教学目标
1.使学生初步理解“方程”“方程的解”和“解方程”的含义。
2.初步掌握解简易方程的方法并会检验。
教学重点
使学生初步掌握解方程的方法和书写格式。
教学难点
帮助学生建立“方程”的概念,并会应用。
教学步骤
一、铺垫孕伏
1、口算下面各题
2、写出下面各题的式子
(1)一个足球元,3个足球多少元?
(2)减3的差。
二、探究新知
(一)教学方程的意义
1、出示天平:(教师向学生介绍)这是一架天平、可以用来称物品的重量。当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等。
2、介绍等式:在天平的两边上重量相等的物体,左边放20克砝码和30克砝码,右边放50克砝码。请学生观察。
教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?
(这时天平平衡,说明了天平左右两边的重量相等,等式为)
教师说明:这是一个等式,等号的左边和右边相等。
3、引出方程。(改变天平上的物品和砝码)
教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示,请同学们试一试。()
教师说明:这个未知数“?”,如果用来表示就可以写成。
教师提问:这个等式和上面的等式有什么不同?(这个等式含有未知数“”)
4、列出含有未知数的等式:(出示第三幅图)
教师提问:
(1)这幅图是什么意思?
(2)每个篮球的价钱是元,3个篮球多少元,怎样用式子表示?(3)
(3)3个篮球是234元,怎样用含有未知数的等式表示?
教师板书:
5、总结方程的意义。
教师提问:观察上面三个等式回答问题。这三个等式有什么相同点和不同点?
相同点:都是相等的式子。
不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数
教师板书:象这种含有未知数的等式,叫方程.
6、举例说明什么叫方程。
强调两点:一:含有未知数
二:等式
7、方程与等式的联系与区别,方程与等式之间是什么关系呢?(学生讨论)
小结:所有的方程都是等式,所有的等式不一定都是方程,含有未知数的等式是方程,不含未知数的等式不是方程。
(二)教学方程的解和解方程
1、教师提问:在中,等于多少时方程左边和右边相等?
(时方程左边和右边相等)
在中,等于多少时方程的左边和右边相等?
(时方程的左边和右边相等)
2、教师引导:使方程左右两边相等的未知数的值,叫做方程的解。
谁是方程的解?(是方程的解)
谁是方程的解?(是方程的解)
3、30是上面方程的解吗?为什么?
(30不是上面方程的解,因为它不能使方程左右两边相等)
4、引导学生说明:,是怎样求出来的?
教师板书:求方程的解的过程叫做解方程。
5、例1解方程-8=16
教师提问:
(1)解方程先写什么?等号怎样写?(先写解,等号要对齐)
(2)根据什么计算?
(3)怎样检查解方程是否正确?
教师板书:
解:根据被减数等于减数加差
检验:把代入原方程,左边,右边
左边=右边
所以是原方程的解。
6、讨论:“方程的解”和“解方程”有什么区别?
三、课堂小结
今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?
四、巩固练习
1、填空
(1)含有未知数的()叫做方程。
(2)使方程左右两边相等的(),叫做方程的解。
(3)求方程的解的()叫解方程。
(4)下面的式了中是等式的有();
是方程的有()。
2、判断,对的在括号里打√,错的打×。
(1)等式都是方程。()
(2)方程都是等式。()
(3)是方程的解。()
(4)也是方程。()
3、选择正确答案填在括号内
(1)的解是()
,(2)的解是()
,(3)这个式子是()
是方程是等式既是方程又是等式
(4)是方程()的解
五、布置作业
练习二十四4题。
六、板书设计
解简易方程
含有未知数的等式叫做方程。例方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
例1解方程
解:根据被减数等于减数加差
检验:把代入原方程,左边,右边,所以是原方程的解。
教学设计示例
五年级数学教案:《简易方程》
复习要求:使学生更熟练地掌握用字母表示数,表示运算定律、计算公式和数量关系;进一步理解方程的意义,会解简易方程。
复习重点:解简易方程。
复习过程:
一、基本练习
1.填空。
(1)王师傅a天做m个零件,平均每天做()个,做一个零件要()天。
(2)17比a的3倍少多少,用含有字母的式子表示是()。
(3)商店运来18筐苹果和x筐梨,每筐苹果重a千克,每筐30千克。商店运来的水果和梨共重()千克。
(4)5a-3a+2a的结果是()。
2.判断。
(1)3a+4b=7ab()
(2)2×3×x=23x()
(3)22=2×2,33=3×3()
(4)5x=0不是方程。()
(5)长方形的周长是C米,长是a米,宽是(C-2a)米。()
(6)a×l0=lOa()
(7)种松树a棵、柏树b棵,种的松树和柏树是松树的(a+b)÷a倍。()
(8)从15里减去a与b的和,求差,用式子表示是15-a+b。()
(9)方程5-3.2=3x与方程5=3x-3.2的解是相同的。()
(10)35(x+5):35x+35×5()
二、复习指导
1.用字母表示数。
(1)师出示P.136页总复习的第6题,请学生按照题目要求用字母表示。
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
长方形的面积公式:S=ab
求工作总量C的公式:C=at
2.解简易方程。
(1)师出示P.137页第7题,让学生独立完成,
(2)指名学生说一说:解简易方程的依据是什么?解简易方程写时应注意什么?
使学生明确:解简易方程都是依据四则运算各部分之间的阿关系。关键是弄清未知数在等式中相当于一个什么数,然后再根据加法、减法、乘法、除法各部分之间的关系来求解。求出解以后,还要对求出的解进行检验,看是否符合题意。解简易方程在书写时应注意:首先在方程的左下方写”解“字,未知数x写在等号左边,上下等号要对齐,不能连等。
3.列方程解文字题。
(1)师出示练习题,生独立完成。
①8.5减去4个0.875的差,除以一个数,商是20,求这个数。
②比2.5的4倍少x的数是3,求x.
(2)生做完后,指名学生说一说是怎样理解的。结合题目,教师说明:列方程解文字题,首先应设要求的数为x,(题目中出现了未知数x的可以不写,)再把文字叙述的形式”翻译“成含有未知数x的等式(即方程),题中怎样叙述等式就怎样写,顺序一般不要改动。列出方程后,按简易方程的解法求出解来。
三、课堂练习:练习三十二第9~11题。