第一篇:新建 七年级数学
数学课改心得体会 柴家中学 姚剑峰 ??? 3月24日,中心校在我校组织了课改课观课议课活动,通过这次活动使我们更清楚地认识到课改课、小组活动的重要性和必要性。下面就来谈谈自己的一些看法: 随着课程改革的推进和深化,我们广大数学教师与其他学科教师一样,在课程改革的浪潮中,一路走来,接受着诸多的冲击与洗礼。在此期间,我们有过成功的体验,也有颇多问题的困惑。几年来,教师的知识观、质量观发生了巨大的变化,由原来只注重知识的传授转到注重学生态度、情感、人格、能力的发展,由过分追求学科的严密性转到注重数学教育的育人性;由注重学生学习的结果转到注重学生实践探索和交流的主动学习。互动、和谐、教学相长的师生关系逐步形成,学生已基本形成探索性学习方式,养成独立思考,勇于探索的精神。学生在学习的过程中,不但学会了独立思考和自主探索,懂得了如何与他人合作、交流,还学会了评价、质疑与反思;应用意识和实践能力得到了培养,创造力得到了充分的发挥。与此同时,新课程改革下的数学课堂也存在一些问题。所有的这些都值得我们去深刻的反思,下面就具体谈谈课改几年来的收获和困惑。
一、课改中的收获
?
(一)教师素质整体提高
在课改过程中,教师自觉地进行新理念的学习,不仅理论水平有了显著提高,课堂教学中的理性思考逐渐增多,并能创造性地使用教材,真正体现用教科书教学生,而不是教教科书的理念。新课程的实验促进了教师的成长,为教师个性化教学提供发展的空间,提高了教师的素质,使我们从普通的教书匠成为研究者,设计者。?(二)课堂教学发生可喜变化
教师在课堂上放下了教师的尊严,以平等、民主、和蔼的态度引领学生开展学习,教室内从以往的“教”堂变成了“学”堂,教师在教学中以引导者、合作者,促进者的角色出现在学生面前。学生在教学过程中也普遍喜欢学习数学,善于提出问题,对问题有自己独特的想法,敢于发表自己的意见,这是课改前的学生远不及的。课改使学生开阔了思维,丰富了语言,课堂上再不是教师讲学生听的被动局面,取而代之的是师生互动、生生互动的情景,学生在教师引导下学得轻松,学得愉快,课堂真正成了孩子们的天地。课堂教学凸显。?
(三)促进学生全面发展
课改中的数学教师为课程实施所付出的一切,都是为了让学生能学习有价值的数学,获得必要的数学,在数学上得到尽可能充分的发展。几年的课改表明,孩子们身上发生了可喜的变化,我们的愿望逐步得到实现。学生们逐渐形成了乐学、爱学、兴趣浓厚、善于提问题,解决问题的习惯。并使学生感受到生活中处处有数学,以及学会与他人合作学习,获得成功体验。
二、问题与思考 ?
1、新教材注重解题策略的多样性与教学中个别学生知识掌握不扎实的矛盾。新教材信息的呈现形式多样且有可选择性,解决问题的策略多样性,强调思维的多层次、多角度、全面性,答案不唯一而有开放性。这在很大程度上激活了学生的思维,激发学生去寻找适合自己的学习方法。教师在教学实际中发现,思维能力强的学生,课堂学习中能掌握多种解决问题的方法,但对学困生可能是一种方法也没有掌握。久而久之两级分化的现象出现。?
2、新教材重视培养学生的估算能力和解题策略多样化,但对于纯计算题的练习相对少,以至产生学生算得慢,容易错,计算能力较薄弱的问题不可忽视。?
3、新教材有的内容编排较难,跨度大,超出孩子的认知规律。对于学生是难点,课时又少,难掌握。?
4、教学班规模大,有效的小组合作学习还存在许多商榷的问题。要给学生探索的时间和空间,但有限的45分钟时间若留给学生足够的合作与讨论的时间又与课时进度发生矛盾,如何把握给予“时间”的度?是我们值得商榷的问题。? ? 柴家中学 姚剑峰 ? ? ? 分享: 分享到新浪Qing 4 喜欢
阅读(2344)┊ 评论(0)┊ 收藏(1)┊转载(0)┊ 喜欢▼ ┊打印┊举报 已投稿到:排行榜 圈子 转载列表: * 转载
转载是分享博文的一种常用方式...前一篇:读书心得
后一篇:柴家中学2011年初三优生会上的讲话
评论 重要提示:警惕虚假中奖信息|[商讯]我有明星气势签名 [发评论] * 当第一个评论者吧!抢沙发>>
发评论 [商讯]爱心签名换梦想,天天派奖|[商讯]提高博客人气新方法
更多>> * * * * * * * * 登录名: 密码: 找回密码 注册 记住登录状态 昵???称:
分享到微博 ???评论并转载此博文
验证码: 请点击后输入验证码 收听验证码 匿名评论 发评论
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。
后一篇?>柴家中学2011年初三优生会上的讲话 ??
第二篇:七年级数学复习提纲
第二章 有理数 1.负数:像-5,-2,-237,-3.6这样的数,这是一种新数,叫做负数;正数:过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数.注意:0既不是正数,也不是负数.
2.正整数、零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.
.
3.数轴:规定了原点、正方向和单位长度的直线叫做数轴.
4.在数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于负数.
5.相反数:只有正负号不同的两个数称互为相反数;在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等;规定:0的相反数是0;我们通常把在一个数前面添上“-”号,表示这个数的相反数;在一个数前面添上“+”号,表示这个数本身.
6.绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值.记作|a|;
一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数; 任意有理数a,总有|a|≥0.
7.两个负数,绝对值大的反而小. 8.有理数的加法法则:
1)同号两数相加,取相同的正负号,并把绝对值相加;2)绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3)互为相反数的两个数相加得0;4)一个数同0相加,仍得这个数.注意
一个有理数由正负号和绝对值两部分组成,所以进行加法运算时,应注意确定和的正负号与绝对值.
9.加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a + b)+ c = a +(b + c).
10.有理数减法法则:减去一个数,等于加上这个数的相反数. 11.有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0. 12.乘法交换律: 两个数相乘,交换因数的位置,积不变.ab=ba.乘法结合律: 三个数相乘,先把前两个数相积乘,或者先把后两个数相乘,积不变.(ab)c=a(bc).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.
几个不等于0的数相乘,积的正负号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一个因数为0,积就为0. 13.倒数:乘积是1的两个数互为倒数;除以一个数等于乘上这个数的倒数.注意:0不能作除数.有理数的除法法则:
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
14.求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫作底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也可读作a的n次幂.正数的任何次幂都是正数;
负数的奇次幂是负数,负数的偶次幂是正数. 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.
16.有理数混合运算的运算顺序规定如下: 1)先算乘方,再算乘除,最后算加减; 2)同级运算,按照从左至右的顺序进行;
3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
17.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字. 18.小结
一、知识结构
二、概括
1.数轴是理解有理数概念与运算的重要工具,学习本章要善于结合数轴理解有理数的有关概念(如相反、绝对值),会利用数轴比较两个有理数的大小.2.在有理数的运算中,要特别注意符号问题,提高运算的正确性,还要善于灵活运用运算律简化运算.3.在实际运算中经常会遇到近似数,要注意按要求的精确度进行计算和保留结果.对较大的数用科学记数法表示既方便,又容易体现对有效数字的要求. 第三章 整式的加减
1.代数式:数和字母用运算符号连结所成的式子,称为代数式. 注意:1)代数式中出现的乘号,通常写作“•”或省略不写,如6×b常写作6•b或6b;2)数字与字母相乘时,数字写在字母前面,如6b一般不写作b6;3)除法运算写成分数形式;4)数与字母相乘,带分数要化假分数;5)括号与括号相乘可省略括号.
2.列代数式:把问题中与数量有关的词语用代数式表示出来,即列出代数式.
3.代数式的值:用数值代替代数式里的字母,按照代数式中的运算计算得出的结果,叫做代数式的值.
4.单项式:由数与字母的乘积组成的代数式叫做单项式;单独一个数或一个字母也是单项式.
单项式中的数字因数叫做这个单项式的系数.
一个单项式中,所有字母的指数的和叫做这个单项式的次数. 注意:1)当一个单项式的系数是1或-1时,“1”通常省略不写; 2)单项式的系数是带分数时,通常写成假分数.
5.多项式:几个单项式的和叫做多项式.在多项式中,项:每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.
注意:1)多项式的次数不是所有项的次数之和; 2)多项式的每一项都包括它前面的正负号. 6.单项式与多项式统称整式.
7.降幂排列:按某一字母的指数从大到小的顺序排列,叫做这个多项式按该字母的降幂排列.
升幂排列:按某一字母的指数从小到大的顺序排列,叫做这个多项式按该字母的升幂排列. 注意:1)重新排列多项式时,每一项一定要连同它的符号一起移动;
2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列. 8.同类项:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都 是同类项.
9.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.
10.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.
11.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.
12.整式加减的一般步骤是:先去括号,再合并同类项.
一、知识结构
二、概括
1.整式中,只含一项的是单项式,否则是多项式.分母中含有字母的代数式不是整式,当然也不是单项式或多项式.
2.单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数. 3.单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号.
4.去(添)括号时,要特别注意括号前面是“-”号的情形:去括号时,括号里各项都改变符号;添括号时,括到括号里的各项都改变符号. 第四章 图形的初步认识 1.1)柱体:圆柱,棱柱(三棱柱,四棱柱,…);2)锥体:圆锥,棱锥(三棱锥,四棱锥,…);3)球体.
多面体:围成立体图形的面是平的面,像这样的立体图形,又称为多面体.
2.视图:从三个不同的方向看一个物体,一般是从正面、上面和侧面,然后描绘三张所看到的图,即视图.
从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图(左视图,右视图).
3.表面展开图:多面体是由平面图形围成的立体图形,沿着多面体的棱将它剪开,可以把多面体的表面变成一个平面图形.
4.圆是由曲线围成的封闭图形.多边形是由线段围成的封闭图形. 一个n边形至少可以分割成n-2个三角形.
5.射线:线段向一方无限延伸所形成的图形叫做射线; 直线:把线段向两方无限延伸所形成的图形就是直线. 表示方法:点:用一个大写字母表示;
线段:用两个端点的大写字母表示;或用一个小写字母表示;
射线:用端点和射线上任意一点的两个大写字母表示;或用一个小写字母表示; 直线:用直线上任意两点的大写字母表示;或用一个小写字母表示. 公理1:两点之间,直段最短.此时线段的长度,就是这两点间的距离. 公理2:经过两点有一条直线,并且只有一条直线.
6.线段的中点:把一条险段分成两条相等线段的点,叫做这条线段的中点.
7.角:由两条有公共端点的射线组成的图形.可以看成是由一条射线绕着它的端点旋转而成的图形.角的顶点:射线的端点;角的始边:起始位置的射线;角的终边:终止位置的射线. 表示方法:(1)用两边和顶点的三个大写字母表示(顶点字母在中间);(2)用顶点的大写字母表示;(3)用阿拉伯数字表示;(4)用小写的希腊字母表示.
8.平角:绕着端点旋转到角的终边和始边成一直线所成的角; 周角:绕着端点旋转到终边和始边重合所成的角.
9.1周角=360°;1平角=180°;1°=60′;1′=60".
10.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
11.互余:两个角的和等于90°,就说这两个角互为余角,简称互余. 互补:两个角的和等于一平角(180°),就说这两个角互为补角,简称互补. 同角(等角)的余角相等;同角(等角)的补角相等.
两直线相交形成了∠
1、∠
2、∠3和∠4(如图1),我们把其中的∠1和∠3叫做对顶角,∠2和∠4也是对顶角.对顶角相等.
12.互相垂直:直线AB与直线CD相交,交点为O,当所构成的四个角中有一个为直角时,其他三个角也都成为直角,此时,直线AB、CD互相垂直,记作“AB⊥CD”,他们的交点O叫做垂足.
在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直.
若线段AB垂直于直线BC,垂足为B.线段AB叫做点A到直线BC的垂线段,它的长度就是点A到直线BC的距离.直线外一点与直线上各点连结而得到的所有线段中,垂线段最短. 13.同位角,内错角,同旁内角(见教材P164-165).
14.平行线:在同一平面内不相交的两条直线叫做平行线.
在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行. 经过已知直线外一点,有且只有一条直线与已知直线平行.
如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 15.平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.
垂直于同一条直线的两条直线互相平行. 16.平行线的性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补. 知识框图
第五章 数据的收集与表示
1.频数:表示每个对象出现的次数,频率:表示每个对象出现的次数与总次数的比值(或者百分比).
2.条形统计图是用宽度相同的条形的高低或长短来表示数据特征的统计图,它们可以直观地反映出数据的数量特征。如果有两个研究对象,常常把两个对象的响应数据并列表示在同一张条形统计图中.
扇形统计图是用圆的面积表示一组数据的整体,用圆中扇形面积与圆面积的比来表示各组成部分在总体中所占的百分比的统计图。扇形统计图可以直观地反映出各部分数量在总量中所占的份额.
折线统计图是用折线表示数量变化规律的统计图。如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化. 3.总结
一、知识结构
利用数据解决简单实际问题的过程如下: 初一数学科总复习第一章
有理数
一、知识要点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0 16、近似数(approximate number): 17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。拓展知识: 1、数集:把一些数放在一起,就组成一个数的集合,简称数集。(1)所有有理数组成的数集叫做有理数集;(2)所有的整数组成的数集叫做整数集。 2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。 3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。 4、比较两个有理数大小的方法有: (1)根据有理数在数轴上对应的点的位置直接比较; (2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;(3)做差法:a-b>0 ⇔a>b;(4)做商法:a/b>1,b>0 ⇔a>b.6 七年级数学教学计划 (2014-2015上学期) 七年级上册数学教学计划 一,指导思想 随着数学自身发生巨大的变化,数学在研究领域,研究方式和应用范围等方面得到了空前的拓展。对现代社会中大量纷繁、复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。 义务教育阶段的数学课程,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并在思维能力、情感态度与价值观等方面得到进步和发展。 二,教学目标 通过义务教育阶段七年级数学新课标的学习,学生将在以下几个方面得到发展: 1,获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。 2,初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。 3,理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。 4,逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。 三,学情分析 本学期我担任七年级139班数学教学工作。七年级学生的实践探究能力不是很好,还有待于提高与培养以及加强训练。同时本学期内还将加强训练学生的逻辑思维与逻辑推理能力,尤其是运用语言对几何问题进行推理论证,并培养学生从形象思维过渡到抽象思维等。其次,抓好学生课前预习,课堂上记笔记的习惯,让学生及时复习,总结前节课知识的好习惯,表扬和鼓励学生阅读与数学有关的课外读物,引导学生自主拓展和加深自己的知识的广度与深度;在学习方法上,一题多解,多题一解,从不同的角度看问题,从对称的角度思考问题,用不同的方法检验答案。 七年级学生常常因守小学算树术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。 四,教材分析 本学期的教学内容共计四章: 第一章:有理数: 1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量; 2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法; 3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题; 4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念。 第二章:整式的加减: 1.经历字母表示数的过程; 2.会进行整式加减的运算,并能说明其中的算理; 3.让学生在探索整式加减运算法则的活动中通过相互间的合作与交流,进一步挖掘学生合作交流的能力和数学表达能力; 4.在解决问题的过程中了解数学的价值,增强“用数学”的信心。 第三章:一元一次方程: 1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步; 2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法; 3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想; 5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。 第四章:图形认识初步: 1.通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系; 2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系.在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉; 3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段; 4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图); 5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形; 6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义; 7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。 五,提高科学教育质量的措施 1,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。 2,兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。 3,引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。 4,引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象 看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。 5,运用读新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念,将带来不同的教育效果。 6,培养学生良好的学习习惯,有助于学生进步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。 7,进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。 8,站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。 9,开展课题学习,把学生带入研究的学习中,拓展学生的知识面。 六,全学期教学进度安排 教学内容课时 1.1正数和负数2课时 1.2有理数4课时 1.1——1.2测试2课时 1.3有理数的加减法4课时 1.3测试2课时 1.4有理数的乘除法5课时 1.5有理数的乘方4课时 全章测试3课时 2.1整式2课时 2.2正式的加减4课时 2.1——2.2测试2课时 小结2课时 全章测试2课时 期中复习7课时 3.1.1一元一次方程2课时 3.1.2等式的性质2课时 3.1.1——3.1.2测试2课时 3.2解一元一次方程 (一)3课时 3.3解一元一次方程 (二)3课时 3.2——3.3测试2课时 3.4实际问题与一元一次方程3课时 小结2课时 全章测试2课时 4.1多姿多彩的图形4课时 4.2直线、射线、线段3课时 4.1——4.2测试2课时 4.3角4课时 4.3测试2课时 4.4课题学习1课时 小结2课时 全章测试2课时 期末复习8课时 七年级数学综合测试 一、选择(每小题2分) 1.绝对值是2的数减去1所得的差是()3 3A、B、1C、或1D、或1 33 32.我国陆地面积居世界第三位,约为9 600 000平方千米,用科学记数法表示为() A.96×105平方千米B.9.6×106平方千米C.0.96×107平方千米D.以上均不对 3.下列说法正确的有()个 (1)小明用一枚均匀的硬币试验,前7次掷得的结果都是反面向上,第8次掷得反面向上的概率小于 (2)“熊猫有翅膀”是命题.(3)如果直线l1与l2相交,直线l3与l1相交,那么l1∥l3; (4)两条直线与第三条直线相交,如果内错角相等,则同旁内角互补; (5)经过一点有且只有一条直线和已知直线平行.1.2A.2个B.3个C.4个D.5个 24.如图2是由几个小立方体块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,111这个几何体的主视图是() ABCD 5.长方形的一边长为3a2b,另一边比它大ab,那么这个长方形的周长是() A.14a6bB.7a3bC.10a10bD.12a8b 6.下列各式中能用平方差公式计算的是 A.(a+b)(-a-b)B.(a+b)(-a+b) C.(a+b)(-a-b)D.(a-b)(b-a) 7.小亮截了四根长分别为5 cm、6 cm、12 cm、13 cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有 A.1个B.2个C.3个D.4个 8.如果yx2x5,当x为任意的有理数,则y的值一定为() A.大于5B.可能是正数,也可能是负数C.不小于4D.负数 9.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2 h.已知摩托车行驶的路程s(km)与行驶的时间t(h)之间的函数关系如图3所示.若这辆摩托车平均每行驶100 km的耗油量为L,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油 43A O2 l2 C l 1图3图 4A.0.45 LB.0.65 LC.0.9 LD.1 L 10.如图4所示,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2的度数是 A.43°B.47°C.120°D.133° 二、填空(每小题2分) 11.(-2a2b)3=________;(12xy 412 21xy)(xy2)________ 26 12.(x+2y)+︱y-1︱=0,则x+y= 13.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a+b+c﹣ac﹣bc的值. 14.若9ama4是一个完全平方式,则m15.如图,在Rt∆ABC中,∠ACB=90°,CD⊥AB于点D.(1)如果∠B=30°,则∠A=,∠1=,∠2=. (2)如果AC=3cm,BC=4cm,AB=5cm,则AC边上的高为,BC边上的高为.Rt∆ABC的面积为________,CD为______. 16.等腰三角形的一个内角是40度,则此等腰三角形的另外两个内角为________.17.如果等式x23x2x1Bx1C恒成立,则B=,C=. 222 18.如图,AC与BD相交于点O,且∠1=∠2,∠3=∠4,则图中有对全等三角形. 19.有一系列等式: 1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,„„ (1)根据你的观察,归纳发现规律,写出8×9×10×11+1=____________________;(2)试猜想n(n+1)(n+2)(n+3)+1 =____________________是哪一个数的平方? 20.一种商品按成本价提高30%后标价,又以8折销售,售价为208元,若设这种商品的成本价为x元,则可列方程为____________________.三、解答题:(共32分) 21.计算:(1)(c-2b+3a)(2b+c-3a);(2)(π-3.14)+ 2 (3) 22.(1)先化简,再求值: 当m1,n时,求代数式4mn(2mn (2)已知xy10,xy24,求x-y的值; 2 -(12)+︱-2010 ︱ 2 2x15x1 1(4)(2x-5)(2x+5)-(2x+1)(2x-3)36 5m2n)2(3m2mn2)的值 23.(本题满分6分)如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平 方向的长度DF相等,∠CBA=32°,求∠EFD的度数。 24.(8分)为了拉动内需,广东启动“家电下乡”活动,某家电公司销售给农户的I型和II型冰箱在启动活动前一个月共售出960台.启动活动后的第一个月销售给农户的I型和II型冰箱的销售分别比起动活动前一个月增长30%,25%,这两种型号的冰箱共售出1228台. 2013-2014学年第一学期七年级上数学教学计划 李彦朝 一、学生情况分析: 通过调阅分班考试成绩册和试卷,发现本班学生的数学成绩不甚理想。从学生作答来看,普遍粗心大意,基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。 二、指导思想: 坚决完成《初中数学新课程标准》提出的各项基本教学目标。根据学生的实际情况,从生活入手,结合教材内容,精心设计教学方案。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级上册数学教学任务。 三、教学目标 知识与技能目标:认识有理数和代数式,掌握有理数的各种性质和运算法则,初步学会使用代数式探究数量之间的关系。认识基本几何图形,掌握基本基本作图能力和的技巧。 过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。 情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。 班级教学目标:优秀率:15%,合格率 85%。 四、教材分析 第一章、有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。 第二章、整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。 第三章、一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。 第四章、图形认识初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。 五、教学措施 1、认真研读新课程标准,潜心钻研教材,根据新课程标准,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。 2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。 3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。 六、课时安排教学进度计划安排如下: 第一周 正数和负数及有理数5课时 第十周从算式到方程5课时 第二周 有理数的加减法5课时 第十一周解一元一次方程(一)5课时 第三周 有理数的乘法5课时 第十二周解一元一次方程(二)5课时 第四周 有理数的乘方5课时 第十三周实际问题与一元一次方程5课时 第五周 第一单元复习及月考5课时 第十四周第三单元复习及月考5课时 第六周 整式-----单项式5课时 第十五周多姿多彩的图形及直线5课时 第七周整式----多项式5课时 第十六周射线、线段、角5课时 第八周整式的加减5课时 第十七周第三单元复习及月考5课时 第九周期中复习及段考5课时 第十八周期末复习及考试5课时第三篇:七年级数学教学计划
第四篇:七年级数学综合测试
第五篇:七年级数学工作计划