四年级下册《三角形内角和》说课稿

2023-12-20下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《四年级下册《三角形内角和》说课稿》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四年级下册《三角形内角和》说课稿》。

四年级下册《三角形内角和》说课稿

四年级下册《三角形内角和》说课稿1

一,说教材

(一)教材的地位和作用

《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。

(二)教学目标

基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1、通过“量一量”,“算一算”,“拼一拼”,“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

(三)教学重,难点

因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

二,说教法,学法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的.分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

三,说教学过程

我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

引入

呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。(把图形中相邻两边的夹角称为内角)长方形有几个内角(四个)它的内角有什么特点(都是直角)这四个内角的和是多少(360°)三角形有几个内角呢从而引入课题。

【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。

猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢

【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

(三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

(4)画:根据长方形的内角和来验证三角形内角和是180°。

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。

深化

质疑:大小不同的三角形,它们的内角和会是一样吗

观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。)

结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。

实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时。

结论:活动角就是一个平角180°,另外两个角都是0°。

【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角的大小与边的长短无关”的旧知识来理解说明。

对于利用精巧的小教具的演示,让学生通过观察,交流,想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。

(五)应用

1、基础练习:书本练习十四的习题9,求出三角形各个角的度数。

2、变式练习:一个三角形可能有两个直角吗一个三角形可能有两个钝角吗你能用今天所学的知识说明吗

3、(1)将两个完全一样的直角三角形拼成一个大三角形,这个大三角形的内角和是多少

(2)将一个大三角形分成两个小三角形,这两个小三角形的内角和分别是多少

4、智力大挑战:你能求出下面图形的内角和吗书本练习十四的习题

【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中,能充分注意沟通知识之间的内在联系,使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知,构建自己的认知结构,从而发展思维,提高综合运用知识解决问题的能力。

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征,较好地沟通了知识之间的联系。

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的变化情况,进一步理解三角形内角和的知识。

第四题是对三角形内角和知识的进一步拓展,引导学生进一步研究多边形的内角和。教学中,学生能把这些多边形分成几个三角形,将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律,以此促进学生对多边形内角和知识的整体构建。

说课板书设计:

三角形内角和

引入:

猜测:

验证:

量——算

撕——拼

折——拼

四年级下册《三角形内角和》说课稿2

《三角形的内角和》说课稿

一、说教材:

今天我说课的内容是小学数学人教版实验教材四年级下册的《三角形的内角和》。三角形的内角和是180°是三角形的一个重要性质,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何知识的基础。三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形。学生对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,还认识了三角形的特性,知道三角形任意两边之和大于第三边以及三角形的分类等有关三角形的知识。这些都是学生感受、理解、抽象“三角形的内角和”的概念的基础。我们把握好“三角形的内角和是180°”这部分内容的教学不仅可以加深学生对三角形特征的理解,发展学生的空间观念,而且可以通过动手操作,获取新知,发展学生的思维能力和解决实际问题的能力。同时也为以后学习更复杂的几何图形知识打下坚实的基础。

二、说教学目标:

1、知识目标:知道三角形内角和是180°。

2、能力目标:①通过学生测量、撕拼、折叠、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。

②能运用三角形内角和是180°这一规律解决实际问题。

3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;

②体验探索的乐趣和成功的快乐,增强学好数学的信心。

三、说重点和难点:

重点:探索和发现三角形内角的度数和等于180°。

难点:通过小组讨论、动手操作等方式,让学生自己探索和发现三角形内角的度数和等于180°,并能应用这一规律解决实际问题。

四、说教法和学法

新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验。因此,我主要采用的教学方法是:直观教学法和动手操作实验法。在教学中,根据学生的年龄特征,整节课我以学生为主的 “活动教学”贯穿全过程。设计有独立活动、同桌活动及分小组活动。在具体活动中,虽然小学生的遗忘性较强,但不得不承认学生已学过了三角形的内角和,所以一开始我大胆放手让学生说,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角,然后设疑:三角形内角和是多少?由于学生在小学学过这样的知识,所以很轻松地就可以答出。所以我直接让学生分小组讨论:有什么办法可以验证得出这样的结论。让学生大胆猜想,自主探索三角形的内角和。再通过测量、拼折、验证等方式让学生确定三角形内角和是180度。这样,既培养了学生的观察能力和归纳概括能力,又培养了学生动手操作能力和创新精神。

五、说教学过程:

本节课的教学过程我设计了六个教学环节:一是创设情境,导入新课;二是自主探究,证实规律;三是应用延伸,解决问题;四是深化思维,拓展知识;五是课堂总结;六是作业布置。下面就具体的教学环节说说我的设想。

(一)创设情境,导入新课:

教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。开始上课,我就大胆放手让学生说三角形的特性、分类等有关知识,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角和,然后设疑:三角形内角和是多少?从而激发学生探究数学的愿望和兴趣。

(二)自主探究,证实规律:

1、理解标目:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,所以一开始我先不急于动手探索,先让学生明白什么是三角形的内角和。

2、猜想:目标明确后,我就让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。

3、验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量量、拼一拼、折一折――说说、议议――小结。

4、巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的.思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:根据普遍三角形两个角求一个角,根据特殊的三角形求出三角形的三个角的度数{具体在练习一,第二、应用延伸练习一中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

5、拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

6、说课堂总结

采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?你有什么收获?(2)看书设疑。充分发挥学生的主体意识,培养学生的语言概括能力。

六.说教学板书

这是一节操作课,学生要掌握的概念较少,所以整个板书我以表格为主,主要把学生大量的验证成果展示出,让学生亲自动手后再通过观察,一目了然,得出结论——三角形的内角和是180度。简间但又层层涉及,形式活泼,色彩也较丰富。

总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。

四年级下册《三角形内角和》说课稿3

一、教材分析

《三角形的内角和》,是人教版义务教育课程标准实验教科书数学四年级下册第五单元的内容。

在上学期学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。三角形的内角和是 180°是三角形的一个重要性质,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

由于在初中的教材中,本课内容还会进行深入探讨。所以本课教材在编写上,体现的就是通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和是180°。为初中的理论论证作好了准备。我在本节课的教学设计上,力图体现“尊重学生,注重发展,使之‘做’数学”的教学理念。根据本节教学内容的特点,主要体现“做”数学的四个方面:一引导学生“玩”数学;二帮助学生“悟”数学;三指导学生“用”数学;四激发学生“想”数学。

基于以上对教材的认识,我为本课设定了以下三个教学目标:

1、通过测量、剪拼等方法,探索和发现三角形三个内角的和是180°,并能应用三角形内角和的知识解决简单的实际问题。

2、在经历观察、猜测、验证的过程中,培养学生动手动脑及分析推理的能力。

3、学生在参与数学学习活动的过程中,感受数学思想方法,体验数学的魅力,获得成功的体验,产生喜欢数学的积极情感。

教学重点:通过动手操作探索发现三角形的内角和是180°。

教学难点:运用三角形的内角和解决实际问题。

二、教法和学法

课程标准指出:“有效的数学活动不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”基于以上理念再结合四年级学生的思维特点。本节课当中,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

根据本节教学内容的特点,我设计了游戏导入,引发思考—“玩”数学 、操作实验,猜想验证—“悟”数学 、应用生活,解决问题—“用”数学 、梳理反思,课外延伸—“想”数学这样一个教学结构,让学生在操作探究中发现问题-提出问题-解决问题。

三、教学过程

第一个环节:游戏导入,引发思考—玩数学

学生已有的知识,是新知有效的生长点,温故而知新能为接下来的学习作好知识上的铺垫。

(1)游戏“捉迷藏”复习三角形的分类

上课伊始,通过学生喜欢的游戏形式—“捉迷藏”来复习三角形的分类,“躲在大树后的会是什么三角形呢,猜中了就可以把它抓出来”对这一知识的复习,为探究新知中的分类验证作好了铺垫。从大树后依次出现的三个三角形,学生都能利用已有的知识进行直接或间接地判断。一次次的成功使学生的学习兴趣高涨。但最后再次出现的一个露出两个锐角的三角形,却使学生的意见产生分歧,到底是直角、是钝角、还是锐角三角形?由于运用已有的知识、经验、方法都不能确定第三个角,矛盾的直接情境激发了学生进一步学习的需求。

(2)解释“内角”,提出研究问题

老师随即话锋一转,指出:“知道了这两个内角的度数,老师就能知道第三个角的'度数,你信吗?”在这里还适时地对“内角”一词作出解释,为学生扫清文本理解的障碍。“三角形的内角之间有什么关系呢?就让我们一起来研究吧。”为学生下一步的探究指明了方向。

第二个环节:操作实验,猜想验证—悟数学

第一步,量角猜想

奥苏伯尔说过:“影响学生学习的最重要的因素是学生已经知道了什么” 。其实有许多学生在课外已经知道这一性质,只是不十分坚信,老师要大力地鼓励学生实事求是,从事实中寻找原因。

(1)任意画三角形,量出三个内角的度数,再算出它们的内角和

“大家都想知道三角形的内角有什么秘密,那咱们就来研究研究吧。你们想怎么研究?”由于在前一环节中,已经出现了角的度数的探讨,学生会很自然提出量角研究,老师再具体作出算内角和的研究指导。

(2)个人独立完成,小组交流提出猜想

通过个人独立完成,再小组交流,学生就能在充足的数据基础上,有目的地互相辩驳、互相的吸纳,完善自己的猜想:三角形的内角和大约是180°。

第二步,剪拼验证

(1)独立思考验证方法,个别方法展示

“180°是一个什么样的角呢?(平角)根据平角的特点,我们可不可以再想出其他的验证方法呢?”老师在这里画龙点睛,为学生验证开拓更广阔的思维空间。

“世界上的三角形成千上万,是不是所有的三角形内角和都是180°呢?我们不可能都去验证,怎么办?既然三角形可分成锐角三角形、直角三角形、钝角三角形三类,就从这三类去验证吧。”在这里不仅是引导学生对猜想进行全面地验证,更重要的是在这经历的过程中,感受数学研究的一种严密的逻辑性,从而为以后的数学学习奠定良好的基础。

(2)小组合作,操作验证

可能出现的情况:A、分别撕下三角形三个角拼成平角的

B、分别剪下三角形三个角拼成平角的

C、把三角形的三个角折成平角的

D、通过沿长方形对角线对折得到两个三角形,推理得到每个三角形的内角和

这些方法都验证了:三角形的内角和是180°。

第三步,演示反思

(1)课件演示剪拼过程

(2)介绍发现这一规律的科学家帕斯卡。

受年龄、知识经验、实验条件的限制,在学生的验证中会出现操作不太精确,推理不够严密的情况。老师需借助多媒体的优势,通过课件再次规范、准确的演示剪拼过程。同时介绍科学家帕斯卡对这一规律的发现,让学生及时在脑海中强化这一探究发现的过程。这也让学生感受到通过自己的努力取得成功所带来的满足感。

(3)反思测量

针对在猜想环节中,没有量出是180°的同学,要求再次测量,找到误差的原因。不仅让新知得到了及时的巩固,更培养了学生对待测量精益求精的思想,促进良好的学习习惯形成。

第四步,联系强化

(1)三角形内角和与三角形大小的关系

老师手中的大三角板与你们手中的小三角板,内角和相等吗?为什么?

(2)三角形内角和与三角形形状的关系

(几何画板演示画不同形状的三角形及角度数数据的显示)

仔细观察,有什么不同?什么相同?你有什么新发现吗?

通过学生与老师比较手中不同大小的三角板,再用几何画板动态演示不同形状的三角形,使学生进一步感受到三角形的内角和与三角形的大小、形状都没有关系。从这一系列的联系对比中,使学生对三角形的内角和,由表面的认识走向纵深的思考。

第三个环节:应用生活,解决问题—用数学

数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,课程标准提倡练习的有效性。对此,我设计了三个层次的练习:

1、基本练习

(1)运用新知解决课前游戏中的问题:已知两个角的度数,求第三个角的度数。

(2)学生仿照编题,同桌互做。

在练习中既巩固了基本的知识点,又让学生在同伴相互的反馈评价中,实现了自我的行为纠正。

2、变式练习

(1)金字塔的问题

金字塔每个侧面是三角形,样子就像汉字的金字。金字塔的基底是一个正方形,四个侧面的形状都是等腰三角形。等腰三角形的顶角约是52°,你能算出等腰三角形的底角大约是多少度吗?

(2)交通标志的问题

交通标志的等边三角形,它们每个角是多少度?

(3)三角板中的问题

三角板的其中一个锐角是30°,另外一个锐角是多少度?

在这里设计了求一些特殊三角形角的度数的问题:算一算金字塔的等腰三角形底角度数、交通标志的等边三角形角的度数、直角三角板的锐角度数。在生活的实际情境中,灵活运用三角形的内角和,解决实际问题,突破了教学难点。

3、发展练习

(1)用两块完全一样的三角板拼成一个三角形,这个三角形的内角和是多少度?

(2)用两块完全一样的三角板拼成一个长方形,这个长方形的内角和

是多少度?(如图)

巧妙地由图形的变化对比,体现了三角形内角和的发展应用,从中发展学生的空间观念和空间想象能力。

第四个环节:梳理反思,课外延伸—想数学

(1)全课总结评价

让学生整理本节课的学习收获,为自己评上星级,在梳理知识脉络的同时,又关注了学生在学习过程中的情感体验。

(2)课外练习

“把三角形剪去一个角后,所剩的图形的内角和是多少度?”使学生对知识的探究由课堂延伸到课外。

总之,本节课我力图引导学生通过自主探究、合作交流,充分经历一个知识的学习过程,让学生学会数学、会学数学、爱学数学。在教学中,随时会生成一些新教学资源,课堂的生成一定大于课前预设,我将及时调整我的预案,以达到最佳的教学效果。

《三角形的内角和》说课稿

各位领导、老师:

大家上午好!今天我说课的内容是青岛版小学数学四年级下册第四单元“角与三角形的认识”信息窗2中的第二课时《三角形的内角和》。下面我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价、资源开发七个方面进行说课。

一、教材分析

本册教材依据“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”这四个维度共安排了七个单元,在图形与几何领域本册教材安排了两个单元:第三单元“角与三角形的认识”和第五单元“观察物体”,而第三单元“角与三角形的认识”既是本册教材的教学重点也是教学难点,在整个图形与几何领域起到承上启下的重要地位。上承一年级下册:方位与图形(各种平面图形的认识);二年级下册:角的初步认识(直角、锐角、钝角的认识);三年级上册:图形的周长,下启五年级上册多边形的面积;承上启下,使知识之间循序渐进,螺旋上升。

三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。三角形的稳定性在实践中有着广泛的应用。因此这部分知识的学习不仅可以从形的方面加深对周围事物的理解,发展学生空间观念,而且可以在动手探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。同时也为以后学习图形的面积打下基础。

本单元安排了2个信息窗,信息窗1学习角的认识、大小比较及画法,主要学习习近平角和周角的认识,直观比较角的大小,量角器的认识、角的度量、角的分类以及各种角的之间的关系和角的画法。信息窗2学习三角形的认识,包括三角形的认识及特性,三角形的三边关系,三角形的分类,三角形的底和高及高的画法,三角形的内角和。本单元的教学重点是全面认识角和三角形,教学难点是画角和三角形三边关系的探索。

在这里,我需要指出的是,与人教版和苏教版教材有所不同,青岛版教材不再把角的度量和认识三角形割裂开来,分成两个单元学习,而是按照知识的循序渐进原则把两部分知识放在一个单元中学习,角的度量是角的分类的基础,角的分类又是三角形分类的基础。因此教材安排信息窗1学习角的有关知识,信息窗2学习三角形的有关知识,教材将这部分知识有机地编排在一个单元中学习,符合学生认知特点,有助于学生很好地建构知识体系。

课标对这部分知识的要求是:

1.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。2.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。3.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180度。

三角形的内角和是180度是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

依据课标要求和教材分析及学生的年龄特点,确定本节课的教学目标是:(1)通过“量一量”,“算一算”,“拼一拼”,“折一折”的小组活动的方法,探索发现并验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

(2)通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

(3)知道三角形两个角的度数,能求出第三个角的度数。

(4)发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

本课的教学重点:让学生探究发现并验证三角形内角和等于180度。教学难点是:让学生用不同方法验证三角形的内角和是180度。教具、学具准备 教具:多媒体课件;

学具:锐角三角形、钝角三角形三角形、直角三角形各一个,剪刀,三角板,直尺,量角器,纸。

二、学情分析

学生通过第一学段以及四年级上册对图形与几何内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,但是还缺乏对角和三角形知识的系统深入了解。本节课是学生在学习了各种角,会画角,会量角以及学习了三角形的稳定性、三角形的三边关系,三角形分类的基础上来进行学习的。对于“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来进行验证。因此,我把本节课的教学重点及难点放在三角形内角和的验证上,在学生已有的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。

三角形与日常生活联系紧密,图形直观,所以教学相对而言操作性很强。而学生的数学知识、能力和思考问题的角度存在一定的差异,因此比较容易出现解决问题的策略多样化,这样也对教学的开展提供了很好了研讨环境。

基于此,在教学时,学生的学习主要采取以下两种方法:

(1)动手操作学习法。鼓励学生自己去探索,让学生亲身经历观察、操作、归纳、验证的过程,培养学生探究的意识和能力。

(2)小组合作学习法。通过小组的合作、同桌的合作,让学生共同解决问题,培养团结协作精神。体会知识的产生及发展,使数学知识在充满探索中得到升华。

三、教学模式

新课标指出:教学活动是师生积极参与、交往互动、共同发展的过程。数学教学活动,特别是课堂教学应激发学生学习兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维。对于四年级的学生来说,“三角形的内角和等于180度”这个性质,大多数学生已经在课前通过不同的途径知道,但不一定清楚道理,更不能用多种方法来验证这个性质。如何才能让学生真正理解三角形的内角和为什么是180度,我力图通过:设疑——猜想——验证——提升这四大步去突破。

(一)设疑激趣,创设学生喜欢的学习情境

“良好的开端等于成功的一半”。上课伊始,我给同学们制造了一个小小的矛盾,“既然同学们都会画三角形,请你帮老师画一个有两个直角的三角形”,学生通过动手去画,发现按老师的要求是画不出这样的三角形的,这是为什么呢?从而激发学生的学习热情,激起学生求知的欲望。

(二)重视操作,引导学生形成正确的图形表象,发展空间观念。几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。要让学生动手做数学,而不是用耳朵听数学,让学生带着问题,动手、动口、动脑,调动多种感参与数学学习活动,在活动中获得知识。本节课我通过猜想验证让学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,拼一拼选择一种或几种方法来验证三角形的内角和是180°。

四、教学设计

整节课我预设为4个大的教学环节:

(一)设疑激趣,初步感知。(本环节预计用时5分钟)

1.复习旧知 复习前面学过的锐角三角形,直角三角形,钝角三角形的特征及角的有关知识,特别是复习近平角是180度。

『有效的复习,承上启下,既复习了前面的知识,又为后面的学习做好铺垫』 2.设疑激趣:老师提出要求:让学生帮老师画一个有两个直角的三角形。

3、制造矛盾,引出课题:同学们根本画不出老师要求的三角形,这么看来,三角形的角之间一定藏有很多的奥秘在里面!这节课我们就一起来研究“三角形的内角和”。(板书:三角形的内角和)学习什么是三角形的内角?内角和?

『问题是数学的心脏,问题是最好的老师,学生研究学习的积极性、主动性,往往来自于充满疑问和问题的情境。上课一开始我通过创设“请你帮老师画一个有两个直角的三角形”这一问题情境,在学生求知心理之间制造一种“不协调”,激发学生产生强烈的研究欲望,为后面的学习打下良好的基础。』

(二)操作验证,引导建构。(本环节预计用时25分钟)

1、猜测 老师出示一个三角形,请同学们看一看,猜一猜,它的内角和可能是多少度?

2、验证

(1)动脑想一想 让同学们以小组为单位,先在小组里互相说说你打算用什么样的方法来验证。

(2)动手做一做 利用手中的学具从以上讨论的若干种方法中选择一种你喜欢的方法来进行求和。

【《课程标准》指出:学生学习应当是一个生动活泼的、主动的和富有个性的过程。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。四年级学生经过第一学段以及本单元前面的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此我重点引导学生从“猜测--验证”展开学习活动,让学生感受这种重要的数学思维方式.】

(3)动口说一说 全班汇报交流 a、量一量

①汇报交流 同学们汇报测量求和的结果。

②分析原因(误差的存在)为什么有的正好是180度,有的是在180度左右,这是什么原因呢?

b、拼一拼

①一生上台展示锐角三角形撕下来拼组成一个平角的过程。

②鼓励全班同学尝试 刚才这个同学为我们展示的锐角三角形撕下来拼组的过程,其余的三角形进行这样的操作也会有同样的结果吗?

③生动手操作,验证各种三角形撕下来拼组成平角的过程。④师引导点拨:多媒体课件展示各种三角形撕下来拼组的过程。c、折一折

课件展示各种三角形通过折叠三个角凑成一个平角的过程,再次验证三角形的内角和是180度。

『建构主义认为:学生的建构不是教师传授的结果,而是通过亲身经历,通过与学习环境的交互作用来实现的。用量一量的方法来验证三角形内角和需要进行测量和计算两个过程,略显麻烦又存在误差;采用折一折的方法对于有些同学操作起来又有一定的难度,而拼一拼的方法操作起来既简单又没有误差,还与我们刚刚尝过的平角联系紧密,是全体学生必须掌握的一种方法。』

(三)练习巩固,深化提升(本环节预设用时8分钟)1.第45页“做一做”第8题。

2、第46页“做一做”第12题。3.(1)请同学们回想一下,为什么画不出有两个直角的三角形?(2)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少?

(3)将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少?

4、根据所学的知识,你能想办法求出四边形和五边形的内角和吗?

5、数学文化:向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的教育。

『习题是沟通知识联系的有效手段.我遵循由浅入深的原则,设计了四个层次的练习, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.』

(四)回顾全课,小结延伸:(本环节预设用时2分钟)

今天这节课你学到了什么?有什么收获?关于三角形你还想知道什么? 让学生自己总结重点知识。

五、板书设计

三角形的内角和

量一量 拼一拼 折一折

三角形的内角和等于180度

这样的板书设计,简单明了,直观易懂。不仅突出教学重点,更有利于帮助学生掌握正确的概念。整个设计重点突出,一目了然,画龙点睛。

六、课堂评价 评价包括评价内容和评价方法,从评价内容来看,本节课主要围绕学生的动手操作能力、自主探究能力、合作交流能力、质疑释疑能力、发展空间观念和学习态度六大方面来评价。依据这六大方面,针对四年级学生数学学习过程的评价,我专门设计了这张综合评价量表。表现很好(奖励五颗星)、表现不错(奖励四颗星)、还需加油(奖励三颗星)。以此来激励学生的学习。

评价方法多元化,主要从教师评价、学生互评、自我评价几个角度来评价。评价方式多样化,本节课主要采用课前检测、当堂达标测试、课后开放问题等方法检测学生对知识的理解和掌握程度,并充分发挥小组合作学习的优势,设计表格,由小组长负责做好每一个学生的成长记录。

七、资源开发

资源的开发和利用对学生的学习与成长起着潜移默化的作用,教学本节课时,我注重了以下几个方面:

1.多媒体资源

我们学校已实现了电子白板“班班通”,不仅可以播放各种多媒体课件,还能利用白板软件提供的数学工具画出常见的立体图形来直观演示教学内容。比如画出三角形,然后剪切,移动等,非常方便,效果明显。

2.自制教具、学具

既便于操作,又提高了学生的学习兴趣,增强了学生的动手能力。本节课我提前让学生自制了各种类型的三角形若干个。

3.及时捕捉课堂生成资源

比如:在采用量一量来验证三角形内角和的时候,有的学生通过测量三个内角的度数并相加得出三角形内角和并不正好是180度,而是在180度左右,这个时候,有些同学就认为是自己量错了,还有些同学对三角形内角和是180度产生了怀疑,这时就需要我们及时捕捉这一课堂生成资源,引入对测量误差的认识。

4、开发数学文化资源

数学作为一种文化走进小学课堂,渗入我们的实际教学中。本节课通过向学生介绍帕斯卡在12岁时发现并证明三角形的内角和是180度,对同学们进行数学文化方面的熏陶,增长了同学们的知识,激起了学生创新的欲望。以上我从七个方面阐述了自己对本节课的粗浅认识,希望各位老师批评指正,不吝赐教,谢谢大家!

下载四年级下册《三角形内角和》说课稿word格式文档
下载四年级下册《三角形内角和》说课稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形内角和说课稿

    本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识......

    三角形内角和说课稿

    《三角形的内角和》说课稿 【说教材】 1、 说课内容 今天我说课的内容是北师大版九年义务教育小学数学四年级下册第27页的《三角形内角和》。 2、 教材分析 《三角形的内......

    三角形内角和说课稿

    三角形的内角和 各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。 一......

    三角形内角和说课稿

    三角形内角和说课稿 三角形内角和说课稿1 一、说教材说课内容:人教版义务教育课程标准实验教科书数学第八册第85页例5——三角形的内角和。“三角形的内角和”是三角形的一个......

    三角形内角和说课稿

    探索与发现(一)-----三 角 形 内 角 和 说 课 稿 一、教材分析 “三角形内角和”是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了三角形的主要特征和三角......

    《三角形内角和》说课稿

    《三角形内角和》说课稿15篇 《三角形内角和》说课稿1 各位评委、老师大家好:我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。......

    人教版小学数学四年级下册三角形内角和说课稿

    人教版四年级数学下册《三角形内角和》说课稿 一、说教材 (一)教材的地位和作用 《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学......

    人教版四年级下册三角形内角和教案

    人教版四年级下册《三角形的内角和》教案单位:红旗实验小学姓名:侯晓丽教材内容:义务教育课程标准四年级下册数学第85页例5 学习目标: 知识与技能: 1、通过量、拼、折等方法,探......