在初中数学课堂教学中数学建模初探专题

时间:2019-05-12 23:07:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《在初中数学课堂教学中数学建模初探专题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《在初中数学课堂教学中数学建模初探专题》。

第一篇:在初中数学课堂教学中数学建模初探专题

初中数学课堂教学建模研究与案例评析

(一)初中数学课堂教学建模研究:

数学课堂教学建模是联系数学与实际问题的桥梁。建立数学模型是把错综复杂的实际问题简化,抽象为合理的数学结构的过程。要通过调查收集数据资料,观察和研究对象固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数学关系,然后利用数学理论和方法去分析和解决问题。

1.由于我们教育教学对象是初中生,总体上看数学知识还很肤浅,数学能力还较低,教师应充分发挥主导作用,引领学生开展数学建模活动,明确学生是建模活动的主体,教师起组织引领作用。

2.教材中体现了数学建模思想,我们必须深入挖掘教材,充分利用好教材,要灵活处理教材,特别要注意引入问题的选择,尊重教材但不照搬教材。教材中知识内容是开展建模的载体,提升学生的数学能力和数学素养是教学活动目标。

3.课堂教学中的数学建模,不能等同于科学研究意义上的数学建模,它主要受限于教学主体——初中生,他们的数学知识还很少,能力较差,思维水平尚缺少严谨性。初中课堂教学中的数学建模过程,实质上是模仿科学研究意义上数学建模过程,为今后应用数学奠定思想和方法基础。

(二)建立模型环节:本阶段是将实际问题转化为数学问题。在构建数学模型时,运用数学建模课程指导思想:以实验为基础,以学生为中心,以问题为主线,以培养能力为目标组织教学。这个阶段 要调动学生已有的数学经验,寻求面对实际问题的数学解决策略。(1)从课本出发,注重一题多变。(2)从实际中的数学问题出发,增强建模意识。(3)从人们关注的问题出发讲解建模方法。(4)通过游戏中的数学,从中培养学生的数学建模应用能力。实施策略的教学程序为:(1)创设问题情境,激发求知欲。(2)逐步概括,建立数学模型。(3)分析模型,猜想数学知识。(4)解决实际应用问题,感受数学知识。(5)归纳总结,升华数学知识。

(三)初中常见数学教学建模案例:

在初中阶段,常见的数学应用题模型有下面几个:建立方程(组)模型、建立不等式(组)模型、建立直角坐标系、建立函数模型、统计型问题、建立三角模型、建立几何模型。教师在平时的新课教学特别是初三复初中学生的数学知识有限,在初中阶段数学教学中渗透数学建模思想,应以教材为载体,以改革教学方法为突破口,通过对教学内容的科学加工、处理和再创造达到在学中用,在用中学,进一步培养学生用数学意识以及分析和解决实际问题的能力。下面结合多年来的教学体会粗略的谈谈如何在初中数学教学中渗透数学建模思想。(1)建立方程模型。数学中不少问题,用常规方法不可解,但是适当构造方程或方程组,并利用方程知识却能顺利地求解

例1 某商场销售一种服装,平均每天可售出20 件, 每件赢利40 元.经市场调查发现: 如果每件服装降价1 元,平均每天能多售出2 件.在国庆节期间, 商场决定采取降价促销的措施, 以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200 元, 那么每件 服装应降价多少元?

解析: 本题的主要数量关系是: 每件服装的赢利×每天销售的服装件数= 1 200 元

设每件服装降价x 元, 则每件服装的赢利为(40-x)元, 每天销售的服装为(20+2x)件, 问题转化为求方程的解:(40-x)(20+2x)=1200.解得x1=10(舍去),x2=20.故每件服装应降价20 元

例2 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明: 这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?简析 本题的主要等量关系是: 每个台灯的销售利润×平均每月销售台灯的数量= 10000元.设每个台灯涨价x元,那么每个台灯定价是(40 + x)元,每个台灯的销售利润为(40 +x-30)元,平均每月销售台灯的数量为(600-10x)个,问题转化为求方程的解:

(40 +x-30)(600-10x)= 10000.解得:x = 10或40.(2)构造不等式(或不等式组)模型

例3某地的气象资料表明, 山脚下的平均气温为22 ℃, 从山脚下起, 每升高1000m, 气温就下降6℃.如果要在山上种植一种适宜生长在平均气温为18℃--20 ℃的植物, 那么把这种植物种植在高于山脚的什么地方较合适?

解析: 从山脚下起, 每升高1000m, 气温就下降6 ℃.那么每升高1m, 气温就下降6/1000℃.设这种植物适宜种植在高于山脚xm 的 地方.根据题意, 得22—6/1000x≥18 与 22—6/1000x≤20

解得1000/3≤x≤2000/3 例4南充火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往某市。这列货车可挂A、B两种不同规格的货厢共50节。已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。

(1)如果甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢。按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。(2)在这些方案中,哪种方案总运费最少?最少运费是多少万元? 解:(1)设用A型货的节数为x(节),则B型货厢的节数为(50—x)节,由题意得,35x+25×(50-x)≥1530 且 15x+35×(50-x)≥1150 解得28≤x≤30 所以方案有:

1.A 28节 B 22节 2.A 29节 B 21节 3.A 30节 B 20节

(2)设运输这批货物的总运费为y(万元),用A型货的节数为x(节),则由题意得,y=0.5x+0.8×(50-x)=40-0.3x(0≤x≤50)化简,得y=40-0.3x,由一次函数的性质,当k=-0.3时,y 随 x的增大而减小,因此方案三最省钱。

(3)建立函数模型。有些数学问题可以从中找到作为自变量的因数或函数,这一数学问题是可以表示一变量的函数,这时可构造函数模型,通过对函数性质与关系的研究,使问题得到解决。

例5在学习不等式的应用时,我发现学生对手机收费比较感兴趣,于是设计如下问题:小周购买了一部手机想入网,朋友小王介绍他加入中国联通130网,收费标准是:月租费15元,每月来电显示费6元,本地电话费每分钟0.2元,朋友小李向他推荐中国电信的“神州行”储值卡,收费标准是:本地电话每分钟0.4元,月租费和来电显示费全免了,小周的亲戚朋友都在本地,他也想拥有来电显示服务,请问该选择哪一家更为省钱?

简析:设小周每月通话时间x分钟,每月话费为y元。则y1=15+6+0.2x=21+0.2x,y2=0.4x,所以:0.2x+21=0.4x,x=105分

当x=105分钟时,y1=y2;可选择任何一家

当x>105分钟时,y1 < y2 应该选择中国联通130网; 当x<105分钟时,y1 > y2 应选择中国电信的“神州行”储值

(四)认识数学教学建模的重要意义:

现代教育家认为,数学教学的任务是提高公民的数学素养,形成和发展那些具有数学思维特点的智力活动结构,并且促进数学发现与 应用;同时又把数学教学看做是数学活动的教学,而数学建模就是这样一种既能创设情境来完成教学任务又能促进数学发现与应用的特别活跃的数学活动。因此数学建模是现代数学教育研究中不可缺少的课题,数学建模教育具有特殊的教育性质与功能。

数学建模不仅是学生走向能力卓越光辉之路,而且是启迪学生数学心灵的必然之路!

第二篇:浅谈在初中数学中函数课堂教学设计

浅谈在初中数学中函数课堂教学设计

在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。数学知识的教学有两条线:一条是明线,即数学知识;一条是暗线,即数学思想方法。单独教授知识无益于课本的复读,利用数学思想进行教学和学习,才能真正实现数学能力的提高。数学思想方法是对数学的知识内容和所使用方法的本质的认识,它是形成数学意识和数学能力的桥梁,是灵活运用数学知识、数学技能和数学方法解决有关问题的灵魂。然而不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法、研究方法、推理方法和着眼点等都随时随地发生作用,使他们受益终身。因此,在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。.注重“类比教学”

不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学 , 可称为“类比教学”.在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ”,真正实现 “ 教是为了不教 ” 的目的. 有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。

首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:

《正比例函数》教学流程

(一)环节一:概念的建立

通过对问题的处理用函数 y=200x 来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。

(二)环节二 :函数图象 这个环节是教学的重点,由学生先动手按“列表——描点——连线”的过程画函数 y=2x 和 y= - 2x 的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。

(三)环节三:探究函数性质

让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。

(四)环节四:概念的归纳

将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。

(五)环节五: 概念的应用

这个环节主要加深学生对知识点的理解,突出待定系数法的解题方法。

从这五个环节的设定上,大家不难看出,我们在研究一次函数、反比例函数、二次函数的过程也是经历这样的六个环节,所以用类比的教学方式是在降低学生的学习难度,却能提高学习质量,而且程度比较好的学生可以尝试自主学习一次函数、反比例函数、二次函数。

归纳:函数探究的内容与方法 研究的对象------函数的图象与性质

研究的方法-------画图象、分析图象、探究坐标变化规律、归纳函数性质 关注的问题-------图象的位置、发展趋势、与坐标轴的交点、函数的增减性 „„ 2.注重“数学结合”的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:

(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。

(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的“最优化”,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。

(3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。

三、函数教学的几个值得注意的问题: .容易出现“只见树木,不见森林”的断裂式教学

初中函数所考察的题目,大家公认二次函数最难。因此老师在教授这个函数时,也是最卖力,配备了大量的习题练习。但是老师教的辛苦,学生学得也不轻松,不但要理解那么难的曲线函数,还要做更难的习题。所以最后得到的结论是,“二次函数太难了,不是所有学生都能掌握的”。其实则不然,造成这种局面的原因就是把二次函数孤立起来,一棵参天大树高不可攀,是因为你忘却了函数是片森林,二次函数应该根植在“函数森林”中。不但二次函数如此,很多老师每逢讲一个具体函数,都让学生重新经历函数探索,猜想,设计很多环节去猜想函数具备哪些性质,学生却因这些性质之间的相近相似常常混成一团,或最终难以正确应用。

函数这一章最重要的解题方法就是待定系数法,学习正比例函数时就学习了,一次函数再次学习,反比例函数、二次函数又再次使用,但是我们发现,因为缺乏归纳待定系数法的本质,“断裂式”的教授此方法,让学生并没有掌握该解题方法,仅仅是会求解析式而已。

对于以上的种种问题,我归纳的原因是,教授具体函数时,缺乏系统意识和整体意识。函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。

关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。.“重形不重数”的现象歪曲了“数形结合”的思想

当前在初中函数教学中,教师都非常注重借助函数图象去研究函数性质,但却忽视了函数本身是一种代数模型,是对数、式、方程、不等式等代数模型的综合与统一,所以除了要借助函数图象研究函数性质外,不因忽视从“数”的角度引导学生发现与研究函数性质,对于函数性质以及本质的认识,最终要还原到数的层面,所以在函数教学中,以“形”促数固然重要,但也不能忽视学生培养学生从数的角度观察、分析、归纳、证明能力的培养.

第三篇:初中数学建模论文

初中数学建模论文范文

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点

我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

二、数学应用题如何建模 第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

1提高分析、理解、阅读能力。

2强化将文字语言叙述转译成数学符号语言的能力。3增强选择数学模型的能力。4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

第四篇:初中数学建模论文

初中数学建模论文

有意义地利用“压岁钱”

在正月里,长辈们每年都会给我们压岁钱,而大多数同学都把压岁钱当做了零花钱,没有意义。为了能帮助失学儿童,学校办一个“压岁钱小银行”,要求同学们有多少钱存多少钱,存入学校里“压岁钱小银行”,学校统一将同学们的压岁钱存入银行。毕业时本金还给同学们,利息捐给经济有困难的同学。

假如平均每年按照200元压岁钱存入银行,初中三年每个学生总共存入600元计算,若初

一、初

二、初三各16个班,每班按60人计算,初三的存一年,初二的存两年,初一的存三年,年利率分别按2.25%、2.40%、2.60%计算,则:

初一学生存三年的利息:

(200×2.60%×3)×(60×16)=14976(元);

初二学生存二年的利息:

(200×2.40%×2)×(60×16)=9216(元);

初三学生存一年的利息:

(200×2.25%×1)×(60×16)=4320(元);

一年全校利息合计:

14976+9216+4320=28512(元)。

假设学校每年招生班级以及人数都不变,则学校每年都有28512元利息,日照市有那么多所中学,假如每所中学都建立“压岁钱小银行”,假如小学也建立“压岁钱小银行”,那么,每个学生六年下来,每年全校利息将比中学利息要高上好几倍。所以成立“压岁钱小银行”很有意义与必要。为了灾区儿童有良好的读书环境,为了国家更繁荣,昌盛,同学们行动起来吧,拿出你们的压岁钱,奉献我们的一片爱心。

第五篇:浅谈初中数学建模教学

浅谈初中数学建模教学

摘要:所谓数学建模,就是把所要研究的实验问题,通过数学抽象构造出相应的数学模型,再通过数学模型的研究,使原问题获得解决的过程。

关键词:数学;建模;教学

G633.6

一、数学建模是建立数学模型的过程的简略表示。它的过程是:先将实际问题抽象、简化,明确已知和未知;再根据某种“定律”或“规律”建立已知和未知间的一个明确的数学关系;然后准确地或近似地求解该数学问题;最后对这个问题进行解释、验证并投入使用,如果通不过,则要说明理由。下面就这一过程作一个分析:

1.读题、审题,建立数学模型。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。这一环节很容易被学生忽略,认为只要完成作业就行,殊不知,有多少同学解应用题时漏看、看错题中的条件,还有不善于分析问题,所以在初中数学教学开始时,教师应多示范怎样读题、审题,必要时借助于图表。

2.根据实际问题的特征和建模的目的,对问题进行必要简化。在简化的过程中要抓住主要因素,抛弃次要因素,用数学语言写出题中主要的已知和未知,然后根据题中的数量关系,联系所学的数学知识和方法,用精确的语言作出假设。

3.将题中的已知条件与所求问题联系起来,将应用问题转化成数学问题,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。这一环节是学生最不容易达到,所以,应多让学生尝试做这一过程,并逐步加深所给的问题。

4.上述过程是否达到了优化,还需要在对模型求解、分析以后才能作出判断。通常还要用实际现象、数据等检验模型的合理性。

二、初中数学建模教学的理念

建模过程是理论与实践的有机结合。强化数学建模教学,不仅能使学生更好地掌握数学基础知识,也是为了增强应用数学的意识,提高分析问题和解决问题能力。

1.各行各业的各种问题都可能数学建模,归结为数学问题的求解,因此进行数学建模和应用性问题的教学意义十分重大:(1)因为是从实际提炼出来,而后又用之解决问题,故可激发学生极大的兴趣;(2)学会了主动学习,学会了读书、学会了去索取自己所要学的知识,对数学有了新的认识,学习数学的兴趣更高了,更自觉了;(3)运用的意识和应用的能力得到锻炼,激发了他们的创新意识和创新能力;(4)促进数学教学改革,有利于更新观念,更新知识。

2.数学的发展很大程度上是由数学的应用所推动的,实际生产与生活中所涌现的各种数学问题,要求从数学理论上寻找合理的解决方法,如果旧有的理论已经无法解决,预示着一个新的研究领域的产生,必须预示着一种新的数学理论的诞生。

3.学以致用本来就是教育的最重要原则之一,不管是为以后有用或有一部分在学的时候马上就能用上都是学习的目的。一个具有强烈应用意识的学生,他(她)无论走到哪里无论碰到什么问题,他(她)都会看一看、问一问、想一想,这里有没有与数学有关的问题,如果有,这是一个什么样的数学问题,能否用已学过的数学知识、方法来解决它,若不能用已有的知识和方法去解决它,能否自己去找参考书寻求恰当的解决方法,或者向老师与专家请教,不断总结。经过总结的优秀品质不断得到培养,强烈的求知欲油然而生,而且由于是实际问题的驱动,必须有一种实事求是的学风,夸夸其谈是不行的,这样的学生具有强烈的应变能力,从而也一定具有很强的应试能力。更重要的是,这样的学生对数学的作用有正确的认识和理解,决不会无端地排斥?笛Ю砺凵踔链渴?学理论研究的重要性,深切知道应用中提出的许多关键问题往往取决于数学理论研究成果。

4.素质教育的主要目的是全面提高学生的综合素质,就数学来说,一个很突出的方面是应用意识的培养,数学教学的根本目的是发展思维能力。

三、初中数学建模教学的有效策略

1.深入挖掘教材内容,模拟建模问题

初中数学教材为学生提供了丰富的应用题型,教师可以充分挖掘教材中的题目,变换题设或者结论,模拟不同的数学建模问题;针对教材中的纯理论问题,教师可以结合现实问题,将纯数学问题转化为应用题型再进行建模。通过这两种方式的转换开展教学活动,培养建立数学模型的思维。比如:将一条20 cm的铁丝截成两段,并做成两个正方形,请问如何能使两个正方形的面积等于17 cm2?教师可以修改提问方式,问两个正方形的面积可不可能等于10 cm2?引导学生进行自主探索。

2.搜集生活数学问题,强化建模意识

在现实生活中有很多问题可以通过数学建模的形式进行解决,比如打折销售、储蓄利息、工程问题等等都可以通过建立方程模型的方式进行解决。教师也要引导学生搜集生活中的数学问题,选取适当的素材,融入数学模型中,运用数学方法和数学知识解决问题。例如,学习了销售问题,教师可以引导学生计算如何最大限度地获利;学习了利息问题,学生可以按利率计算不同存储期限内的利息收入;学习了距离问题,可以估算一下如何在三个或四个点之间建水库、发电厂等等。这些问题都需要学生将数学理论与实际生活结合起来,这样不仅可以激发学生的兴趣,同时也就进一步提高了学生的思维能力。

3.积极参加社会实践,提升建模能力

数学建模教学不能仅仅局限在课堂教学中,还应该积极参与到课外实践活动中,让学生在课外提升建模能力。比如可以成立兴趣活动小组,进行不同主题的研究、探讨;比如让学生亲自测量从家到学校的距离,测量建筑物的高度;计算一定量的汽油可以行使的里程数以及一定里程数消耗的油量。教师可以带领学生观察高峰时路段车流量的变化,可以带学生到农场进行摘水果,测算男女生摘水果的平均速度等。教师要鼓励学生自己完成,当学生遇到难题时,教师要给予引导,帮助学生解决,那么,学生在以后面临同样的问题时可以更加轻松,才能更好地培养数学意识,适应用建模解决问题,提升建模能力。

四、结束语:

在初中数学建模教学中应多鼓励学生积极主动地参与,把教学过程更自觉地变成学生活动的过程。同时也要注意结合学生的实际水平,分层次逐步地推进。

参考文献:

[1]王奋平.中学数学建模教学研究[D].兰州:西北师范大学,2005.

下载在初中数学课堂教学中数学建模初探专题word格式文档
下载在初中数学课堂教学中数学建模初探专题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学课堂教学中数学建模思想的培养

    数学课堂教学中数学建模思想的培养 数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建......

    浅谈信息技术在初中数学课堂教学中的作用

    浅谈信息技术在初中数学课堂教学中的作用 溆浦县麻阳水中学周高清 【摘要】数学是信息技术的基础,又是信息技术的支撑学科。信息技术的发展,又影响着数学学科的教学过程。 【......

    浅谈信息技术在初中数学课堂教学中的应用

    浅谈信息技术在初中数学课堂教学中的应用 摘要:在初中数学课堂中,运用现代信息技术手段,能够创设数学课堂教学情境,为学生提供新鲜的学习素材,激发学生探索知识的兴趣。信息技术......

    浅谈数学史在初中数学课堂教学中的意义

    浅谈数学史在初中数学课堂教学中的意义 【摘 要】数学史不仅向人们展现了数学的发展历程,而且还蕴含着历代数学家严谨治学、勇于探索的精神。在初中数学教学中融入数学史,不仅......

    数学建模2011

    2011高教社杯全国大学生数学建模竞赛B题评阅要点 [说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 针对这个题目,评阅时请注意“数学模型......

    数学建模

    第一篇 我的大学职业生涯规划作为当代大学生,若是带着一脸茫然,踏入这个拥挤的社会怎能满足社会的需要,使自己占有一席之地?每当人类经过一次重大变革,总是新的机会在产生,有的机......

    数学建模

    护士排班问题的建议 摘要:综述了我国护士的排班类型,原则及排班方式:按功能制和整体护理模式排班。按值班时间包括固定,弹性,三班制排班。排班模式的改革:护士的自我排班等支持系......

    数学建模[最终定稿]

    A题留学学校的选择 目前留学教育方兴未艾,但是数量众多的国外大学特点、要求、费用各不相同,学生自身的特点和基础也千差万别,怎样科学的选择一个合适的学校就读对于留学这样的......