D=9.52V。
2.Vi=40V时,D=66.94%,输出电压波形如下图所示,由图知,Vo=20V,Vo理论值=Vi*D=26.776V。
六、结果分析
将降压斩波电路中实际输出电压与理论分析结果逬行比较, 讨论产生差异的原因。
答:实际上斩波电路会由于输出端使用电容滤波,而造成输出电压与理论值不同。
实验二、三相交直交变频电路的性能研究
一、实验目的
1.熟悉三相交直交变頻电路的组成。
2.熟悉三相桥式 PWM 逆变电路中各元器件的作用、工作原理。
3.对三相交直交变频电路在电阻负载、电阻电感负载时的工怍情况及其波 形作全面分析,并研究工作频率对电路工作波形的影响。
二、实验电路
原理图
三、实验步骤
1.按图中电路接线,接线完成后进行检查。
2.先打开控制电路电源,暂不接通主电路的交流电源。
3.观察正弦波发生电路输出的正弦信号~U,~V,~W 波形,测试其频率可调范围。
4.观察载波(三角波)的波形,测出其频率,并观察正弦波与载波的对应关系。5.观察六路PWM信号(SPWM控制模块中的PWM1~PWM6),并分别观测施加于V1~V6的栅极与发射极间的驱动信号,判断驱动信号是否正常。在主电路不接通电源的情况下,对比 V1 和 V2 的驱动信号,观测同一相上、下两管驱动信号之间的互锁延迟时间。
6.接通主电路的交流电源。观察主电路的中整流后的直流电压 Ud 的波形,并测量其平均值。
四、实验结果
观察载波、调制波、中间直流Ud、输出电压Uan、Uab、ia的波形。
中间直流Ud
输出侧电压Vab
输出侧电压Van
载波
电流ia
五、结果分析
1.分析说明实验电路中的 PWM 控制是采用单极性方式还是双极性方式。答:实验电路中的PWM控制是采用双极性方式。
2.分析说明实验电路中的 PWM 控制是采用同歩调制还是异步调制。答:实验电路中的PWM控制是采用同步调制。
3.为使输出波形尽可能地接近正弦波,可以采取什么措施?
答:增大逆变器主电路的功率开关器件在其输出电压半周内的开关次数N。
实验三、三相全控桥整流电路分析
一、实验目的
1.熟悉三相全控桥整流电路组成。
2.熟悉电路中器件的工作原理及作用,并研究输出波形。
二、实验电路
三、实验步骤
在不同的导通角下,记录输出电压、晶闸管输出电压和电流的波形。
四、实验结果
1.00时导通,输出波形下图所示。
2.600时导通,输出波形下图所示。
3.900时导通,输出波形下图所示。