第一篇:对数的概念教学反思
对数的概念教学反思
正确理解对数定义中底数的限制,为以后对数函数定义域的确定作准备。同时注意对数的书写,避免因书写不规范而产生的错误。本教学设计先由引例出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握。
第二篇:对数运算 教学反思
发表时间:2014/12/9 来源:《教育学》2014年9月总第70期供稿 作者:方 俊
[导读] 高中的学习是为以后大学的学习或者走向社会做准备的,合作探究可以让学生更独立,更善于表现自己。
方 俊 浙江省金华市宾虹高级中学 321000
摘 要:对数与对数运算是对数的第一节课,主要的内容是对数概念及对数指数的互化、对数的简单运算等内容,而对数与指数的互化是后面学习对数函数的基础,所以本节课的重心就放在对数指数互化上。本节课蕴含转化化归、归纳类比、函数与方程、数形结合等基本数学思想方法。
关键词:对数 对数运算 对数指数互化
【教学目标】1.通过归纳与类比,理解对数概念与指数概念的相互关系,能进行对数式与指数式的互化;了解两个特殊对数;发现对数的基本性质及相关运算公式;了解对数恒等式的实质。2.通过类比发现与归纳发现,让学生体验探究问题的过程,提高学生运用类比和归纳方法的意识。3.通过探究发现, 帮助学生认识数学知识的内在联系与相互转化,从发现中体验成功,进一步提高学习和探索兴趣。
【教学重点】对数的定义,对数式与指数式的互化。
【教学难点】对数概念的理解,对数性质和相关公式的发现。
【教学手段】多媒体辅助教学。
【自主学习】
一、概念引入
1.借助类比感受对数概念的必要性
乘方:xn=b,开方:x= b(a≥0),指数:ax=N(a>0,且a≠1,N>0)
问题1:知道a,x可以求N,那么知道a,N可以求x吗?如何求?
设计意图:通过与已知互逆运算的类比,激发学生学习兴趣,为学生的探究指明方向,同时让学生感受引入对数概念的必要性。
2.通过特例感受引入对数概念的意义
你能求出下列方程中的x吗?
(1)2x=
2(2)5x=625(3)6x=-6
(4)10x=7
利用几何画板画出(4)的图像(略)。
设计意图:打开学生思维。通过(4)让学生回忆指数函数的图像和性质,发现x的值存在且唯一,从而使学生体会到引入对数概念的必要性、合理性。
二、概念讲解
1.定义概念
定义:若ab=N(a>0,且a≠1),则b称为以a为底,N的对数,记作b=logaN。
2.概念解读
(1)读法:以a为底,N的对数。
(2)写法:
(3)概念:让学生完成人教A版必修一的相关表格,了解指数与对数的相关量的关系。
(4)由指数和对数的关系可知,对数的真数N>0,底数必须a>0,且a≠1。
(5)互化:
设计意图:落实双基,通过与已有认知结构中相关知识建立更强的联系,实现“理解基础上的记忆”和“记忆基础上的理解”的相辅相成。
三、巩固概念
1.互化练习
练习1:指数式化对数式
(1)1.07x=2(2)3x=9(3)()-1=2(4)54=625
练习2:对数式化指数式,并判断下列对数式是否正确。
(1)log749=
2(2)log2()=
4(3)log5125=3
(4)log 9=-
(5)log 2=2
设计意图:让学生感受对数与指数的内在联系。
简单的指数函数同学们可以通过笔算直接求值,复杂的指数运算可以借助计算器,那复杂的对数运算也可以借助计算器(展示计算器实物和说明书),同学们发现说明书中对数运算有三种模式:logab,lg,ln由此介绍常用对数和自然对数。
2.特殊对数
(1)常用对数。以10为底的对数叫常用对数,log10a简记作lga。
(2)自然对数。以e为底的对数叫自然对数,logea简记作lna(e≈2.71828)。
此处同学们会对e存在疑惑,教师趁机介绍《不可思议的e》
四、合作探究
1.利用指数,求下列对数的值:
1.(1)log 1(2)lnl(3)log21(4)lgl
2.(1)log22(2)lne(3)log(4)lg10
3.(1)log525(2)lne2(3)log3(4)lg100
探究:对以上各组练习进行观察归纳,能发现什么规律。为何会有上述规律?
设计意图:通过练习让学生更强烈地感受到对数与指数的内在联系。
2.归纳特殊,发现一般规律
总结:
(1)a0=1,所以loga1=0(a>0,a≠1)。
(2)a1=a,所以logaa=1(a>0,a≠1)。
(3)an=an,所以logaan=n(a>0,a≠1)。
五、当堂检测
计算下列各式并改写成指数形式。
(1)log
(2)log2
32(3)log327
(4)log(5)log 1
六、课堂小结
基本知识:对数的定义,特殊对数,对数的简单性质,学会了对数和指数的互化以及对数的简单计算。
思想方法:归纳、猜想、证明等方法,类比思想、方程思想、函数与方程思想、数形结合思想。
七、作业
必修1:P64
1.(3)(4)2.(1)(4)3.(2)(4)4.(3)(4)
八、教学设计的说明和教学反思
新课程理念下,学生是教学活动主体,教师只是教学中的组织者、推动者,而不是单纯的知识传授者,教师的教学应遵循学生的认知规律,给学生充分的时间去发现、接受新知。对数是一个全新的概念,从方程ax=N(a>0,且a≠1,N>0)入手,再通过4个具体的指数方程,让学生觉得现有的知识不够用了,从而引入对数的感念就水到渠成了。
新引入的概念,一定要给学生充分的时间消化,从以往的教学中发现对数的写法会出现底数、真数不分的情况,所以此次教学在对数的写法上放慢脚步。对数概念的理解的重点是指数式、对数式的互化,这个本质理解了,对数的底数、真数的范围自然也理解了。对数指数的互化贯穿了本节课的始终。
通过练习
1、练习2让学生对指数、对数互化有更深刻的理解。此2个练习主要让学生通过小组合作学习完成,合作学习是现有的学习方法中较好的学习方法,能够很好地调动学生的积极性,而且同学之间进行思想上的交流有时候比老师、学生之间的交流更能让学生接受,学生更勇于提出自己的想法,其实数学的学习也要敢想敢说,做错数学题并不可怕,可怕的是不知道自己会做错。我在教学中也不断地向学生潜移默化地传播这个理念。高中的学习是为以后大学的学习或者走向社会做准备的,合作探究可以让学生更独立,更善于表现自己。
以往老师上课不敢把课堂放开给学生,这或许是怕教学进度会落下来,或许也有对学生的不信任吧?这堂课给我最大的感受是要相信学生,学生比我们想得更聪明,而且他们集思广益,总能给课堂带来惊喜,所以以后应多给学生机会合作思考,学生能做的教师绝不包办代替。
数学有其学科特点,数学不像有的学科那么多姿多彩,数学的学习比较枯燥,很多学生畏惧数学,所以数学的教学要遵循学生的认知规律,由简到繁,由易到难,让每个学生都能参与进来,为之则难着亦易矣,不为则难者亦难矣。每天参与一点点,时间久了积少成多,数学学习的困难就越来越少。
第三篇:HPM视角下的对数概念教学(推荐)
【编者按】 本刊自2014年第5期开始,陆续刊发了华东师范大学汪晓勤教授及其团队开发的3则针对中学的HPM教学案例,深受教师们的欢迎。本期,我们来分享金惠萍、王芳老师的研究成果。
金惠萍,王芳(浙江省义乌中学,322000)
摘要:对数的发展史大体上可分为简化运算思想的形成、对数表的发明、指数与对数关系的发现3个阶段。随着计算工具的不断变革与普及,教材的编写略去了对数发展史的前2个阶段,导致学生缺乏对对数产生背景的了解,难以领悟其中的“算理”。沿着对数的发展脉络,把前2个阶段也纳入到课堂教学之中,进行了一次历史的“重构”,通过“感受运算之繁”、“发现数表之妙”、“享受用表之乐”、“体验查表之缺”等环节,促进了学生对对数概念的理解,对对数表的应用,获得了良好的教学效果以及来自学生的认可。关键词:HPM 对数 概念教学 教学设计 反馈
在人教版高中数学必修1中,对数概念是通过人口增长模型y=13×1.01x,在已知底数和幂值的条件下求指数的问题引入的。这种引入方式结合实际问题,简明扼要地指出了对数研究的必要性,揭示了对数与指数之间的内在关系,有利于保持《基本初等函数(Ⅰ)》这一章的系统性。尽管如此,对学生而言,对数毕竟是一种新的运算,它的表示及运算规则都是之前所不熟悉的。
在对数概念学习中,学生普遍存在着两种现象:一是对对数价值、作用的认识比较模糊,不知道为什么要引入对数;二是盲目套用对数运算法则,出现如loga(MN)=logaM·logaN、loga(M+N)=logaM·logaN之类的错误。导致上述现象的原因,是学生缺乏对对数产生背景的了解——未能领悟其中的“算理”,接受起来自然比较困难。英国数学史家福弗尔(J.Fauvel,1947~2001)认为,这种透过指数的定义方式太过于抽象和形式化,非但“无法带给学生任何的启蒙”,而且还会造成学生在对数概念学习上的“内在洞察力的丧失”。
为了弥补这一缺憾,教材在课后的“阅读与思考”栏目中,特别介绍了“对数的发明”,供学生了解对数的发展史。但从教学实施的情况来看,大部分学生并未对此给予应有的关注,而很多教师则常常因为课时的限制而未能将之纳入到课堂内,他们都辜负了教材编写者的良苦用心。能否寻求一种既不挤占教学时间又能清楚地诠释对数的“算理”,既不至于让本节课异化为“数学史课”又能够还学生一个“有血有肉”的对数概念的教学方式?
一、数学史对教学设计的启迪
由于人们常用的等比数列,其公比都是大于1的正整数,随着项数的增大,相邻两项的间隔越来越大,因而在实际计算中用处不大。鉴于此,苏格兰数学家纳皮尔(J.Napier,1550~1617)采用了十分接近于1的公比,将递减的等比数列与首项为0、公差为1的等差数列相对应,保证在一定范围内相邻两项的间隔非常小,在该范围内小于107的任何整数均可在同一个等比数列中找到。这样,就可以利用对应关系来简化乘除运算了。此外,纳皮尔还将离散的数列模型转化为连续的运动模型。1614年,纳皮尔出版《奇妙的对数定律说明书》,成为了对数的发明者。为了这一具有划时代意义的发明,纳皮尔整整花费了20年时间!不久,布里格斯(H.Briggs,1561~1630)改造了纳皮尔的对数,发明了常用对数。
虽然对数的发现早于指数,但直到1728年,瑞士的大数学家欧拉(L.Euler,1707~1783)理顺了指数与对数的关系,提出了“对数源于指数”之后,对数才被世人广泛接受。
由上可知,对数的发展史大体上可分为简化运算思想的形成、对数表的发明、指数与对数关系的发现3个阶段。随着计算工具的不断变革与普及,对数表逐渐淡出了人们的视野,新版教材也应时而变,略去了对数发展史的前2个阶段。但这段横跨200多年跌宕起伏、动人心魄的发展史,仍然耐人寻味,而其间每个阶段所凝聚的思想、智慧与精神,至今闪烁着动人的光芒。
为此,我们沿着对数的发展脉络,把前2个阶段也纳入到课堂教学之中,进行了一次历史的“重构”。
对于“第1阶段”,依据当时的历史事实,设计了一个“天文数字计算”的情境,以繁杂的计算为映衬,凸显出简化运算的迫切性。对于“第2阶段”,则进行适当的教育加工,设计了一场从“指数表”演化为“对数表”的探究活动。考虑到高一学生的认知水平,用“以2为底”代替“以10为底”,以提高规律的识别度,突出数表的强大作用,使学生的思维专注于“算理”的探究与运用上,进而深层次地理解对数概念的数学本质。
对于“第3阶段”的“指对关系”,并不单独呈现,而是将之作为一种思想方法,渗透至上述各个环节之中。
整合后的教学流程如图1所示。
二、课堂实录
下面给出本节课中几个主要环节的课堂实录。
(一)感受运算之繁
师(出示算式:299792.468+31536000=?)今天老师想考验大家的速算水平,请计算此式。生31835792.468。
师那把“+”变成“×”的话呢?(学生众说不一,抱怨数据太大。)
师看来乘法比加法要难算。这个数据确实太大,但来自现实:299792.468(km/s)是光在真空中的速度,31536000是一年的总秒数,因此两数的乘积就是天文学中一光年的大小。光年是天文学单位,天文学中计算的数据就是以这个数据为基础的。生这么大,难怪叫天文数字。
师在16~17世纪,天文学开始迅速发展,并带动了很多领域的发展。天文学家为了计算一个行星的位置,时常需要耗费几个月甚至几年的时间,问题主要就集图1中在复杂的数据运算上。因此,改进运算方法成为了天文学家们的当务之急。
(二)发现数表之妙
师(出示表1)当时的数学家们也在试图改进运算方法,并在研究中发现了一些规律。请大家填写此表,并找出它的规律。
师那你能继续算一下x=10时,y所对应的数是多少吗? 生1024。
师那15对应的数呢?(稍作停顿)大家能算吗?动手试试。生15个2相乘可得。
(教师和其他学生都笑了。)生
(新颖的想法激起了很多学生的兴趣。)
生我觉得它可以有很多种拆法,只要拆出来的2个数对应的指数之和等于15,就可以了。师很好!那还能算213、214以及其他的式子吗? 生可以,只要像上面一样拆,就可以了。师通过这种方法,我们可以制作出一张表格。
(三)享受用表之乐
师(出示算式:16×128=?)同学们来看第2个算式。生2048。师算得很快。(出示算式:128×256=?)能不能再算一个? 生32768。
师怎么可以算得这么快?我们请这位同学说说他的方法。生
师是吗?居然不用计算,查查表就可以了!(出示算式:0.125×1024=?)你们愿意再挑战一下吗? 生
师(出示算式:4096×16384=?)那这个算式呢? 生16384是2的几次方?
师请同学们拿出老师课前发给大家的表格A(见表2),看看有没有? 生
生若要算67108864×512呢?表格A中没有啊!
生这个表最大只能查到230,要算235就不行了。有没有更大的表? 师请查看课前发给大家的表格B(见表3)。
生表格B也只能算到260,虽然数据已经很大,但还是不一定够用啊!
生我认为这个问题可以解决,只要我们按照上面的方法把表格造出来,就可以了。但我觉得还有一个更大的问题:这样的表只能查2的整数指数幂,而对于其他数值,比如3×5,就不行了。
师看来还有很大问题。那怎么办?
生能不能把表做得更细一点,把3是2的几次方、5是2的几次方都做进去?
师可以。在16世纪,数学家们已经可以借助微积分计算出分数、小数指数幂的近似值。(出示《中学数学用表》)这个是《中学数学用表》,里面有张表格可以用来查询你所需要的数据,但要说明一下,它是以10为底的,不过原理是一样的。其实,这个表初中时也给大家发过,只是很少应用。生哇,好厉害!
师虽然表很好用,但造表的难度却相当大,不过一旦做好了,就能一劳永逸。500年前苏格兰数学家约翰·纳皮尔,用了人生中宝贵的20年时间,研究运算规律,并制作了一张可查的表格。数学家拉普拉斯说:“对数用缩短计算的时间来使天文学家的寿命加倍。”伽利略更是发出了豪言壮语:“给我时间、空间和对数,我可以创造出一个宇宙来。”对数表曾在几个世纪内为数学家、会计师、航海家和科学家广泛使用。(稍作停顿)想象一下,整整20年的时间里,约翰·纳皮尔每天都在不停地计算、计算„„而我们有时候可能计算个5分钟的时间,就已经没有耐心了。如果我们也能花这样的精力去做一件事情的话,每个人或许都能成为伟人了。
(学生被历史故事深深吸引,有的点头表示认同,有的陷入沉思之中。)师约翰·纳皮尔把表中上行的数称为“logarithm”。这个数表在康熙年间传入中国,《数理精蕴》中把表中下行的数称为“真数”,把“真数”上面那个“借来用一下”的数称为“借数”。“真数”一直沿用至今,而“借数”——“真数”上面那个“所对应”的数,后来被称为“对数”。
生(顿悟)原来“对数”不是指“对”(“错”的反义词)的数,而是指“对应”的数啊!
(四)体验查表之缺
师请大家思考之前的问题:299792.458×31536000,如何解决?
生如果有表格,则只需要找到299792.458所对应的x和31536000所对应的y,并求得x+y的值,再查表即得299792.458×31536000的结果。
师我们利用Excel操作模拟查表。请同学们观察这个计算存在什么问题。生查表所得到的乘积跟手算所得到的值不相等,查表所得只是近似值。生那能不能精确表示呢?
(师生共同讨论,发现数表解决不了这个问题。学生感觉比较失望。)
(五)引入符号之需
师大家一起回顾一下初中学习无理数时的场景,生它是一个符号,表示x2=2的正解。师是估计值吗? 生是精确值。
生(小声嘀咕,不太敢说)对了,我们是不是也可以找一个记号来表示它们?
师嗯,你的意思是通过“定义”一个记号来表示新产生的对数。如何表示呢?(稍作停顿)历史上曾采用“logarithm”的缩写“log”来表示对数。例如,2x=3中的x就表示为log3。那么,2x=5呢? 生x=log5。
生老师,这样好像有问题。如果我要表示3y=3中的y,那不也是log3了吗?重复使用了。师是有这个问题,怎么解决呢?
生我觉得是不是可以把底数也表示进去? 师嗯,数学家们也这么认为,他们把底数也写入到记号中。例如,2x=3中的 x=log23,而3y=3中的y=log33。生哦。
师把这些记号一般化,就有了对数的定义:若ax=N,则数x就叫作以a为底N的对数,记作x=logaN,其中的a称为底数,N称为真数。
三、课后调查
本节课的授课对象是一所普通高中的一个高一普通班,课后的问卷调查结果显示:(1)在概念的理解上,86.4%的学生认同符号“log”,95.5%的学生能够准确判断“log”与“a”、“N”的关系,87.7%的学生看到对数式“x=logab”时的第一反应是“ax=b”,4道“指对互化”小题的答题正确率达98%——这说明本节课的教学并未影响学生对指对关系的认识。虽然本节课未讲授对数运算法则,但有75%的学生认为log2(a+b)=log2a·log2b(a>0,b>0)是“错误的”——这一数据明显高于该年级的其他班,表明学生已充分认识了对数中蕴含的简化运算思想,基本理解了对数“化乘法为加法”的“算理”。
(2)在数表的应用上,89.5%的学生认为“数表是在课前发的,且上课时仅仅用到了其中的若干数据,并无繁杂之感”;92%的学生认为“这些貌似冰冷的数字居然蕴含了如此丰厚的数学思想”,觉得大开眼界;54%的学生“突然明白了初中时发下来的那本‘数表’居然这么有用”,还有3位同学提出“把那本陈旧的‘数表’翻出来再研究一番”——这一结果令人惊喜,也打消了笔者课前存有的顾虑:对数表中的数据多,会不会让学生感觉到繁杂?教材中已经略去了对数表,现在虽经改良,但在短暂的时间内能不能起到应有的作用?
(3)在教学形式的认可上,95.5%的学生表示能够适应这节课的形式,93.2%的学生认为这节课的内容比教材中介绍的丰富多了,93.2%的学生对这节课所涉及的数学史知识,包括纳皮尔的故事、简易对数表格的制作、常用对数表的查表等,很感兴趣。
在进一步的访谈中,不少学生认为,现在的数学课比较单调,像这样有生动背景的课正是他们所喜欢和想要的;很多学生认为,这种授课方式可以拓宽他们的知识面,增进他们对数学的理解;所有的学生都认为,纳皮尔的执着与坚持给了自己很大的触动,要学习科学家们潜心研究、创新的精神。
四、结语 对数的出现,源于航海、天文等方面计算的需求。看似深奥的对数理论,其起源却是朴素的,因而更能贴近学生的思维,打动学生的心灵。早在2010年,章建跃先生就曾提出,“理解数学、理解学生、理解教学”是高中数学课程改革的基石。而要真正践行这“三个理解”,数学史是不可或缺的重要载体。以史为鉴,即是把“现成的知识”还原为“现实的问题”,在问题解决中经历数学知识的发生、发展过程,并通过追寻大师的足迹、仰望大师的风采,汲取人类文明中的无穷智慧。这,正是开展高品质教育的“人间正道”。
*本文系课程与教材研究所“十二五”规划课题《数学史融入高中数学教材研究》的HPM案例之一,由浙江省义乌市王芳数学教育工作室设计和实施。
第四篇:对数与对数运算教学反思
对数与对数运算性质教学反思
对数与对数的运算性质这节课,我的设计意图是尝试让学生尝试探究学习,培养学生观察、推理的能力,从特殊到一般的类比过程,同时也借此机会锻炼自己的探究教学的能力,所以查阅了一些关于数学探究学习的教学理论,以及对数学教学的设计理念,但是在此教学过程中,也发现了自己的一些教学问题,也学到了不少东西,主要有:(1)这节课的一开始让学生复习指数与指数的运算性质相关知识,我让一个学生站起来复述了知识,可是最好还是让学生做一些简单的题目,通过简单的题目来检测上一节课学生的知识掌握情况,因为知识是死的,需要记住,但是方法是活的,能应用就好了,所以这一点做的不到位;(2)我在这节课中,当然还有以前的教学过程中,都存在一个个人习惯问题,就是总结知识点不是很到位。一个善于总结、经验丰富的老师,会在学生做了很多题之后,总结解题技巧,以及解题中的注意点,公式的适用范围,公式的正用与逆用,什么时候用什么公式,用公式的时候要注意哪些,学习新知识的时候,多用自己的语言表述公式和概念,以此让学生把自己对公式和概念的表征形式描述出来,通过这个来判断学生对知识的掌握情况。课堂中应该多总结,老师要多总结,也要让学生多总结,但是前提条件是教师要有意识的引导学生总结,培养学生的这种习惯;(3)在推到公式的过程中,设计意图是让学生自己总结,因为学生的程度不是很好,所以开始我先带领学生们推导出了一个公式,接着让学生尝试着模仿,自主推导出后两个,并且让学生板演。给学生自己证明的机会,让学生多思考,给学生自己动手的机会,即使错误了也是一个学习的机会,从失败中,吸取解题策略和技巧。
对数的教学采用讲练结合的教学模式。教学中,先学后教,先练后讲,运用指数式与对数式的转化策略,通过教师的讲,数学家对对数的痴迷激发学生好奇,从实际问题导入对数概念、对数符号,理解对数的意义,通过典型例题的讲授,充分揭示对数式与指数式间的关系,掌握求对数值的方法,通过学生典型习题的练,使学生进一步理解对数式与指数式间的关系,掌握求对数的一些方法,在讲练结合中实现教学目标。
第五篇:对数的运算教学反思
《对数的运算教学反思》
高三数学组 刘海棠
一、教材分析
本节课内容是北师大版必修 1 第三章“指数函数” 4.1 “对数及其运算”。“对数”是高一新教材的内容,共分三个课时完成。第一课时为对数的概念,第二课时为对数的运算,第三课时为换底公式。今天我要说的是第一课时——对数的概念。此前,学生已学习了指数及指数函数,明白了指数运算是已知底数和指数求幂值,而对数则是已知底数和幂值求指数,二者是互逆的关系。对数的概念的学习,既加深了学生对指数的理解,又为后面对数的运算性质及对数函数的学习做了充分准备,起到了承上启下的重要作用。
二、学生情况分析
大部分学生比较怕数学概念的学习,理解能力,逆向思维能力等方面参差不齐。对数概念对于高一的同学来讲是一个全新的概念,在初中的学习里没有接触过。在教学过程中,我从实际问题出发,不断创设疑问,激发学生的求知欲和学习主动性,使学生紧紧抓住对数运算是指数运算的逆运算这一实质,重视指数式与对数式的互化,通过教师的引导点拨和学生的思考练习,使学生理解和掌握对数的概念及本质,达到我们预期的教学目标。
三、教学过程分析
本节课我采用实例引入的方法,设置了两个问题:第一问是已知底数和指数,求幂值,这是我们能解决的;第二问是已知底数和幂的值,求指数的问题。这就是引入我们这节课将要学的对数问题。通过实例引导学生发现问题、分析问题和解决问题,基本上达到了我的预期目标。
然后书写课题:对数,并给出定义。定义的讲解注重理解,强调对数是一种求指数的运算,指对数的互化,注意读法、写法等。定义之后,直接先讲解例
1、例2,让学生熟悉指对数的互化。然后通过一些特殊的指对数互化,指导学生将这两个特殊的指数式转化成对数式,以此可以得到对数的性质。这样设计使得两个教学环节之间有所衔接,从上一个环节自然引入下一环节,这样展现给学生的课是一种水到渠成的感觉,不会使学生感觉太突兀。在讲到对数恒等式的证明的时候,整体替代的思想还需要加强。
接下来介绍两个特殊的对数,打开课本一起读课本,加深印象,再举一些简单的例子,由于探究的时间有点长,所以例3的讲解稍有点快。学生在已经预习的基础上,反应比较灵活。但是可能需要讲到对数函数后,他们才会真正体会其意义。
同时本节课还有一些不足之处,针对这些不足之处我提出了相应的改进方法,具体包括以下几个方面:
1、在提高学生的兴趣方面有些欠缺。
学生总体对数学兴趣不浓。在讲解的过程中,通过实例说明可能更能提高他们的兴趣。
2、教学环节之间的衔接语言处理的不是很好。教学环节之间的衔接语言处理如果做得不好,学生会觉得很突兀,不利于提高学生上课的专注力。恰当的衔接语言应当可以使上一环节和下一环节之间可以自然地进行过渡,从而达到符合学生认知的规律的要求。衔接语言的处理方面,今后我应多加注意,多看一些相关知识,在平时的教学中也应当多注意衔接语言的使用,逐渐积累经验。